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Abstract
Aims/hypothesis Diabetic nephropathy is characterised by
mesangial extracellular matrix accumulation. Monocyte che-
moattractant protein-1 (MCP-1), a chemokine promoting
monocyte infiltration, is upregulated in the diabetic glomerulus.
We performed in vitro and in vivo studies to examine whether
MCP-1 may have prosclerotic actions in the setting of diabetes,
presumably via its receptor, chemokine (C-C motif) receptor 2
(CCR2), which has been described in mesangial cells.
Methods Human mesangial cells were exposed to recombi-
nant human (rh)-MCP-1 (100 ng/ml) for 12, 24 and 48 h and to
rh-MCP-1 (10, 100 and 200 ng/ml) for 24 h. Fibronectin,
collagen IV and transforming growth factor, beta 1 (TGF-β1)
protein levels were measured by ELISA and pericellular
polymeric fibronectin levels by western blotting. The intra-
cellular mechanisms were investigated using specific inhib-
itors for CCR2, nuclear factor kappa B (NF-κB), p38
mitogen-activated protein kinase and protein kinase C, and
an anti-TGF-β1 blocking antibody. In both non-diabetic and
streptozotocin-induced diabetic mice that were deficient or not

in MCP-1, glomerular fibronectin accumulation was exam-
ined by immunohistochemistry, while cortical Tgf-β1 (also
known as Tgfb1) and fibronectin mRNA and protein levels
were examined by real-time PCR and western blotting.
Results In mesangial cells,MCP-1 binding to CCR2 induced a
2.5-fold increase in fibronectin protein levels at 24 h followed
by a rise in pericellular fibronectin, whereas no changes were
seen in collagen IV production. MCP-1-induced fibronectin
production was TGF-β1- and NF-κB-dependent. In diabetic
mice, loss ofMCP-1 diminished glomerular fibronectin protein
production and both renal cortical Tgf-β1 and fibronectin
mRNA and protein levels.
Conclusions/interpretation Our in vitro and in vivo find-
ings indicate a role for the MCP-1/CCR2 system in
fibronectin deposition in the diabetic glomerulus, providing
a new therapeutic target for diabetic nephropathy.
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Introduction

Diabetic nephropathy is characterised by excessive mesan-
gial extracellular matrix accumulation. This leads to
glomerular volume expansion and results eventually in
glomerulosclerosis and progressive renal impairment [1].
Both hyperglycaemia and glomerular capillary hypertension
play a key role in the pathogenesis of diabetic glomerulo-
sclerosis [2]. In addition, a low degree of inflammation is
also increasingly considered to contribute to the develop-
ment of glomerular damage in diabetes [3].

Monocyte chemoattractant protein-1 (MCP-1) is a potent
chemokine produced by activated monocytes and a variety
of mesenchymal cells. In vitro, mesangial cell exposure to
stretch and high glucose induces MCP-1 production
resulting in monocyte chemotaxis [4]. In vivo, MCP-1 is
overproduced in the glomeruli in experimental diabetes, an
event paralleled by monocyte infiltration [5, 6]. Infiltrating
monocytes release inflammatory cytokines that enhance
fibronectin production in mesangial cells [7], a possible
mechanism whereby MCP-1 may contribute to fibronectin
deposition in the diabetic glomeruli.

The MCP-1 receptor, chemokine (C-C motif) receptor 2
(CCR2), is predominantly present on circulating monocytes.
However, a functionally active CCR2 receptor has been
demonstrated in other cell types both in vitro [8–12] and in
vivo [13–15], suggesting that MCP-1 may have other
functional effects beyond monocyte recruitment [16]. Ac-
cordingly, we recently reported that in human mesangial
cells (HMCs) MCP-1 binding to CCR2 induces intercellular
adhesion molecule-1 (ICAM-1) production, leading to
enhanced monocyte adhesion [17]. However, of particular
relevance to the mesangial extracellular matrix accumulation
seen in diabetes is the question of whether MCP-1 can also
result in direct prosclerotic effects in HMCs. Thus, the
present study was designed first to test in vitro in HMCs
whether MCP-1 exerts such prosclerotic effects. Specifically,
we investigated if MCP-1 binding to CCR2 induces
fibronectin production and explored the potential intracellu-
lar mechanism/s involved. Second, we determined whether
these in vitro findings were relevant in vivo by assessing
extracellular matrix accumulation in diabetic Mcp-1 (also
known as Ccl2) knockout mice.

Methods

Materials

All materials were purchased from Sigma-Aldrich (St Louis,
MO, USA) unless otherwise stated. Fetal calf serum was from
Euroclone (Milan, Italy) and DMEM and TRIZOL reagent
from Invitrogen (Carlsbad, CA, USA). The DNA-free DNAse

was from Ambion (Austin, TX, USA) and the Superscript
First Strand Synthesis System from Life Technologies BRL
(Grand Island, NY, USA). The anti-transforming growth
factor, beta 1 (TGF-β1) neutralising antibody, the monoclonal
anti-TGF-β1 antibody and recombinant human (rh)-MCP-1
were obtained from R&D Systems (Minneapolis, MN, USA).
The Supersignal West Pico chemiluminescence substrate and
both the goat anti-rabbit and the goat anti-mouse horseradish
peroxidase (HRP)-linked antibodies were from Pierce (Rock-
ford, IL, USA). SB202190 and the rabbit anti-fibronectin
antibody were from Calbiochem (Nottingham, UK). The
protein kinase C (PKC) peptide inhibitors PKC19–36 and
SN50 were from Alexis (Nottingham, UK) and the TransAM
nuclear factor kappa B (NF-κB) kit was from Active Motif
(Rixensart, Belgium). The FITC-conjugated rabbit anti-
mouse antibody, the rabbit anti-fibronectin antibody and
the avidin/biotin blocking solution were from DAKO-
Cytomation (Glostrup, Denmark). The TGF-β1 Emax
immunoassay system was from Promega (Southampton,
UK) and Collagen IV ELISA from Exocell (Philadelphia,
PA, USA). The biotinylated goat anti-rabbit antibody and the
Vectastain Elite ABC Staining Kit were purchased from
Vector Laboratories (Burlingame, CA, USA).

