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Abstract Aims/hypothesis: The aims of this work were to
determine the effect of hypothyroidism on insulin-stimulated
glucose turnover and to unravel the potential mechanisms
involved in such an effect. Methods: Hypothyroidism was
induced by administration of propylthiouracil, with partial
T4 substitution. Euglycaemic–hyperinsulinaemic clamps,
associatedwith the labelled 2-deoxy-D-glucose technique for
measuring tissue-specific glucose utilisation, were used. To
assess a possible involvement of leptin in the modulation of
glucose metabolism by hypothyroidism, leptin was infused
intracerebroventricularly for 6 days. A group of leptin-in-
fused rats was treated with rT3 to determine a potential role
of T3 in mediating the leptin effects. Results: Compared
with euthyroid rats, hypothyroid animals exhibited decreased
overall glucose turnover and decreased glucose utilisation
indices in skeletal muscle and adipose tissue. Leptinaemia in
hypothyroid rats was lower while resistin mRNA expression
in adipose tissue was higher than in euthyroid animals.
Intracerebroventricular leptin infusion in hypothyroid rats
partially restored overall, muscle and adipose tissue insulin-

stimulated glucose utilisation and improved the reduced
glycaemic response observed during insulin tolerance tests.
The leptin effects were due neither to the observed increase in
plasma T3 levels nor to changes in the high adipose tissue
resistin expression of hypothyroid rats. The administration of
leptin to hypothyroid animals was accompanied by increased
expression of muscle and adipose tissue carnitine palmitoyl
transferases, decreased plasma NEFA levels and reduced
muscle triglyceride content. Conclusions/interpretation: Hy-
pothyroidism is characterised by decreased insulin respon-
siveness, partly mediated by an exaggerated glucose–fatty
acid cycle that is partly alleviated by intracerebroventricular
leptin administration.

Keywords Carnitine palmitoyl transferase . Decreased
insulin responsiveness . Euglycaemic–hyperinsulinaemic
clamps . Glucose–fatty acid cycle . Glucose turnover .
Intracerebroventricular infusion . Leptin . Resistin

Abbreviations cDNA: Complementary DNA . CPT-1α:
Carnitine palmitoyl transferase 1α . CPT-1β: Carnitine
palmitoyl transferase 1β . D1: Deiodinase type 1 .
D2: Deiodinase type 2 . 2-DG: 2-Deoxy-D-[1-3H]glucose .
GIR: Glucose infusion rate . i.c.v.: Intracerebroventricular .
ITT: Insulin tolerance test . PTU: Propylthiouracil .
Ra: Rate of glucose appearance . Rd: Rate of glucose
disappearance

Introduction

Thyroid hormones are known to play a role in the regulation
of basal metabolic rate, and in the stimulation of thermo-
genesis [1, 2]. They have also been shown to influence lipid
metabolism, favouring lipolysis and providing fatty acids as
fuels for the induction of energy expenditure [3]. With re-
gard to glucose metabolism, the effects of thyroid hormones
have been primarily studied in vitro. Thus, several inves-
tigations have demonstrated a stimulatory effect of T3 on
insulin-stimulated glucose transport and/or phosphoryla-
tion in muscle [4, 5], on the insulin-sensitive muscle/fat
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glucose transporter, GLUT4 [4, 6], and on glycolysis in
isolated muscle [5]. Other data showed decreased insulin-
stimulated glucose transport and/or phosphorylation, as
well as a lower rate of glycolysis in isolated muscles from
hypothyroid animals, as induced by propylthiouracil (PTU)
administration [5, 7]. Similar findings were obtained when
studying isolated adipocytes from hypothyroid patients, as
these cells exhibited decreased insulin responsiveness with
regard to glucose utilisation. In this latter study, thyroid hor-
mone concentrations were shown to be positively correlated
with the insulin responsiveness of the adipocytes [8].

In vivo data pertaining to the effects of thyroid hormone
excess or of hypothyroidism on glucose metabolism appear
to be less numerous and are complex in their interpretation.
Indeed, hypothyroid patients are usually reported to be glu-
cose intolerant [9], but glucose intolerance is also observed
in hyperthyroidism (for review, see [10]). PTU-induced
hypothyroidism in sheep was shown to result in insulin re-
sistance, as tested during euglycaemic–hyperinsulinaemic
clamps [11].

Leptin is another hormone playing a major role in the reg-
ulation of energy balance by modulating food intake, ther-
mogenesis, as well as glucose and lipid metabolism [12, 13].
Regarding possible interactions between thyroid hormones
and leptin, the influence of the thyroid function, and of hypo-
thyroidism in particular, on circulating leptin levels provided
conflicting data. Thus, decreases [14–16], increases [17–19]
or no change [20, 21] in leptinaemia were reported in hy-
pothyroid patients. Such divergent results may be explained
by the fact that leptin levels primarily reflect changes in fat
mass, this parameter varying according to sex, age and du-
ration of hypothyroidism.

