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Abstract Aims/hypothesis: 5′AMP-activated protein ki-
nase (AMPK) and insulin stimulate glucose transport in
heart and muscle. AMPK acts in an additive manner with
insulin to increase glucose uptake, thereby suggesting that
AMPK activation may be a useful strategy for ameliorating
glucose uptake, especially in cases of insulin resistance. In
order to characterise interactions between the insulin- and
AMPK-signalling pathways, we investigated the effects of
AMPK activation on insulin signalling in the rat heart
in vivo. Methods: Male rats (350–400 g) were injected
with 1 g/kg 5-aminoimidazole-4-carboxamide-1-β-D-ribo-
furanoside (AICAR) or 250 mg/kg metformin in order to
activate AMPK. Rats were administered insulin 30 min
later and after another 30 min their hearts were removed.
The activities and phosphorylation levels of components of
the insulin-signalling pathway were subsequently analysed
in individual rat hearts. Results: AICAR and metformin ad-
ministration activated AMPK and enhanced insulin signalling
downstream of protein kinase B in rat hearts in vivo. Insulin-
induced phosphorylation of glycogen synthase kinase 3
(GSK3) β, p70 S6 kinase (p70S6K)(Thr389) and IRS1
(Ser636/639) were significantly increased following AMPK
activation. To the best of our knowledge, this is the first report
of heightened insulin responses of GSK3β and p70S6K fol-
lowing AMPK activation. In addition, we found that AMPK
inhibits insulin stimulation of IRS1-associated phosphatidyl-
inositol 3-kinase activity, and that AMPK activates atypical

protein kinase C and extracellular signal-regulated kinase in
the heart. Conclusions/interpretations: Our data are indi-
cative of differential effects of AMPK on the activation of
components in the cardiac insulin-signalling pathway.
These intriguing observations are critical for characterisa-
tion of the crosstalk between AMPK and insulin signalling.
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Abbreviations ACC: acetyl-CoA carboxylase . AICAR:
5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside .
AMPK: 5′AMP-activated protein kinase . aPKC: atypical
protein kinase C . ERK: extracellular signal-regulated
kinase . GSK3: glycogen synthase kinase 3 . IR: insulin
receptor . mTOR: mammalian target of rapamycin . p70S6K:
p70 S6 kinase . p90RSK: p90 ribosomal S6 kinase .
PDK1: phosphoinositide-dependent protein kinase 1 .
PI3-kinase: phosphatidylinositol 3-kinase . PKB:
protein kinase B . TSC: tuberous sclerosis complex

Introduction

5′AMP-activated protein kinase (AMPK), a heterotrimeric
serine/threonine kinase composed of a catalytic (α) subunit
and two regulatory (β and γ) subunits, phosphorylates and
inactivates key enzymes involved in ATP-consuming
pathways and activates ATP-producing pathways, thus
acting as a sensor of the cellular energy state [1]. In the
heart, AMPK stimulates fatty acid oxidation by phosphor-
ylating and inactivating acetyl-CoA carboxylase (ACC),
thereby decreasing the level of malonyl CoA [2] and
relieving its inhibitory effect on long-chain fatty acid entry
into the mitochondria. In addition, activated AMPK stim-
ulates myocardial glucose uptake by increased SLC2A4
(also known as GLUT4) translocation [3] and glycolysis
[4]. Several studies have implicated AMPK as an important
protein involved in acute myocardial metabolism regulation
[5]. Of particular interest, cardiac AMPK is essential in the
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regulation of glucose uptake and glycolysis during is-
chaemia [6], in which the α2 catalytic subunit of AMPK
has been reported to play a critical role [7]. In addition,
there is growing evidence that AMPK may play an im-
portant role in regulating metabolic protein expression in
response to chronic metabolic stress in the heart [5, 8].

Insulin signalling is initiated by hormone binding to the
insulin receptor (IR), which activates IR tyrosine kinase
leading to its autophosphorylation on multiple tyrosine
residues and subsequent phosphorylation of IRS. Generally
speaking, insulin signalling downstream of IRS is mediated
by at least two pathways; that of mitogen-activated protein
kinase and that of phosphatidylinositol 3-kinase (PI3-
kinase). PI3-kinase produces phosphatidylinositol (PI) 3,4,
5-P3 and PI 3,4-P2, which bind to pleckstrin-homology
domains of at least two different serine/threonine protein
kinases, namely phosphoinositide-dependent protein kinase
1 (PDK1) and protein kinase B (PKB). PDK1 participates
in the phosphorylation and activation of several down-
stream protein kinases including PKB, p70 S6 kinase
(p70S6K), and atypical protein kinase C (aPKC, λ and ζ).
The mammalian target of rapamycin (mTOR) is a down-
stream target of PKB and, when stimulated, promotes p70S6K