In vitro study

Cell culture Cells were isolated and characterised as
described previously [18]. Normal renal cortex was
obtained from the opposite tumour-free pole of nephrecto-
my specimens, removed for localised, capsulated grade 1
hypernephromas. Written informed consent was obtained
from all donors. Tissue was analysed by light microscopy
and by immunofluorescence to confirm the absence of
tumour cells and to exclude the presence of glomerular
abnormalities. Differentiated immortalised HMCs were
obtained by infection of a pure primary culture with a
hybrid Adeno5/SV40 virus [19]. Individual foci of immor-
talised cells were subcultured and characterised according
to phenotype. A differentiated mesangial cell line was then
selected and used in the study. Cells were cultured in
DMEM medium, containing l-glutamine, 6 mmol/l glucose,
supplemented with 20% (vol./vol.) heat-inactivated FCS,
100 U/ml penicillin and 100 μg/ml streptomycin in a
humidified 5% CO2 incubator at 37°C. Studies were
performed at passages 20 to 35 and cells were serum-
deprived for 24 h prior to the experiment.

TGF-β1, fibronectin and collagen type IV protein measure-
ment Culture supernatant fractions from all experimental
conditions were collected, centrifuged (200×g) to remove
cell debris and stored at −80°C prior to analysis. For each
experiment, TGF-β1, fibronectin and collagen IV protein
levels were determined within a single assay run. After
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activation of latent TGF-β1 by acidification, total TGF-β1
protein concentration was measured by ELISA (range: 16–
1,000 pg/ml; intra-assay CV: 1.6%) using a mouse
monoclonal and a rabbit polyclonal anti-human TGF-β1.
Fibronectin protein levels were measured using a compet-
itive inhibition ELISA, as previously described (range
0.05–0.5 μg/ml; intra-assay CV 5%) [20]. Collagen IV
levels were measured by indirect competitive ELISA (range:
0.02–2.5 μg/ml; intra-assay and inter-assay CV <10%)
using collagen type IV-coated plates and a rabbit anti-
collagen type IV antibody. Results were adjusted for cell
number determined by cell counting.

Measurements of pericellular polymeric fibronectin Levels
of pericellular polymeric fibronectin were determined in
deoxycholate-insoluble and sodium dodecyl sulfate (SDS)-
soluble protein extracts as previously described [20, 21].

NF-κB activity Nuclear proteins were extracted and NF-κB
activation determined using the NF-κB Trans-AM kit
(Active Motif) according to the manufacturer’s protocol.
Briefly, 10 μg nuclear protein extracts were transferred into
wells containing the immobilised NF-κB (p65) consensus
sequence and incubated for 1 h at 37°C. After washing, an
antibody that recognises an epitope on p65, which is
accessible only when NF-κB is activated and bound to its
target DNA, was added to the wells. Immunocomplexes
were detected by addition of an HRP-conjugated antibody,
the level of absorbance (450 nm), assessed in a microplate
reader, reflecting the level of bound p65. Jurkat nuclear
extracts were used as positive control. Specificity of the
binding reaction was established through competition with
an excess of wild-type consensus oligonucleotide and a lack
of competition with a mutated consensus oligonucleotide.

Inhibition experiments Experiments were performed in the
presence or in the absence of a panel of specific inhibitors/
blocking antibodies, which were added to the culture media
60 min prior to the experiment. Inhibition experiments on
basal protein production were carried out simultaneously.
RS102895 (6 μmol/l), anti-TGF-β1 neutralising antibody
(2 μg/ml), SN50 (18 μmol/l), SB202190 (1 μmol/l) and
PKC19–36 (4 μmol/l) were used to block CCR2, TGF-β1,
NF-κB, p38 mitogen-activated protein (MAP) kinase and
PKC, respectively. The specificity and selectivity of the
inhibitors used has been previously demonstrated [22–25].

In vivo study

Experimental animals Mcp-1 deficient mice (Mcp-1−/−)
were created by targeted gene disruption as previously
described [26]. These mice were backcrossed eight times

on to the C57BL/6J strain and compared with inbred Mcp-1-
intact (Mcp-1+/+) C57BL/6J mice. Both mouse strains were
maintained on a normal diet under standard animal house
conditions. Diabetes (blood glucose >16 mmol/l) was
induced in both Mcp-1+/+ and Mcp-1−/− mice, weighing 21
to 26 g and aged 8 weeks, by intraperitoneal injections of
streptozotocin (STZ)–citrate buffer (125 mg kg−1 day−1) for
two consecutive days. Blood glucose was measured between
09:00 and 10:00 hours via tail vein sampling on alert, non-
fasted animals, using the diagnostic glucose oxidase enzy-
matic test (Medisense Glucometer; Abbott Laboratories, Bed-
ford, MA, USA). Groups of Mcp-1+/+ (n=8) and Mcp-1−/−

(n=8) diabetic mice with equivalent blood glucose levels
were selected at week 2 and monitored until killed 12 and
18 weeks after STZ injection. Control non-diabetic Mcp-1+/+

(n=8) and Mcp-1−/− mice (n=8) were studied in parallel. A
minority of mice in each diabetic group (10–15%) began
showing progressive weight loss associated with extreme
hyperglycaemia (blood glucose >30 mmol/l) at 12 to
18 weeks and were given isophane insulin (Protophane;
Novo Nordisk, Sydney, NSW, Australia) to prevent further
weight loss, while maintaining diabetes. At 12 to 18 weeks
post-diabetes the mice were killed and the kidneys rapidly
dissected out. The right kidney was frozen in liquid nitrogen,
then stored at −80°C for both mRNA and protein analysis. The
left kidney was stripped of its capsule, weighed, fixed in 10%
formalin (vol./vol.) in PBS–at room temperature, then paraffin-
embedded for light microscopy. Both blood glucose and
HbA1c levels were measured in samples obtained via cardiac
puncture after killing. Approval for these animal studies was
obtained from the Monash Medical Centre Animal Ethics
Committee in accordance with the Australian code of practice
for the care and use of animals for scientific purposes.