Leptin has been shown to stimulate the hypothalamo–
pituitary–thyroid axis, a stimulation that was particularly
evident when studying animals during food restriction [22–
27]. We have shown, in particular, that leptin produced an
increase in plasma T3 levels that was due to a stimulation of
both the hepatic deiodinase type 1 (D1) and the brown adi-
pose tissue deiodinase type 2 (D2) [25, 27]. As reviewed in
[13], we and other investigators also reported that leptin
increased glucose metabolism in muscle and brown adipose
tissue [28], effects that appeared to be centrallymediated [29].

On the basis of the studies summarised above, it could be
envisioned that T3 and leptin may act in a coordinated man-
ner to favour carbohydrate and lipid utilisation, thereby con-
tributing to themaintenance of normalmetabolic homeostasis.

Given this background, the present studies aimed to: (1)
determine the impact of hypothyroidism on insulin-mediated
glucose turnover, as measured in vivo during euglycaemic–
hyperinsulinaemic clamps and during insulin tolerance tests;
and (2) unravel a potential role of leptin in the metabolic
consequences of hypothyroidism.

Materials and methods

Animals Eight- to nine-week-old 175- to 200-g maleWistar
rats purchased from BRL (Basle, Switzerland) were housed
under conditions of controlled temperature (23°C) and

illumination (07.00–19.00 h). They were allowed access
to water and standard laboratory chow (Provimi Lacta,
Cossonay, Switzerland) until they were included into the
protocol described below.

The animals studied were either euthyroid or mildly hy-
pothyroid, as previously described and validated [27]. Brief-
ly, the mild hypothyroid group was obtained by giving PTU
(Fluka Chemie, Buchs, Switzerland) in the drinking water
of normal rats at a dose of 0.025% for 3 weeks. During
the last week of this experimental period, the PTU-treated
animals were supplemented with a daily i.p. injection of T4
(0.6 nmol·100 g body weight−1·day−1) for 3 days, followed
by a 3-day continuous T4 infusion (0.6 nmol·100 g body
weight−1·day−1) using subcutaneously implanted osmotic
minipumps (Model 2001; Alza Corporation, Palo Alto, CA,
USA). Dosage of the administered T4 was chosen based on
preliminary experiments and aimed to produce a state of
moderate hypothyroidism.

All procedures used were approved by the “Office
Vétérinaire Fédéral et Cantonal”, Geneva, Switzerland.

Implantation of cannula in the lateral cerebral ventricle
Animals were anaesthetised with intramuscular ketamine–
xylazine used at 45 and 9 mg/kg, respectively (Parke-Davis
and Bayer, Leverkusen, Switzerland), and equipped with
a cannula positioned in the right lateral cerebral ventricle
(i.c.v.). After 1 week of recovery, subcutaneously implanted
osmotic minipumps delivering the vehicle or leptin were
connected to the i.c.v. infusion cannula via a polyethylene
catheter, as previously described [30]. Minipumps (Model
2001; Alza Corporation, Palto Alto, CA, USA) infused ei-
ther isotonic saline (vehicle), or 10 μg of leptin ([Ala-100]
hleptin, a human leptin analogue provided by Eli Lilly and
Company, Indianapolis, IN, USA) per day for 6 days.

One of the leptin-infused hypothyroid group was addi-
tionally infused with reverse T3 (rT3) given subcutaneously
by minipumps for the last 3 days of the experiment (25
nmol·100 g body weight−1·day−1). Given the inhibitory ef-
fect of PTU on type 1 deiodinase [31] and the fact that rT3
inhibits type 2 deiodinase activity [27, 32, 33], i.c.v. leptin-
infused rats treated with rT3 were deficient in both type 1
and type 2 deiodinase activities.

Feeding conditions of animals All the animals throughout
this study had the same food intake for the following rea-
sons: (1) one of the aims of the study was to investigate the
metabolic effects of i.c.v. leptin infusion in hypothyroid
rats; (2) central leptin infusion results in decreased food
intake; and (3) valid comparisons of metabolic data require
the presence of similar intergroup food intakes. This was
achieved by supplying groups of euthyroid and hypothyroid
rats with the same amount of food as that actually consumed
by the respective leptin-infused animals (pair-feeding). Thus,
and as shown in Table 1, food intake of hypothyroid and
euthyroid pair-fed animals was similarly reduced by 38 to
42% compared with that of the respective ad-libitum-fed
groups. Pair-feeding of euthyroid and hypothyroid rats was
accompanied by a loss in body weight that was of the same
magnitude as that produced by leptin in hypothyroid animals.
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In the present studies, comparisons of metabolic param-
eters were made between euthyroid pair-fed and hypothy-
roid pair-fed rats, and between hypothyroid pair-fed and i.c.
v. leptin-infused rats, treated or not with rT3.