phosphorylation. Glycogen synthase kinase 3 (GSK3) is
another of the many targets of PKB, but may also be
phosphorylated and inhibited by p90 ribosomal S6 kinase
(p90RSK), which lies downstream of extracellular signal-
regulated kinase (ERK) [9]. Following PI3-kinase stimu-
lation by insulin, glucose uptake is increased in the heart.

AMPK activation by 5-aminoimidazole-4-carboxamide-
1-β-D-ribofuranoside (AICAR) stimulates glucose trans-
port in skeletal muscle [10–12] and in heart [3] in the
absence of PI3-kinase activation, suggesting that this action
is not dependent upon the insulin-signalling pathway, at
least at or above the level of PI3-kinase. The mechanisms
responsible for AMPK stimulation of glucose transport are
uncertain, but may involve aPKC and the ERK pathway
[13] and the nitric oxide pathway [14]. Thus, AMPK may
be an important target for regulating cardiac glucose
metabolism, especially under conditions in which insulin-
stimulated glucose use is inhibited, such as poorly controlled
diabetes.

Interactions between the insulin signalling and AMPK
pathways have yet to be completely characterised. Stimu-
lation of AMPK has been reported to increase insulin
sensitivity at the level of glucose transport [15–17] and to
correlate with an increase in insulin-stimulated IRS1-
associated PI3-kinase activity [18]. However, effects of the
AMPK activators metformin and thiazolidinediones on in-
sulin sensitivity remain unclear. In skeletal muscle met-
formin has been reported both to enhance insulin action
[19], and not to alter it [20, 21]. Discrepancies in the effects
of metformin on insulin signalling may result from dif-
ferences in metformin concentration or extracellular ac-
cumulation [22]. Similarly, thiazolidinediones have been
demonstrated not to alter insulin sensitivity [21], or to
enhance it [23–25]. Thus, the role of AMPK in enhanced
insulin sensitivity remains to be characterised. AMPK may
also inhibit mTOR signalling by enhancing its suppression

by the tuberous sclerosis complex (TSC)1/2 [26]. TSC2
possesses a GTPase-activating protein for the small G-
protein Rheb, which mediates mTOR signalling, although
the precise mechanisms remain unclear [27]. Alternatively,
PI3-kinase/PKB or ERK activation may promote mTOR
activation through the reduced inhibition of TSC1/2 [27].
Further, in the heart, insulin may reduce AMPK activity
[28, 29]. Interestingly, this inhibitory effect was found to be
sensitive to wortmannin [29], consistent with the report that
PKB activation leads to decreased AMPK activity [30].
Thus, AMPK has been reported to both promote and sup-
press components of insulin signalling. In addition, the
insulin regulation of AMPK activity further complicates the
interactions between these pathways. Moreover, the use of
therapies such as the AMPK activator metformin in the
treatment of diabetes highlights the importance of under-
standing the effects of AMPK activation on insulin signal-
ling. In this study, we investigate the effects of AMPK
activation on the insulin response in the rat heart in vivo.

Materials and methods

Materials AICAR was obtained from Toronto Research
Chemicals (NorthYork, ON, Canada). Insulinwas purchased
from Novo-Nordisk (Bagsvaerd, Denmark) and radioiso-
topes from Amersham (Buckinghamshire, UK). ACC,
phospho-ACC(Ser79), phospho-tyrosine, IRS1, p85 and
ERK antibodies were from Upstate Biotechnology (Lake
Placid, NY, USA). AMPK-α, phospho-PKB(Ser473), phos-
pho-PKB(Thr308), PKB, phospho-p70S6K and phospho-
GSK3α/β(Ser21/9), phospho-ERK and phospho-IRS1
(Ser636/639) antibodies and the SAMS peptide were from
Cell Signaling Technology (Beverly, MA, USA). IR β-
subunit, GSK3β and p70S6K antibodies were from Santa
Cruz Biotechnology (Santa Cruz, CA, USA). Unless stated
otherwise, all other chemicals were obtained from Sigma
(St Louis, MO, USA).