Immunohistochemistry Fibronectin staining was performed
on 4 μm kidney paraffin sections (n=8 per group). Briefly,
sections were dewaxed, hydrated and quenched with 3%
(vol./vol.) H2O2 in Tris-buffered saline (pH 7.6) to inhibit
endogenous peroxidase activity. This was followed by
digestion with 0.4% pepsin (wt/vol.) in 0.01 mol/l HCl at
37°C for 5 min, and by blocking with Tris-buffered saline–
0.5% skimmed milk (wt/vol.) for 15 min. Subsequently,
sections were incubated overnight with a primary polyclonal
rabbit anti-human fibronectin antibody at 4°C. Following
avidin/biotin blocking, sections were incubated with a
secondary biotinylated goat anti-rabbit antibody and then
with HRP-conjugated streptavidin. Peroxidase conjugates
were visualised with the chromogen 3,3′-diaminobenzidine
tetrahydrochloride in 0.08% H2O2 (wt/vol.)–Tris-buffered
saline. Finally, sections were counterstained with Mayer’s
haematoxylin, dehydrated and mounted.

Images were visualised under light microscopy (400×
magnification; Olympus BX50, Olympus Optical, Hamburg,
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Germany), digitised with a JVC high-resolution camera (JVC,
London UK), and quantitated using Optimas (Optimas 6.2-
Video Pro-32; Bedford Park, SA, Australia). Analysis was
performed in a blinded fashion. On average, 20 randomly
selected hilar glomerular tuft cross-sections were assessed per
mouse [27] and eight mice were analysed per group. Results
were calculated as percentage of positively stained tissue
within the glomerular tuft.

Reverse-transcription and real-time polymerase chain
reaction Total RNA was extracted from renal cortex using
TRIZOL reagent and contaminating DNA removed using
DNA-free DNAse. DNA-free RNA was reverse transcribed
into cDNA using the Superscript First Strand Synthesis
System (Life Technologies BRL).

Gene expression of both Tgf-β1 (also known as TgfB1)
and fibronectin was analysed by qRT-PCR using the
Taqman system based on real-time detection of accumulated
fluorescence (ABI Prism 7500; Perkin-Elmer, Foster City,
CA, USA). Fluorescence for each cycle was analysed
quantitatively and gene expression normalised relative to
the expression of the housekeeping gene 18S ribosomal
RNA (18S rRNA Taqman Control Reagent kit; Applied
Biosystems, ABI, Foster City, CA, USA), which was
multiplexed together with the gene of interest. Probes and
primers were designed using Primer Express software
(Applied Biosystems and were purchased from Applied
Biosystems. Primers and probes were as follows: Tgf-β1:
forward primer: GCAGTGGCTGAACCAAGGA, reverse
primer: GCAGTGAGCGCTGAATCGA and probe: 6-FAM
AAAGCCCTGTATTCCGT; fibronectin: forward primer
ACATGGCTTTAGGCGGACAA, reverse primer ACATTC
GGCAGGTATGGTCTTG and probe 6-FAM CCCC
GTCAGGCTTA. Amplifications were performed under the
following conditions: 50°C for 2 min, 95°C for 10 min, 50
cycles at 94°C for 20 s and 50 cycles at 60°C for 1 min.

Western blotting analysis Renal cortex was homogenised in
RIPA buffer containing 1% NP40 (vol./vol.), 0.5% sodium
deoxycholate (wt/vol.), 0.1% SDS (wt/vol.), 10 mmol/l
β-mercaptoethanol and proteases inhibitors. Protein extracts
were obtained by centrifugation at 14,000×g for 10 min at
4°C, preceded by a 45 min incubation period on ice. Total
protein concentration was determined using an assay kit
(BCA Total Protein Assay Kit; Pierce Biotechnology). We
separated 30 μg of total protein extracts by 7.5% (wt/vol.)
(fibronectin) or 10% (wt/vol.) (TGF-β1) polyacrylamide
gel electrophoresis and electrotransferred it to nitrocellulose
membranes. The membranes were blocked in 3% (wt/vol.)
BSA–Tris–Tween-20 buffer (pH 7.6) and subsequently
incubated overnight at 4°C with a rabbit anti-human
fibronectin or a monoclonal anti-TGF-β1 antibody. After
washing, membranes were incubated with a goat anti-rabbit

or a goat anti-mouse HRP-linked secondary antibody.
Protein bands were detected by enhanced chemilumines-
cence and visualised on a Gel-Doc system (Bio-Rad, Milan,
Italy). One band of 240 kDa corresponding to cellular
fibronectin and one band of ∼44 kDa corresponding to
TGF-β1 were detected. Band intensities were quantified by
densitometry. Equal protein loading was verified with
Ponceau S staining of total proteins on the nitrocellulose
membranes. Kidney cortexes from three to four mice were
individually analysed per each group.

Data presentation and statistical analysis

The number of experiments, carried out in triplicate, is
reported in the figure legends. All data are presented as
mean ± SEM. Data are expressed as fold change over
control or arbitrary units. Student’s t test was used for the
comparison between two groups. When more than two
groups were studied, data were analysed by ANOVA and if
significant, the Newman–Keuls was used for post hoc
comparisons. Values of p<0.05 were considered significant.