Euglycaemic–hyperinsulinaemic clamps Euglycaemic–hy-
perinsulinaemic clamps were carried out in 5-h fasted
euthyroid or mildly hypothyroid rats. In the first series of
experiments on euthyroid vs hypothyroid animals, the glu-
cose infusion rate (GIR) needed to maintain normoglycae-
mia at the same level of imposed hyperinsulinaemia was
determined and compared. At the end of these euglycae-
mic–hyperinsulinaemic clamps, a bolus of 2-deoxy-D-[1-
3H]glucose (2-DG; 1.110 MBq/rat; Amersham, Aylesbury,
UK) was injected i.v. to measure the in vivo insulin-stim-
ulated glucose utilisation index of muscles (red quadriceps)
and white adipose tissue (epididymal fat), as previously
described [34, 35]. The tissues mentioned were freeze-
clamped for further analysis. In other groups of euthyroid
and hypothyroid animals, as well as of hypothyroid leptin-
infused rats treated or not with rT3, the rates of total glucose
utilisation (rate of glucose disappearance, Rd) and of he-
patic glucose production (rate of glucose appearance, Ra)
were determined during euglycaemic–hyperinsulinaemic
clamps with an infusion of D-[U-14C]glucose (1.850 MBq/
rat; Amersham, Aylesbury, UK), according to a method pre-
viously described [36]. At the end of these clamps, muscle
and adipose tissue insulin-stimulated glucose utilisation in-
dices were determined with the 2-DG technique mentioned
above.

Analytical procedures related to the clamp studies Two-
deoxy-D-[1-3H]-glucose- and D-[U-14C]-glucose-specific
activities were determined in deproteinised blood samples
as previously reported [34, 35]. Measurement of tissue
concentrations of 2-DG-6-phosphate allowed us to calcu-
late the in vivo glucose utilisation index by individual
tissues, and was expressed in ng·min−1·mg tissue−1 [34, 35].

Insulin tolerance tests Other groups of euthyroid rats,
hypothyroid rats and hypothyroid leptin-infused animals
were treated as those mentioned above. On day 4, all the
animals were subjected to an insulin tolerance test. Insulin
(Actrapid HM, 100 IE·U−1·ml−1; Novo Nordisk, Bagsvaerd,
Denmark) was given i.p. at a dose of 0.75 U/kg and blood

sampleswere taken from the tip of the tail at the time points 0,
15, 30, 60 and 120 min for measurement of plasma glucose
levels. Glucose areas over these 120-min test periods were
calculated and compared.

Quantitative RT-PCR procedureOn day 6, the animals were
killed by decapitation and various tissues were removed,
freeze-clamped and stored at −70°C for subsequent mea-
surements of mRNA expression of liver D1, adipose tissue
resistin, adipose tissue and liver carnitine palmitoyl transfer-
ase 1α (CPT-1α), and muscle carnitine palmitoyl transferase
1β (CPT-1β) by real-time quantitative PCR (Lightcycler;
Roche Diagnostics, Basle, Switzerland), and for determina-
tion of muscle triglyceride content.

Total RNA was extracted from frozen tissue samples
using the Trizol reagent (Life Technologies, Gibco, BRL,
Rockville, MD, USA). RNA integrity was assessed by per-
forming a 1% agarose-gel electrophoresis in 1× TBE, and
its concentration was determined by spectrophotometry.
cDNA templates for RT-PCRwere obtained using 2.5 μg of
total RNA. Reverse transcription reaction was performed
with random hexamers (Microsynth, Geneva, Switzerland),
dNTPs, the RNAse inhibitor, Rnasin (Catalys, Promega
Corporation, Madison, WI, USA), and the M-MLV-RT en-
zyme kit (Life Technologies).

Amplification of cyclophilin A, D1, resistin, CPT-1α and
CPT-1β cDNAs was performed with the SYBR Green I
DNAmaster kit (Roche Diagnostics, Mannheim, Germany),
according to the light cycler standard protocol, using around
70 ng of template cDNA. All primers were used at a final
concentration of 0.5 μmol/l. After each run, a relative quanti-
fication of the amplified PCR product in the different samples
was performed. This was based on the relative comparison of
the PCR products during the log–linear phase of the am-
plification process. A standard curve was used to obtain the
relative concentration of the target gene and the results were
corrected according to the concentration of cyclophilin, used
as the housekeeping gene.

Primer sequences Primers for rat cyclophilin A, D1,
resistin, CPT-1α and CPT-1β were designed online with
Primer 3 software (http://www-genome.wi.mit.edu/cgi-bin/
primer/primer3_www.cgi) and synthesised by Microsynth
(Balgach, Switzerland). The sequence and main character-
istics of the primers used are provided in Table 2.