Experimental approach Male Sprague-Dawley rats (350–
400 g) were fasted overnight and given either an s.c.
injection of AICAR (1 g/kg body weight), metformin
(250 mg/kg) or vehicle (0.9% NaCl). We chose to use
250 mg/kg metformin as this dosage has been reported to
increase AMPK activity in mouse heart [31]. As we aimed
to produce an acute stimulation of AMPK activity in the
heart, we chose to inject metformin, rather than to admin-
ister it in the drinking water. For this acute stimulation, s.c.
injections were used for metformin in order to maintain
consistency with AICAR, which was injected as previously
described [17, 32–34]. Thirty minutes later, rats were
injected i.p. with 50 U/kg insulin or vehicle (PBS). This
dose of insulin has been reported to provoke a maximal
response in rats [35]. Thirty minutes following insulin in-
jection, rats were anaesthetised with sodium pentobarbital
(100mg/kg) and hearts were excised and immediately frozen
in liquid nitrogen. As expected, AICAR, metformin and
insulin reduced the glycaemia, and thus glucose (4mmol/l in
sterile 0.9% saline solution) was administered through i.p.
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injections in order to eliminate any differences in glycaemia
between treatment groups. Blood glucose was measured
using a Glucotrend Blood Glucose Monitor (Boehringer
Mannheim; Mannheim, Germany). Serum was prepared
from blood samples taken at the time of heart excision and
used to measure AICAR levels with a previously described
protocol [36]. Insulin, glucagon, NEFA, corticosterone and
adrenaline were also measured in the serum. Commercial
kits for these measurements were purchased as follows: in-
sulin and glucagon from Linco (St Charles, MO, USA),
NEFAs from Wako (Osaka, Japan), corticosterone from
Diagnostic Systems Laboratories (Webster, TX, USA) and
adrenaline from IBL (Hamburg, Germany). All assays were
performed following the manufacturers’ instructions. This
investigation conforms to the current Guidelines for the Care
and Use of Laboratory Animals of the National Institute of
Health and Medical Research of France (INSERM, France).

Western blot analysis Heart lysates were obtained as
previously described [37]. Heart lysates (30–50 μg) or
immunoprecipitates (from 0.5-1.0 mg protein of heart
lysate) were subjected to SDS-PAGE, and transferred
onto polyvinylidene difluoride membranes (Immobilon-P;
Millipore, Bedford, MA, USA) using standard procedures.
Each gel lane contains protein from only one heart, and
each heart sample is from a different individual rat. Blots
were probed with the appropriate horseradish peroxidase-

conjugated anti-rabbit or anti-mouse immunoglobulin G
(Jackson Immunoresearch Laboratories, West Grove, PA,
USA) and visualised by the enhanced chemiluminescence
system (Amersham).

Enzyme activity measurements AMPK activity in heart
lysates was measured following immunoprecipitation as
previously described [38, 39]. PI3-kinase lipid kinase assays
were carried out as reported [40]. As previously described,
aPKCs (PKC-λ and PKC-ζ) were immunoprecipitated from
cell lysates with a rabbit polyclonal antiserum (Santa Cruz
Biotechnology) that recognises the C-termini of both PKC-λ
and PKC-ζ, collected on Sepharose-AG beads, and incu-
bated for 8min at 30°C in 100μl buffer containing 50mmol/l
Tris/HCl (pH 7.5), 100μmol/l Na3VO4, 100μmol/l Na4P2O7,
1 mmol/l NaF, 100 μmol/l phenylmethylsulphonylfluoride, 4
μg phosphatidylserine, 50 μmol/l [γ-32P]ATP (NEN Life
Science Products, Boston, MA, USA), 5 mmol/l MgCl2, and,
as substrate, 40 μmol/l serine analogue of the PKC-ɛ pseudo-
substrate (BioSource, Camarillo, CA, USA) [41]. After incu-
bation, 32P-labelled substrate was trapped on P-81 filter
papers and counted.

Statistical analysis Results are presented as the means±
SEM. n represents the number of hearts, each from a
different individual rat, used in each measurement. Differ-
ences between the groups were compared with the two-
tailed unpaired Student’s t-test. The Bonferonni correction
was applied to the p values obtained to correct for multiple
comparisons. A corrected p value <0.05 was considered
significant.