Results

MCP-1 binding to CCR2 induces fibronectin, but not
collagen type IV production in HMCs

Humanmesangial cells were exposed to rh-MCP-1 (100 ng/ml)
for 12, 24 and 48 h and to increasing rh-MCP-1 concentrations
(10, 100, 200 ng/ml) for 24 h, and fibronectin protein levels
were measured in the supernatant fractions. Endotoxin con-
tamination of the rh-MCP-1 preparation was excluded by
Limulus assay. Addition of rh-MCP-1 induced a statistically
significant 2.5-fold increase in fibronectin protein levels at
24 h with a return to baseline values by 48 h (Fig. 1a). A
statistically significant rise in fibronectin protein levels was
seen at all MCP-1 doses (Fig. 1b) and the lowest effective
concentration of 10 ng/ml was used in subsequent experi-
ments. The addition of RS102895, a specific inhibitor of
CCR2 signalling, completely abolishedMCP-1-induced fibro-
nectin production at 24 h (100% inhibition, p<0.05),
indicating that the effect observed was specific and mediated
via the CCR2 receptor (Fig. 2). There was also a significant
increase in pericellular polymeric fibronectin at 48 h (4.2±
0.4 fold increase over control p<0.05), indicating that the
increase in fibronectin in the supernatant fractions was
followed by an enhanced incorporation of fibronectin in the
matrix. In contrast, HMC exposure to 10 ng/ml of MCP-1 did
not alter collagen type IV protein levels in the supernatant
fractions (24 h: 1.02±0.10; 48 h: 1.18±0.15 fold increase
over control, n=4, p=NS).
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TGF-β1 is the mediator of MCP-1-induced fibronectin
production

Given the importance of TGF-β1 in mesangial matrix
production [28], we tested the role of TGF-β1 in MCP-
1-induced fibronectin. Exposure of HMCs to rh-MCP-1
(10 ng/ml) induced a significant increase in total TGF-β1
protein levels at 12 and 24 h with a return to baseline values
by 48 h (Fig. 3a). Moreover, the rise in fibronectin in
response to rh-MCP-1 at 24 h was almost completely
abolished by the addition of a specific anti-TGF-β1
neutralising antibody (83% inhibition p<0.05) (Fig. 3b).

MCP-1-induced TGF-β1 production is independent of PKC
and p38 MAP kinase

Both PKC and p38 MAP kinase are considered important
intracellular signalling molecules in the pathogenesis of
diabetic glomerulosclerosis. These kinases are also key
intracellular mediators of matrix component overproduction
in mesangial cells in vitro [2, 20]. To investigate the
intracellular mechanisms by which rh-MCP-1 induces
TGF-β1 production, we examined the effect of PKC and
p38 MAP kinase inhibition. MCP-1-induced secretion of
TGF-β1 was unaffected by the addition of either the p38
MAP kinase inhibitor SB202190 or the PKC inhibitor
PKC19–36, indicating that this effect was independent of
p38 MAP kinase and PKC (Fig. 4a).

NF-κB mediates MCP-1-induced TGF-β1 production

An NF-κB binding site is present on the TGF-β1 promoter
[29]. Therefore, we tested whether NF-κB was important in
MCP-1-induced TGF-β1 production. Preincubation of
HMCs with SN50, a specific NF-κB inhibitor, significantly
reduced the TGF-β1 response to MCP-1 (Fig. 4a). Further-
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more, rh-MCP-1 (10 ng/ml) induced a statistically signif-
icant 1.5-fold increase in active p65 NF-κB levels in
nuclear proteins (p<0.05) after 30 min of exposure
(Fig. 4b).

MCP-1 deficiency attenuates glomerular fibronectin
deposition in diabetic mice

To assess whether MCP-1 plays a role in fibronectin
overproduction in vivo in experimental diabetes, we used
immunohistochemistry to study glomerular fibronectin
protein production in Mcp-1+/+ and Mcp-1−/− mice 12 and
18 weeks after STZ injection.

Lack of MCP-1 production in this Mcp-1−/− murine
model has previously been confirmed by in situ hybrid-
isation [30]. Blood glucose and HbA1c levels were
significantly higher in the diabetic mice than in the non-
diabetic animals, but there were no significant differences
in these biochemical parameters between Mcp-1+/+ and

Mcp-1−/− diabetic mice. Furthermore, body weight was
significantly lower in the diabetic than in the non-diabetic
animals, but no difference was observed between Mcp-1+/+

and Mcp-1−/− diabetic mice (Table 1).
The induction of diabetes was associated with an

increase in fibronectin production in the Mcp-1+/+ mice
at 18 weeks after STZ injection (Fig. 5), whereas no
differences were seen at the earlier time point of 12 weeks
(8.6±1.7 vs 9.1±0.2% diabetic vs non-diabetic Mcp-1+/+

mice). Fibronectin protein overproduction was localised
mainly to the mesangial matrix of glomeruli and, to a lesser
extent, to the tubulointerstitium. In diabetic Mcp-1−/− mice
there was a reduction in fibronectin accumulation and
quantitative analysis revealed a significant diminution in
glomerular fibronectin staining in diabetic Mcp-1−/− mice
compared with diabetic Mcp-1+/+ mice, whereas no
difference was found between non-diabetic Mcp-1+/+ and
Mcp-1−/− mice.

Loss of MCP-1 diminished fibronectin mRNA
and protein levels in the renal cortex from diabetic mice

To confirm our immunohistochemistry findings with more
quantitative techniques, we measured both fibronectin
mRNA and protein levels in total renal cortex from Mcp-
1+/+ and Mcp-1−/− mice both by real-time PCR and
immunoblotting. Consistent with our immunohistochemis-
try data, we found a significant increase in fibronectin
mRNA levels at 12 and 18 weeks in the diabetic Mcp-1+/+

mice, which was significantly reduced in the diabetic Mcp-
1−/− mice (Fig. 6a). A similar finding was also observed at
the protein level at 12 weeks (Fig. 6b).