Table 1 Food intake and body weight characteristics of euthyroid pair-fed rats and hypothyroid pair-fed animals, i.c.v.-infused with leptin
plus rT3 or not

Euthyroid rats Hypothyroid rats

Ad libitum fed Pair-fed Ad libitum fed Pair-fed Leptin Leptin + rT3

Six-day overall food intake (g) 102.6±1.3 59.5a 80.2±3.0a 49.7b 49.7±2.9b 54.4±4.1b

Delta body weight changes (g) 34.4±1.9 −9.6±2.5a 12.0±2.7a −4.3±4.1b −11.0±2.6b −9.8±3.7b

Values are means±SEM of four to eight animals per group. Rats were made hypothyroid by treatment with PTU and substitution with T4
given subcutaneously (0.6 nmol·100 g body weight−1·day−1). Leptin was infused i.c.v. at a dose of 10 μg/day. The vehicle used was isotonic
saline. Vehicle-infused rats were either ad libitum fed or fed the amount of food consumed by leptin-treated rats (pair-fed). Reverse T3 (rT3)
was infused subcutaneously (25 nmol·100 g body weight−1·day−1)
ap<0.05 at least vs the euthyroid ad libitum fed group
bp<0.05 at least vs the hypothyroid ad libitum fed group
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The adequacy of the different PCR products was verified
by nucleic acid sequencing and agarose gel electrophoresis.

Muscle triglyceride content For the determination of tri-
glyceride content in skeletal muscle (tibialis), weighed
quantities of frozen tissue were powdered under liquid N2

and extracted overnight at 4°C in 6 ml chloroform : me-
thanol (2:1 v/v), after which 1 mol/l H2SO4 was added and
the solution was centrifuged. Two millilitres of the lower
organic phase were removed and evaporated under N2 [37].
The resulting pellet was resuspended in 200 μl assay buffer,
and triglyceride content was determined by colorimetric
enzymatic analysis (BioMérieux, Marcy-l’Etoile, France).

Basal levels of plasma metabolites and hormones Plasma
glucose was measured by the glucose oxidase method (glu-
cose analyser 2; Beckman Coulter, Fullerton, CA, USA).
Plasma NEFA concentrations were determined using a kit
fromWako Chemicals (Neuss, Germany), triglycerides with
a kit from Biomérieux (as above), plasma leptin levels by a
commercial RIA kit for rat leptin (Linco Research, St Louis,
MO, USA), and plasma insulin levels by a RIA described
previously [38]. Plasma T4 levels were measured using a
commercial RIA kit (Immulite 2000; Diagnostic Product
Corporation, Los Angeles, CA, USA), plasma T3 levels

by an in-house method of Rotterdam (Erasmus University,
Rotterdam, The Netherlands) with 2% intra-assay and 6%
interassay coefficients of variation. Thesemeasurementswere
performed on samples that were collected 5 h after food
removal.

D2 was measured in freshly prepared homogenates of
brown adipose tissue, as previously described [27].

Statistical analysis The results were analysed by one-way
ANOVA followed by the Tukey’s procedure for multiple
comparisons. The calculations were performed using the
Sigma STATsoftware (SPSS, Chicago, IL, USA). A p value
of less than 0.05 was considered statistically significant.

Results

As depicted in Table 3, the presence of hypothyroidism
produced by PTU administration with partial T4 replace-
ment (see “Materials and methods”) was substantiated by
the occurrence of much higher TSH levels and lower T3
concentrations in hypothyroid than in euthyroid rats, wheth-
er they were fed ad libitum or pair-fed to the amount of food
consumed by leptin-infused rats. Plasma T4 levels were not
different in hypothyroid and euthyroid animals under both

Table 2 Primer sequences used
for real-time RT-PCR

Gene Accession
number

Forward primer
sequence

Reverse primer
sequence

Product
size
(bp)

Annealing
temperature
(°C)

Cyclophilin
A

M19533 5′-AGCACTGGGGA
GAAAGGATT-3′

5′-CATGCCTTCT
TTCACCTTCC-3′

291 55

Deiodinase
type 1

NM 021653 5′-TTGTGTATGTGG
GCCTGCT-3′

5′-ACCCCTAAAG
GTGCTTTGCT-3′

194 57

Resistin NM 144741 5′-TGAAGCCATCA
GCAAGAAGATC-3′

5′-GACCAGCAATGT
AGGACAGTGTTC-3′

82 57

CPT-1α L07736 5′-TACTGACACAG
GCAGCCAAA-3′

5′-GGATGGCATGT
GGGTAAAAG-3′

203 55

CPT-1β AF063302 5′-CAGGCAGTAG
CTTTCCAGTT-3′

5′-AGGCGTTTCTT
CCAGGAGTT-3′

102 57

Table 3 Effects of hypothyroidism and of intracerebroventricular (i.c.v.) leptin infusion on plasma TSH, T3 and T4 levels, as well as on
brown adipose tissue (BAT) type 2 deiodinase (D2) activity