Results

No differences in glycaemia were measured among the
different groups at the time of insulin injection (30 min
following AICAR/metformin/vehicle injection). At the
time of killing, glycaemia within each treatment group
was significantly reduced by insulin. No differences were
observed between the different treatment groups without
insulin, i.e. control, AICAR and metformin. Similarly, no
differences were observed between the different treatment

Table 1 Measured blood glucose levels

Glycaemia (mmol/l, mean±SEM)

At time of insulin
injection

At time of heart
removal

Control 4.6±0.3 5.1±0.2
Insulin 4.7±0.2 3.2±0.1*,#

AICAR 4.4±0.3 4.5±0.9
AICAR + insulin 4.8±0.5 3.3±0.2*
Metformin 5.5±0.5 4.5±0.4
Metformin+insulin 5.6±0.4 2.7±0.3*,#

*Significantly different from corresponding value at the time of
insulin injection; #, significantly different from corresponding value
without insulin; p<0.05, n=4–8 hearts

Table 2 Serum levels of AICAR, insulin, glucagon, NEFA, corticosterone and adrenaline

Control AICAR Metformin

No insulin Insulin No insulin Insulin No insulin Insulin

AICAR (μg/ml) 8.0±0.8 8.5±0.8 30.3±5.1#,§ 41.0±7.6#,§ 9.0±1.7 8.8±2.8
Insulin (ng/ml) 1.6±0.3 1186±89* 2.2±0.8 1347±208* 1.7±0.1 942.8±135*
Glucagon (pg/ml) 27±2.1 55±6.5* 41±2.8# 76±6.8* 30±5.0 66±8.0*
NEFAs (mmol/l) 0.252±0.014 0.038±0.003* 0.041±0.006#,§ 0.019±0.002*,# 0.293±0.037 0.031±0.004*
Corticosterone (mg/ml) 722±132 604±57 630±74 899±85# 383±73 887±90*
Adrenaline† (ng/ml) 0.056±0.009 0.496±0.052 0.138±0.021 0.222±0.050 0.063±0.016 0.091±0.016

Values are (means±SEM)
*Significantly different from corresponding value without insulin; #, significantly different from corresponding value without AICAR
or metformin; §, significantly different from corresponding value with metformin; p<0.05, n=4–7 hearts except for adrenaline values
(†) for which n=2–3

2593



groups following insulin injection, i.e. control+insulin,
AICAR+insulin and metformin+insulin (Table 1). Serum
AICAR levels were significantly elevated in groups re-
ceiving AICAR compared with control or metformin

groups (Table 2). Serum insulin levels correspond well
with previously reported basal values [42] and were sig-
nificantly increased in rats given insulin (Table 2). Glucagon
levels corresponded well with previously published values
[43] and were significantly increased with insulin, as ex-
pected [44]. Glucagon levels were also increased to similar

Fig. 1 AMPK activity and ACC phosphorylation. Heart lysates
from rats injected with vehicle (−) or insulin (Ins), with and without
AICAR or metformin were used for activity measurements and
western blot analysis. Membranes were probed with an antibody to
phospho-ACC(Ser79), stripped and re-probed with an antibody to
ACC (b). Results were quantified, normalised to total levels and
plotted (c). Values are means±SEM. *, significantly different from
corresponding value without insulin; #, significantly different from
corresponding value without AICAR or metformin; §, significantly
different from value without insulin, AICAR or metformin; p<0.05,
n=4–9 hearts

"Fig. 2 IRS1-associated PI3-kinase activity and phosphorylation.
IRS1-associated PI3-kinase activity (a) or p85 levels (b) were mea-
sured in immunoprecipitates from heart lysates using IRS1 an-
tibodies from rats injected with vehicle (−) or insulin (Ins), with and
without AICAR or metformin. Heart lysates from rats injected with
vehicle (−) or insulin (Ins), with and without AICAR or metformin
were used for western blot analysis. Membranes were probed with
an antibody to phospho-IRS1(Ser636/639), stripped and re-probed
with an antibody to IRS1 (c). Results were quantified, normalised to
total levels and plotted (d). Values are means±SEM. *, significantly
different from corresponding value without insulin; #, significantly
different from corresponding value without AICAR or metformin;
p<0.05, n=3–9 hearts
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levels with AICAR alone, but were not altered with met-
formin. Serum NEFAs were significantly reduced in rats
receiving insulin, and in those receiving AICAR (Table 2).
Our NEFA levels in control rats correspond well with pub-
lished values [42]. We measured reductions in NEFA levels
in response to both insulin and AICAR as previously re-
ported [42, 45]. The increased reduction in NEFA levels that
we observed probably reflects the higher doses of AICAR
and insulin used in our study. Metformin did not alter NEFA
levels, in agreement with previous reports [46–48]. Gen-
erally, serum corticosterone levels were elevated in all
groups, probably due to sodium pentobarbitol administra-
tion and by handling-induced stress during the experimental
procedure, both of which have been demonstrated to in-
crease circulating corticosterone [49]. Serum adrenaline
levels are presented in Table 2 and are in the range of
previously published basal values [50].