MCP-1 deficiency reduced Tgf-β1 mRNA and protein
levels in the renal cortex from diabetic mice

To explore whether MCP-1 could play a role in modulating
TGF-β1 production in vivo in the context of diabetes, we
studied both Tgf-β1 mRNA and protein levels in extracts of
renal cortex from diabetic and non-diabetic Mcp-1+/+ and
Mcp-1−/− mice. Compared with non-diabetic mice, Tgf-β1
mRNA expression was significantly upregulated in the
Mcp-1+/+ mice 12 weeks after STZ injection, this effect
being almost completely prevented in the diabetic Mcp-1−/−

mice (Fig. 6c). A similar trend in Tgf-β1 mRNA expression
was also observed at 18 weeks, although this did not reach
statistical significance. In keeping with our mRNA find-
ings, TGF-β1 protein levels were significantly increased in
diabetic Mcp-1+/+ mice compared with non-diabeticMcp-1+/+

mice at 12 weeks, this increase being significantly blunted in
diabetic mice lacking MCP-1 (Fig. 6d). No differences in
either Tgf-β1 mRNA or protein levels were seen between
non-diabetic Mcp-1+/+ and Mcp-1−/− mice.
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Discussion

This study demonstrates that MCP-1 induces fibronectin
production via a NF-κB- and TGF-β1-dependent mecha-
nism in HMCs and contributes to glomerular fibronectin
and TGF-β1 overproduction in experimental diabetes.

Exposure to MCP-1 induced a statistically significant
2.5-fold increase in fibronectin protein levels at 24 h, which
was comparable with the increase in extracellular matrix
induced by MCP-1 in rat lung fibroblasts [31]. The rise in
fibronectin protein levels in the supernatant fraction was
followed by a significant increase in pericellular polymeric
fibronectin, indicating enhanced fibronectin incorporation
in the matrix. Fibronectin has been shown to promote

monocyte entrapment and to enhance monocyte release of
inflammatory cytokines [32]; thus, fibronectin deposition
may favour amplification of the inflammatory process. No
changes in collagen protein levels were seen in response to
MCP-1, indicating that the direct prosclerotic effect of
MCP-1 on HMCs was specific for fibronectin.

The lowest effective concentration of 10 ng/ml MCP-1
was within the higher physiological range, being compara-
ble with that measured both in vitro in mesangial cells
exposed to inflammatory cytokines [33] and in vivo at sites
of inflammation [34]. The complete inhibition of MCP-1-
induced fibronectin production by RS102895 indicates
that a specific effect of MCP-1 occurs via the CCR2
receptor. In HMCs, the CCR2 receptor also mediates MCP-
1-induced ICAM-1 levels [17]. Therefore, HMCs produce a
functionally active CCR2 receptor as previously shown
both in vitro [8–12] and in vivo [13–15, 35] in other non-
mononuclear cell types.

MCP-1-induced fibronectin production was mediated by
TGF-β1 as it was preceded by a rise in TGF-β1 protein
levels and significantly reduced by TGF-β1 blockade. In
HMCs several insults, including high glucose, stretch and
angiotensin II [36–38], induce fibronectin production via
a TGF-β1-dependent mechanism. In vitro, in lung fibro-
blasts, TGF-β1 is the mediator of MCP-1-induced collagen
I production [31]. In vivo exogenous MCP-1 induces TGF-
β1 formation in the isolated kidney, where no infiltrating
inflammatory cells are present, suggesting a direct effect of
MCP-1 on resident glomerular cells [39]. Our in vitro
findings support this hypothesis and identify HMCs as a
potential biological target for MCP-1.

Both PKC [40] and p38 MAP kinase [20] are key
signalling molecules for the production of extracellular
matrix components in HMCs. Furthermore, MCP-1 has
been reported to activate PKC in tubular epithelial cells
[41]. However, in our experiments inhibition of both p38
MAP kinase and PKC did not affect MCP-1-induced TGF-
β1 secretion. On the contrary, in HMCs exposed to MCP-1
there was a rapid activation of NF-κB, whereas inhibition
of NF-κB reduced TGF-β1 production. These data,
indicating that NF-κB mediates MCP-1-induced TGF-β1
production, are in line with previous studies showing an
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Fig. 5 MCP-1 deficiency attenuates glomerular fibronectin deposition
in diabetic mice. Kidney paraffin sections from both diabetic
(DM+) and non-diabetic (DM−) Mcp-1+/+ and Mcp-1−/− mice (n=
8 per group) were stained for fibronectin as described in Methods.
Representative examples of fibronectin glomerular staining are
shown for (a) non-diabetic Mcp-1+/+, (b) diabetic Mcp-1+/+, (c) non-
diabetic Mcp-1−/− and (d) diabetic Mcp-1−/− mice (400× magnifica-
tion). e Quantification of proportional area of staining for fibronectin,
*p<0.05

Table 1 Body characteristics of Mcp-1-intact and -deficient mice

Non-diabetic STZ-diabetic (18 weeks)

Mcp-1+/+ Mcp-1−/− Mcp-1+/+ Mcp-1−/−

Blood glucose (mmol/l) 9.1±0.4 8.9±0.4 32.1±0.8*** 29.9±2.3***
HbA1c (%) 4.3±0.1 4.5±0.2 8.8±0.2*** 8.8±0.7***
Body weight (g) 27.4±0.7 29.8±0.9 23.7±0.5*** 25.2±1.1***

Data are mean ± SEM
***p<0.001 vs non-diabetic mice
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NF-κB binding site in the TGF-β1 promoter region [29]
and MCP-1-induced NF-κB activation in HMCs primed
with IFN-γ [42]. Interestingly, we have recently shown
that MCP-1 production in response to high glucose and
stretch in HMCs is also mediated by an NF-κB-dependent
mechanism [4]. The intracellular pathway mediatingMCP-1/
CCR2-induced NF-κB activation remains undetermined;
however, the signalling molecules phosphatidylinositol
3-kinase, Rho and janus kinase 2 are known to be activated
by the MCP-1/CCR2 system [43–45] and can lead to NF-κB
activation [46–48] in other cell types. Furthermore, the
CCR2 receptor belongs to the G protein receptor family and
the PI3K/Akt/NF-κB pathway is often activated in response
to ligand to G protein receptor binding [46].