Euthyroid rats Hypothyroid rats

Ad libitum fed Pair-fed Ad libitum fed Pair-fed Leptin Leptin + rT3

TSH (ng/ml) 2.8±0.5 <0.8 51.1±6.9a 76.9±10.1b 58.2±10.8b 59.4±6.5b

T3 (pmol/ml) 1.40±0.12 1.31±0.05 0.45±0.04a 0.56±0.08b 0.95±0.09b,c 0.62±0.08b

T4 (pmol/ml) 93.0±7.7 79.9±3.4 82.2±2.4 71.7±5.3 46.3±4.9b,c 59.4±3.6
BAT D2 activity (fmol·mg−1·min−1) – – 1.17±0.59 6.33±2.57 23.09±3.49c 1.13±0.32d

Values are means±SEM of four to ten animals per group. Rats were made hypothyroid by treatment with PTU and substitution with T4 given
subcutaneously (0.6 nmol·100 g body weight−1·day−1). Leptin was infused i.c.v. at a dose of 10 μg/day. The vehicle used was isotonic
saline. Vehicle-infused rats were either ad libitum fed or fed the amount of food consumed by leptin-treated rats (pair-fed). Reverse T3 (rT3)
was infused subcutaneously (25 nmol·100 g body weight−1·day−1)
ap<0.05 at least vs the euthyroid ad libitum fed group
bp<0.05 at least vs the euthyroid pair-fed group
cp<0.05 at least vs the hypothyroid pair-fed group
dp<0.05 at least vs the hypothyroid leptin-treated group

627



feeding conditions. Such effects of PTU on thyroid hor-
mones were similar to those reported in humans [39, 40].
The state of hypothyroidism induced by PTU was also
documented by the observation of a marked decrease in the
mRNA expression of liver D1 (51.1±4.7 arbitrary units in
hypothyroid pair-fed rats vs 100.0±14.2 arbitrary units in
euthyroid pair-fed rats, p<0.001).

Overall and tissue-specific glucose utilisation indices
were determined by performing euglycaemic–hyperinsulin-
aemic clamps associated with the labelled 2-DG technique.
As mentioned in “Materials and methods”, comparisons
were made between euthyroid and hypothyroid pair-fed ani-
mals, as these two groups had similar food intake and delta
body weight changes (Table 1) allowing for valid interpre-
tation of intergroup metabolic differences.

As depicted in Fig. 1, the GIR needed to maintain normo-
glycaemia during euglycaemic–hyperinsulinaemic clamps
was markedly lower in hypothyroid rats than in euthyroid
animals, indicating the presence of insulin resistance in
hypothyroidism. The presence of decreased insulin respon-
siveness in hypothyroid rats was strengthened by measure-
ments of tissue-specific glucose utilisation indices with the
labelled 2-DG technique. Indeed, as shown in Fig. 2, both the
insulin-stimulated glucose utilisation index of muscle (red
quadriceps) and that of white adipose tissue (epididymal fat
pad) from hypothyroid rats were markedly decreased, by
more than 80% relative to values in euthyroid animals.

In search of potential changes that could partly explain
the hypothyroidism-induced decrease in insulin respon-
siveness, two observations were made, as shown in Fig. 3.
The first was that, relative to euthyroid animals, plasma
leptin levels were twofold lower in the hypothyroid group
(Fig. 3a). The second was that adipose tissue mRNA ex-
pression of resistin more than doubled in the hypothyroid
state (Fig. 3b). Additionally, and as shown in Table 4,
plasma NEFA levels were higher in hypothyroid pair-fed

R
es

is
ti

n
 / 

cy
cl

o
p

h
ili

n
m

R
N

A

0

100

200

300

*

(a
rb

it
ra

ry
 u

n
it

s)
L

ep
ti

n
 (

n
g

/m
l)

0.0

0.5

1.0

1.5

*

a

b

Fig. 3 Plasma leptin levels (a) and epididymal white adipose tissue
resistin mRNA expression levels (b) in euthyroid (open bars) and
hypothyroid (black bars) pair-fed rats. Means±SEM of seven to eight
animals per group are shown. *p<0.05 at least vs the euthyroid group

a

b

G
lu

co
se

 u
ti

lis
at

io
n

in
d

ex
(m

g
. m

in
–1

. k
g

–1
)

0

20

40

60

G
lu

co
se

 u
ti

lis
at

io
n

in
d

ex
(m

g
. m

in
–1

. k
g

–1
)

0

4

8

12

16

*

*

Fig. 2 Insulin-stimulated glucose utilisation indices measured at the
end of euglycaemic–hyperinsulinaemic clamps associated with the
labelled 2-DG technique in muscle (red quadriceps) (a) and in
epididymal white adipose tissue (b) in euthyroid (open bars) and
hypothyroid (black bars) pair-fed rats. Similar results were obtained
when comparing euthyroid and hypothyroid animals that were fed ad
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caemic–hyperinsulinaemic clamps in euthyroid (open bar) and hypo-
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than in euthyroid pair-fed rats, while plasma triglyceride
concentrations were decreased by hypothyroidism. Glycae-
mia and insulinaemia were similar in the two groups of
animals (Table 4).

The observed decrease in leptinaemia in hypothyroid rats
led us to investigate the impact of i.c.v. leptin infusion on
glucose turnover in the hypothyroid state. Insulin tolerance
tests were performed in three groups of animals: euthyroid
pair-fed rats, hypothyroid pair-fed rats and hypothyroid rats
receiving i.c.v. leptin. As illustrated in Fig. 4, glucose areas
during the 120-min test period were more than three times
higher in hypothyroid than in euthyroid pair-fed rats, a de-
fect thatwas partially corrected by i.c.v. leptin administration.

The Rd during euglycaemic–hyperinsulinaemic clamps
was then assessed using 14C-labelled glucose as shown in
Fig. 5. In keeping with the above-mentioned results of GIR
and 2-DG in muscle and adipose tissue, Rd was lower in
hypothyroid than in euthyroid rats. I.c.v. leptin infusion in-
creased Rd while it did not modify the Ra (legend to Fig. 5).
The observation that i.c.v. leptin infusion in hypothyroid rats

resulted in increased plasma T3 levels compared with in hy-
pothyroid rats (Table 3) led us to hypothesise that the bene-
ficial effect of leptin on glucose utilisation might be partly
mediated via T3. However, and as can be seen in Fig. 5, the
stimulatory effect of leptin onRdwas still observedwhen i.c.v.
leptin-infused hypothyroid rats were treated with rT3, a
treatment preventing the leptin-induced increase in plasma
T3 levels through an inhibition of D2 [27] (Table 3). Tissue-
specific glucose utilisation indices were also increased by
i.c.v. leptin administration to hypothyroid rats, both in
muscle and in epididymal white adipose tissue, and whether
or not the animals were treated with rT3 (Table 5).

As shown in Table 4, the effect of leptin in ameliorating
insulin responsiveness in hypothyroid rats was accompa-
nied by decreases in plasma glucose, NEFA and triglyceride
levels. In the presence of rT3, glycaemia was still lowered
by i.c.v. leptin infusion, while the leptin effect on plasma
triglycerides was no longer significant. Leptin infusion with

Table 4 Effects of hypothyroidism and of intracerebroventricular (i.c.v.) leptin infusion on plasma glucose, NEFA, triglyceride and insulin
levels

Euthyroid rats Hypothyroid rats

Pair-fed Pair-fed Leptin Leptin + rT3

Glucose (mmol/l) 6.0±0.2 5.6±0.2 3.3±0.5a 2.6±0.6a

NEFA (mmol/l) 0.32±0.05 0.59±0.04b 0.35±0.07a 0.43±0.09
TG (mmol/l) 0.51±0.03 0.35±0.03b 0.17±0.05a NM
Insulin (ng/ml) 1.12±0.33 0.39±0.04 0.45±0.22 0.27±0.02

Values are means±SEM of four to eight animals per group. Rats were made hypothyroid by treatment with PTU and substitution with T4
given subcutaneously (0.6 nmol·100 g body weight−1·day−1). Leptin was infused i.c.v. at a dose of 10 μg/day. The vehicle used was isotonic
saline. Vehicle-infused rats were fed the amount of food consumed by respective leptin-treated rats (pair-fed). Reverse T3 (rT3) was infused
subcutaneously (25 nmol·100 g body weight−1·day−1)
NM Not measured
ap<0.05 at least vs the hypothyroid pair-fed group
bp<0.05 at least vs the euthyroid pair-fed group
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Fig. 4 Glucose areas during insulin tolerance tests (ITT, 0.75 U/kg)
performed on experimental day 4 in euthyroid pair-fed rats (open
bar), hypothyroid pair-fed rats (black bar) and hypothyroid rats i.c.
v. infused with leptin (hatched bar). Glucose areas were calculated
during the 120 min of the tests. Means±SEM of five to eight animals
per group are shown. *p<0.05 at least vs the euthyroid group;
#p<0.05 at least vs the hypothyroid group
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Fig. 5 Overall glucose utilisation rate (Rd) measured at the end of
euglycaemic–hyperinsulinaemic clamps in euthyroid pair-fed rats
(open bar), hypothyroid pair-fed rats (black bar), hypothyroid rats i.
c.v. infused with leptin (hatched bar) and hypothyroid rats i.c.v.
leptin-infused and treated with rT3 (grey bar). Basal hepatic glucose
production was 5.3±0.5, 4.6±0.3, 4.6±0.7 and 5.6±0.5 mg·min−1·kg−1