Previous studies have shown that inflammatory cyto-
kines released by MCP-1-activated monocytes enhance
fibronectin production in mesangial cells [7] and this was
generally believed to be the sole mechanism linking MCP-1
to fibronectin overproduction. Our data showing that in
HMCs MCP-1 binding to CCR2 directly induces fibro-
nectin production via an NF-κB and TGF-β1-dependent
pathway provide a novel mechanism whereby MCP-1 can
contribute to excess fibronectin deposition in the mesangium.
Both resident glomerular cells and infiltrating monocytes
are potential sources of MCP-1 within the glomerulus.

However, MCP-1 production is paralleled by CCR2 down-
regulation in HMCs [17, 49]. Therefore, MCP-1-induced
fibronectin production is unlikely to occur via an autocrine
mechanism. MCP-1 released by infiltrating monocytes and/
or neighbouring glomerular cells (e.g. podocytes) is more
likely to be implicated.

To assess whether MCP-1 plays a role in fibronectin
accumulation in vivo in experimental diabetes, we com-
pared fibronectin deposition within the glomeruli in
diabetic Mcp-1−/− and Mcp-1+/+ mice. The phenotype of
Mcp-1−/− mice used in this study has been previously
described [26]. The induction of diabetes by STZ in this
model has been previously established and a recent study
has demonstrated suppression of macrophage infiltration,
albuminuria and renal injury in this model, although specific
assessment of a potential link to fibronectin accumulation
was not examined [30]. A significant increase in glomerular
fibronectin protein levels was seen in the diabetic Mcp-1+/+

mice at 18 weeks, while no changes were observed at
12 weeks. Fibronectin accumulation within the glomeruli
was significantly suppressed in diabetic Mcp-1−/− mice,
providing in vivo evidence that MCP-1 contributes to excess
fibronectin deposition.

These immunohistochemical findings were confirmed by
western blotting and real time-PCR analysis of renal cortex,
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Fig. 6 MCP-1 deficiency attenuates renal fibronectin and Tgf-β1
mRNA and protein levels in diabetic mice. Quantitative RT-PCR
analysis of fibronectin (a) and Tgf-β1 (c) mRNA expression in total
renal cortex from control (open columns) and diabetic (DM; closed
columns) Mcp-1+/+ and Mcp-1−/− mice at 12 and 18 weeks after the
induction of diabetes. n=6–9 per group; *p<0.05 vs control Mcp-1+/+

and Mcp-1−/− and diabetic Mcp-1−/− at 12 and 18 weeks. Immuno-
blotting analysis of fibronectin (b) and TGF-β1 (d) protein levels in
total renal cortex extracts from control (open columns) and diabetic
(closed columns) Mcp-1+/+ and Mcp-1−/− mice at 12 weeks after the
induction of diabetes. Representative immunoblots (b, d) are shown.
n=3–4 per group; #p<0.02 vs others
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showing that both mRNA and protein fibronectin overpro-
duction in diabetic Mcp-1+/+ mice was almost completely
abolished in the diabetic Mcp-1−/− mice. Moreover, neither
mRNA nor protein TGF-β1 overproduction occurred in
the Mcp-1−/− diabetic mice, indicating that in vivo, in the
context of diabetes, MCP-1 can also modulate the produc-
tion of TGF-β1.

Blood glucose levels and HbA1c were similar in diabetic
Mcp-1−/− and Mcp-1+/+ mice, consistent with the beneficial
effect of MCP-1 deficiency observed in these mice being
independent of the glycaemic factor. Furthermore, there was
no difference in fibronectin and TGF-β1 levels between non-
diabetic Mcp-1+/+ and Mcp-1−/− mice, suggesting that the
absence of MCP-1 specifically affects diabetes-induced
TGF-β1 and fibronectin levels and does not play an
important role in the absence of hyperglycaemia.

The present study has identified a novel action of MCP-1,
presumably via its receptor CCR2, namely its ability to
induce extracellular matrix accumulation in HMCs. The in
vivo study provides further evidence linking glomerular
MCP-1 levels to increased fibronectin and TGF-β1 produc-
tion in a diabetic milieu. Although these results cannot be
directly translated into day-to-day clinical practice, they
provide a convincing proof of concept of the relevance of the
MCP-1/CCR2 system in the pathogenesis of glomerular
damage. In the context of other actions of MCP-1 in
inducing monocyte/macrophage infiltration in the kidney
and a similar phenomenon in atherosclerosis [50], another
major complication of diabetes, these findings make the
MCP-1/CCR-2 pathway an attractive target for developing
new therapies directed towards reducing the burden of
diabetic complications, including nephropathy.

Acknowledgements This work was supported by the University of
Turin and by the European Foundation for the Study of Diabetes/Lilly
European Diabetes Research Programme.

Duality of interest The authors declare that there is no duality of
interest associated with this manuscript.