for the euthyroid, the hypothyroid, the hypothyroid + leptin, and the
hypothyroid + leptin + rT3 groups of rats, respectively (intergroup
differences NS). Means±SEM of five to six animals per group are
shown. *p<0.05 at least vs the euthyroid group; #p<0.05 at least vs the
hypothyroid group
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or without rT3 did not have a significant effect on plasma
insulin levels.

To explore the possibility that, under the present experi-
mental conditions, leptin could favour fat utilisation in
hypothyroid rats, CPT-1β expression in muscle, CPT-1α
expression in white adipose tissue, and muscle triglyceride
content were measured in untreated pair-fed and leptin-
treated hypothyroid animals. As shown in Fig. 6a, leptin
significantly increased the expression of both muscle CPT-
1β and adipose tissue CPT-1α, without affecting liver CPT-
1α (data not shown). Leptin also promoted a significant
decrease in muscle triglyceride content (Fig. 6b).

Finally, it was observed that i.c.v. leptin infusion in
hypothyroid rats did not modify the mRNA expression of
adipose tissue resistin (100.0±11.7 arbitrary units in hypo-
thyroid pair-fed rats and 123.2±26.1 arbitrary units in hy-
pothyroid leptin-treated rats, n=7 and 8, respectively, NS).

Discussion

The purpose of this study was to investigate the conse-
quences of mild hypothyroidism on glucose metabolism.
Mild hypothyroidism was obtained by PTU administration
to normal rats, followed by partial substitution of the ani-
mals with T4. Suchmild hypothyroidismwas characterised,
relative to euthyroid animals, by high plasma TSH levels,
low T3 concentrations and decreased mRNA expression of
hepatic D1.

Under basal conditions, plasma glucose levels of hypo-
thyroid rats were normal, and plasma insulin levels tended
to be slightly but not significantly decreased, possibly re-
flecting an impairment of insulin secretion in hypothyroid-
ism. When tested during euglycaemic–hyperinsulinaemic
clamps, it was observed that the rate of glucose infusion
needed to maintain normoglycaemia during euglycaemic–
hyperinsulinaemic clamps was decreased by half in the hy-
pothyroid group relative to the euthyroid one, indicating the
presence of insulin resistance. This observation was cor-
roborated by the finding that the insulin-stimulated glucose
utilisation indices measured by the 2-DG method were six
and 11 times lower in skeletal muscle and adipose tissue,
respectively, in hypothyroid compared with euthyroid rats.
These changes indicated the presence of decreased insulin
responsiveness in hypothyroid animals, which is in keeping
with the observed impaired glycaemic response during in-
sulin tolerance tests.

In an attempt to unravel the causes of the decreased
insulin responsiveness of hypothyroid animals, two param-
eters were determined in the hypothyroid and the euthyroid
groups of rats. The first was basal plasma leptin levels,
which were found to be markedly lowered in hypothyroid
animals, possibly reflecting a decreased fat mass in these
rats. Indeed, fat mass of hypothyroid animals was recently
reported to be lower than that of euthyroid controls,
although statistical significance was reached in the retro-
peritoneal fat pad only [41]. The second was resistin ex-
pression in adipose tissue whose levels were more than
doubled in the hypothyroid group compared with in the
euthyroid group. The decrease in plasma leptin levels is
likely to have contributed to the decreased insulin respon-
siveness insofar as previous experiments have clearly
shown that leptin administration to normal rats increases
their insulin-mediated glucose metabolism [13, 28, 29]. In
this respect, it is of interest to mention that decreased leptin
levels have been observed in various models of lipodystro-
phy, in both humans and rodents, such models frequently
exhibiting a state of insulin resistance [42–44].