References

1. Mauer SM, Steffes MW, Ellis EN, Sutherland DE, Brown DM,
Goetz FC (1984) Structural-functional relationships in diabetic
nephropathy. J Clin Invest 74:1143–1155

2. Cooper ME (2001) Interaction of metabolic and haemodynamic
factors in mediating experimental diabetic nephropathy. Diabetologia
44:1957–1972

3. Furuta T, Saito T, Ootaka T et al (1993) The role of macrophages
in diabetic glomerulosclerosis. Am J Kidney Dis 21:480–485

4. Gruden G, Setti G, Hayward A et al (2005) Mechanical stretch
induces monocyte chemoattractant activity via an NF-κB-dependent
monocyte chemoattractant protein-1-mediated pathway in human
mesangial cells: inhibition by rosiglitazone. J Am Soc Nephrol
16:688–696

5. Sassy-Prigent C, Heudes D, Mandet C (2000) Early glomerular
macrophage recruitment in streptozotocin-induced diabetic rats.
Diabetes 49:466–475

6. Kato S, Luyckx VA, Ots M et al (1999) Renin–angiotensin
blockade lowers MCP-1 expression in diabetic rats. Kidney Int
56:1037–1048

7. Pawluczyk IZ, Harris KP (1998) Cytokine interactions promote
synergistic fibronectin accumulation by mesangial cells. Kidney
Int 54:62–70

8. Viedt C, Vogel J, Athanasiou T et al (2002) Monocyte chemo-
attractant protein-1 induces proliferation and interleukin-6 pro-
duction in human smooth muscle cells by differential activation of
nuclear factor-κB and activator protein-1. Arterioscler Thromb
Vasc Biol 22:914–920

9. Weber KS, Nelson PJ, Grone HJ, Weber C (1999) Expression of
CCR2 by endothelial cells: implications for MCP-1 mediated
wound injury repair and in vivo inflammatory activation of
endothelium. Arterioscler Thromb Vasc Biol 19:2085–2093

10. Lundien MC, Mohammed KA, Nasreen N et al (2002) Induction
of MCP-1 expression in airway epithelial cells: role of CCR2
receptor in airway epithelial injury. J Clin Immunol 22:144–152

11. Andjelkovic AV, Song L, Dzenko KA, Cong H, Pachter JS (2002)
Functional expression of CCR2 by human fetal astrocytes. J
Neurosci Res 70:219–231

12. Coughlan CM, McManus CM, Sharron M et al (2000) Expression
of multiple functional chemokine receptors and monocyte chemo-
attractant protein-1 in human neurons. Neuroscience 97:591–600

13. Banisadr G, Queraud-Lesaux F, Boutterin MC et al (2002)
Distribution, cellular localization and functional role of CCR2
chemokine receptors in adult rat brain. J Neurochem 81:257–269

14. Warren GL, Hulderman T, Mishra D et al (2005) Chemokine
receptor CCR2 involvement in skeletal muscle regeneration.
FASEB J 19:413–415

15. Moore BB, Kolodsick JE, Thannickal VJ et al (2005) CCR2-
mediated recruitment of fibrocytes to the alveolar space after
fibrotic injury. Am J Pathol 166:675–684

16. Roque M, Kim WJ, Gazdoin M et al (2002) CCR2 deficiency
decreases intimal hyperplasia after arterial injury. Arterioscler
Thromb Vasc Biol 22:554–559

17. Giunti S, Pinach S, Arnaldi L et al (2006) The MCP-1/CCR2
system has direct proinflammatory effects in human mesangial
cells. Kidney Int 69:856–863

18. Gruden G, Thomas S, Burt D et al (1997)Mechanical stretch induces
vascular permeability factor in human mesangial cells: mechanisms
of signal transduction. Proc Natl Acad Sci U S A 94:12112–12116

19. Conaldi PG, Biancone L, Bottelli A et al (1998) HIV-1 kills renal
tubular epithelial cells in vitro by triggering an apoptotic pathway
involving caspase activation and Fas upregulation. J Clin Invest
102:2041–2049

20. Gruden G, Zonca S, Hayward A et al (2000) ATII mechanical
stretch-induced fibronectin and transforming growth factor-beta1
production in human mesangial cells is p38 mitogen-activated
protein kinase-dependent. Diabetes 49:655–661

21. Choi MG, Hynes RO (1979) Biosynthesis and processing of
fibronectin in NIL.8 hamster cells. J Biol Chem 254:12050–12055

22. Mirzadegan T, Diehl F, Ebi B et al (2000) Identification of the
binding site for a novel class of CCR2b chemokine receptor
antagonists: binding to a common chemokine receptor motif
within the helical bundle. J Biol Chem 275:25562–25571

23. Jiang Y, Chen C, Li Z et al (1996) Characterization of the
structure and function of a new mitogen-activated protein kinase
(p38beta). J Biol Chem 271:17920–17926

24. Lin YZ, Yao SY, Veach RA, Torgerson TR, Hawiger J (1995)
Inhibition of nuclear translocation of transcription factor NF-kB by a
synthetic peptide containing a cell membrane-permeable motif and
nuclear localization sequence. J Biol Chem 270:14255–14258

206 Diabetologia (2008) 51:198–207



25. House C, Kemp BE (1987) Protein kinase C contains a
pseudosubstrate prototope in its regulatory domain. Science
238:1726–1728

26. Lu B, Rutledge BJ, Gu L et al (1998) Abnormalities in monocyte
recruitment and cytokine expression in monocyte chemoattractant
protein 1-deficient mice. J Exp Med 187:601–608

27. Lassila M, Seah KK, Allen TJ et al (2004) Accelerated nephropathy
in diabetic apolipoprotein e-knockout mouse: role of advanced
glycation end products. J Am Soc Nephrol 15:2125–2138

28. Ziyadeh FN (2004) Mediators of diabetic renal disease: the case for
TGF-Beta as the major mediator. J Am Soc Nephrol 15:S55–S57

29. Lan Y, Zhou Q, Wu ZL (2004) NF-κB involved in transcription
enhancement of TGF-beta 1 induced by Ox-LDL in rat mesangial
cells. Chin Med J (Engl) 117:225–230