The increased adipose tissue expression of resistin mea-
sured in hypothyroid animals is also likely to have contrib-
uted to the decreased insulin responsiveness of hypothyroid
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Fig. 6 Carnitine palmitoyl transferase 1β (CPT-1β) and 1α (CPT-
1α) mRNA expression measured in muscle (tibialis) and in
epididymal white adipose tissue (WATe) (a), and triglyceride (TG)
content of tibialis muscle (b) of hypothyroid pair-fed rats (black
bars) and hypothyroid rats i.c.v. infused with leptin (hatched bars).
Means±SEM of seven animals per group are shown. *p<0.05 at least
vs the hypothyroid group

Table 5 Effects of intracerebroventricular (i.c.v.) leptin infusion
with and without rT3 on glucose utilisation indices of skeletal
muscle and of epididymal white adipose tissue (WATe) in hypothy-
roid rats

Hypothyroid rats

Pair-fed Leptin Leptin + rT3

Muscle (ng·mg−1·min−1) 7.6±0.7 14.0±1.8a 25.5±2.5a

WATe (ng·mg−1·min−1) 1.1±0.3 3.1±0.8a 3.6±2.0

Insulin-stimulated glucose utilisation indices were measured at the
end of euglycaemic–hyperinsulinaemic clamps associated with the
labelled 2-deoxy-glucose technique in muscle (red quadriceps) and
in epididymal white adipose tissue. Values are means±SEM of four
to six animals per group
ap<0.05 at least vs the hypothyroid pair-fed group
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rats. Indeed, it is in keeping with in vitro and in vivo data of
others showing that this adipose tissue-derived adipokine
inhibits insulin-stimulated glucose utilisation in 3T3-L1
adipocytes [45] and skeletal muscle cells [46] while pro-
moting hepatic insulin resistance [47]. Additionally, it has
been reported that transgenic rodents overexpressing resistin
in adipose tissue display impaired skeletal muscle glucose
metabolism [48], a defect possibly related to the measured
increase in plasma NEFA levels, and muscle triglyceride
content. The result reported here showing a doubling of
adipose tissue resistin mRNA expression in mild hypothy-
roidism is in keeping with other data showing that hyper-
thyroidism is accompanied by marked decreases in resistin
mRNA expression in white adipose tissue, while hypothy-
roid rats exhibited a 40% increase in white adipose tissue
resistin mRNA levels [49].

Amongst the two potential causes of insulin resistance in
hypothyroid animals just mentioned (low leptin, high re-
sistin), the role of the former was further investigated in the
present study.

It was observed that i.c.v. leptin infusion in hypothyroid
animals significantly increased their Rd. This finding was
corroborated by the observations of significant leptin-elic-
ited increases in the insulin-stimulated glucose utilisation of
both muscle and adipose tissue, and by decreased glucose
areas during insulin tolerance tests. The increase in glucose
utilisation of the hypothyroid group administered with lep-
tin was accompanied by the occurrence of hypoglycaemia,
compared with the normal plasma glucose levels of un-
treated hypothyroid animals. Together, these data are in
keeping with those of the literature showing that peripheral
leptin administration as well as transgenic leptin overex-
pression are able to correct, at least in part, insulin resistance
of human and rodent models of lipodystrophy [43, 50–52].
Similarly, insulin resistance and the diabetic state of young
obese patients suffering from congenital leptin deficiency
were shown to be corrected by peripheral leptin adminis-
tration [53]. Finally, central leptin infusion was reported to
improve insulin sensitivity in streptozotocin-induced dia-
betic rats exhibiting low plasma leptin levels due to the lack
of adipose tissue [54].

Of additional interest was the observation that plasma
NEFA levels were lowered by central leptin infusion in hy-
pothyroid rats relative to untreated hypothyroid controls and
that leptin concomitantly increased adipose tissue CPT1-α as
well as muscle CPT1-β expression, thereby decreasing mus-
cle triglyceride content.

Thus, leptin may have ameliorated the decreased insulin
responsiveness of hypothyroid animals by both increasing
lipid oxidation (increasingCPTexpression, decreasingNEFA
levels, decreasingmuscle triglyceride content) and increasing
overall glucose oxidation, all events that are potentially re-
lated to the alleviation of a potential exaggerated glucose–
fatty acid cycle [55].

Leptin administration did not modify the mRNA over-
expression of resistin in adipose tissue of hypothyroid an-
imals. This is in contrast with our previous finding [56]
showing that i.c.v. leptin infusion in euthyroid rats dec-
reased resistin mRNA expression in adipose tissue. These

contradictory results could be reconciled by proposing that
in hypothyroidism the increased resistin mRNA expression
is related to decreased plasma T3 levels (Table 3), a situa-
tion that could prevail over the inhibitory effect of leptin.
The observation of the present study that i.c.v. leptin did not
decrease resistin mRNA expression in hypothyroid animals
might be part of the reason why leptin did not completely
restore insulin responsiveness in hypothyroid animals.

In conclusion, the results of the present study show that
mild hypothyroidism induces a state of decreased insulin
responsiveness, as assessed during euglycaemic–hyperin-
sulinaemic clamps and insulin tolerance tests. This effect is
in part due to lowered plasma leptin levels, and it is poten-
tially also related to the overexpression of resistin. These
two factors combined may be the reasons why hypothyroid
animals have low fatty acid oxidation, ultimately producing
an increased glucose–fatty acid cycle, inhibitory to glucose
disposal.
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