30. Chow FY, Nikolic-Paterson DJ, Ozols E, Atkins RC, Rollins BJ,
Tesch GH (2006) Monocyte chemoattractant protein-1 promotes
the development of diabetic renal injury in streptozotocin-treated
mice. Kidney Int 69:73–80

31. Gharaee-Kermani M, Denholm EM, Phan SH (1996) Costimula-
tion of fibroblast collagen and transforming growth factor beta1
gene expression by monocyte chemoattractant protein-1 via
specific receptors. J Biol Chem 271:17779–17784

32. Chana RS, Martin J, Rahman EU, Wheeler DC (2003) Monocyte
adhesion to mesangial matrix modulates cytokine and metal-
loproteinase production. Kidney Int 63:889–898

33. Grandaliano G, Valente AJ, Rozek MM, Abboud HE (1994)
Gamma interferon stimulates monocyte chemotactic protein
(MCP-1) in human mesangial cells. J Lab Clin Med 123:282–289

34. Tylaska LA, Boring L, Weng W et al (2002) Ccr2 regulates the
level of MCP-1/CCL2 in vitro and at inflammatory sites and
controls T cell activation in response to alloantigen. Cytokine
18:184–190

35. Spinetti G, Wang M, Monticone R, Zhang J, Zhao D, Lakatta EG
(2004) Rat aortic MCP-1 and its receptor CCR2 increase with age
and alter vascular smooth muscle cell function. Arterioscler
Thromb Vasc Biol 24:1397–1402

36. Kreisberg JI, Garoni JA, Radnik R, Ayo SH (1994) High glucose
and TGF beta 1 stimulate fibronectin gene expression through a
cAMP response element. Kidney Int 46:1019–1024

37. Hirakata M, Kaname S, Chung UG et al (1997) Tyrosine kinase
dependent expression of TGF-beta induced by stretch in mesan-
gial cells. Kidney Int 51:1028–1036

38. Kagami S, Border WA, Miller DE, Noble NA (1994) Angiotensin
II stimulates extracellular matrix protein synthesis through

induction of transforming growth factor-beta expression in rat
glomerular mesangial cells. J Clin Invest 93:2431–2437

39. Wolf G, Jocks T, Zahner G, Panzer U, Stahl RA (2002) Existence
of a regulatory loop between MCP-1 and TGF-beta in glomerular
immune injury. Am J Physiol Renal Physiol 283:F1075–F1084

40. Ikehara K, Tada H, Kuboki K, Inokuchi T (2003) Role of protein
kinase C-angiotensin II pathway for extracellular matrix produc-
tion in cultured human mesangial cells exposed to high glucose
levels. Diabetes Res Clin Pract 59:25–30

41. Viedt C, Dechend R, Fei J, Hansch GM, Kreuzer J, Orth SR
(2002) MCP-1 induces inflammatory activation of human tubular
epithelial cells: involvement of the transcription factors, nuclear
factor-kappaB and activating protein-1. J Am Soc Nephrol
13:1534–1547

42. Schwarz M, Wahl M, Resch K, Radeke HH (2002) IFNgamma
induces functional chemokine receptor expression in human
mesangial cells. Clin Exp Immunol 128:285–294

43. Arefieva TI, Kukhtina NB, Antonova OA, Krasnikova TL (2005)
MCP-1-stimulated chemotaxis of monocytic and endothelial cells
is dependent on activation of different signaling cascades.
Cytokine 31:439–446

44. Stamatovic SM, Keep RF, Kunkel SL, Andjelkovic AV (2003)
Potential role of MCP-1 in endothelial cell tight junction ‘opening’:
signaling via Rho and Rho kinase. J Cell Sci 116:4615–4628

45. Mellado M, Rodriguez-Frade JM, Aragay A et al (1998) The
chemokine monocyte chemotactic protein 1 triggers Janus kinase
2 activation and tyrosine phosphorylation of the CCR2B receptor.
J Immunol 161:805–813

46. Xie P, Browning DD, Hay N, Mackman N, Ye RD (2000)
Activation of NF-kappa B by bradykinin through a Galpha(q)-
and Gbeta gamma-dependent pathway that involves phosphoino-
sitide 3-kinase and Akt. J Biol Chem 275:24907–24914

47. Cammarano MS, Minden A (2001) Dbl and the Rho GTPases
activate NF kappa B by I kappa B kinase (IKK)-dependent and
IKK-independent pathways. J Biol Chem 276:25876–25882

48. Digicaylioglu M, Lipton SA (2001) Erythropoietin-mediated
neuroprotection involves cross-talk between Jak2 and NF-kappaB
signalling cascades. Nature 412:641–647

49. Janssen U, Sowa E, Marchand P, Floege J, Phillips AO, Radeke
HH (2002) Differential expression of MCP-1 and its receptor
CCR2 in glucose primed human mesangial cells. Nephron
92:797–806

50. Charo IF, Taubman MB (2004) Chemokines in the pathogenesis
of vascular disease. Circ Res 95:858–866

Diabetologia (2008) 51:198–207 207


	Monocyte...
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Methods
	Materials
	In vitro study
	In vivo study
	Data presentation and statistical analysis

	Results
	MCP-1 binding to CCR2 induces fibronectin, but not collagen type IV production in HMCs
	TGF-β1 is the mediator of MCP-1-induced fibronectin production
	MCP-1-induced TGF-β1 production is independent of PKC and p38 MAP kinase
	NF-κB mediates MCP-1-induced TGF-β1 production
	MCP-1 deficiency attenuates glomerular fibronectin deposition in diabetic mice
	Loss of MCP-1 diminished fibronectin mRNA and protein levels in the renal cortex from diabetic mice
	MCP-1 deficiency reduced Tgf-β1 mRNA and protein levels in the renal cortex from diabetic mice

	Discussion
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