We used both AICAR andmetformin to stimulate cardiac
AMPK. The use of these structurally unrelated activators of
AMPK ensures that we measure effects resulting from the
activation of AMPK, and not from indirect effects of either
AICAR or metformin. AMPK activity was significantly
increased by AICAR and metformin compared with con-
trols (Fig. 1a). No alterations in AMPK activity were
measured in response to insulin. As AMPK is activated
both allosterically and by increased phosphorylation on its
Thr172 residue, and as we are able only to measure changes

in activity relative to its level of phosphorylation, we chose
to monitor the level of AMPK activation through its target
enzyme ACC. As expected, we found a significant increase
in ACC phosphorylation on the residue phosphorylated by
AMPK following AICAR or metformin administration
(Fig. 1b,c). Despite an insulin-induced decrease in ACC
phosphorylation following stimulation by AICAR or met-
formin, treatment with these AMPK activators resulted in a
significant increase in ACC phosphorylation.

Fig. 3 Tyrosine phosphorylation of the IRβ-subunit. Representa-
tive western blots of heart lysates from rats injected with vehicle (−)
or insulin (Ins), with and without AICAR or metformin. Membranes
were probed with an antibody to phosphotyrosine (p-Tyr), stripped
and reprobed with IRβ antibody (a). Results were quantified,
normalised by total levels and plotted (b). Values are means ± SEM.
*, significantly different from corresponding value without insulin,
p<0.05, n=4–7 hearts

Fig. 4 PKB phosphorylation. Representative western blots of heart
lysates from rats injected with vehicle (−) or insulin (Ins), with and
without AICAR or metformin. Blots were probed with phospho-
PKB (Ser473) or phospho-PKB (Thr308) antibodies, stripped and
reprobed with PKB antibody (a). Results were quantified, normal-
ised by total levels and plotted (b, c). Values are means±SEM.
*, significantly different from corresponding value without insulin;
#, significantly different from corresponding value without AICAR
or metformin, p<0.05, n=4–8 hearts
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To investigate the effects of AMPK activation on insulin
signalling, we began by measuring one of the major targets
of insulin, PI3-kinase. Insulin increased cardiac PI3-kinase
activity in agreement with previous reports [51]. IRS1-
associated PI3-kinase activation in response to insulin was
dramatically reduced in the presence of AICAR and met-
formin, while basal levels remained unchanged (Fig. 2a).
Since PI3-kinase activation by insulin is accomplished
following the recruitment of PI3-kinase to the tyrosine-
phosphorylated IRS proteins via its adapter subunit, p85,
we determined whether the reduced PI3-kinase activity was
associated with reduced p85 recruitment. Insulin stimulated
the p85-IRS1 association in all groups. However, we ob-
served a significant reduction in the amount of p85 as-
sociated with IRS1 in response to insulin with both AICAR
and metformin pretreatment (Fig. 2b). In general, reduced
IRS ‘activity’ is associated with reduced tyrosine phosphor-
ylation and/or increased serine phosphorylation. We thus
determined levels of IRS1 phosphorylation on Ser636/639.
Insulin alone did not alter Ser636/639 phosphorylation,
however, following AMPK activation insulin treatment
resulted in significantly increased Ser636/639 phosphory-
lation of IRS1 (Fig. 2c,d). Importantly, total levels of IRS1
protein were not different among the groups.

As reduced insulin stimulation of PI3-kinase in the
presence of AICAR and metformin could result from
reduced IR activation, we measured the level of IR tyrosine
phosphorylation (Fig. 3a,b). IR β-subunit tyrosine phos-

phorylation was increased in response to insulin, and this
response was not significantly altered by AICAR or met-
formin. Since reduced PI3-kinase activity does not occur
with reduced IR phosphorylation, AMPK-induced inhibi-
tion of IRS1-associated PI3-kinase probably acts at the
level of the IRS proteins.

To determine if the inhibitory effect of AMPK activation
on the insulin-stimulated IRS1-associated PI3-kinase ac-
tivity is propagated downstream, we measured the response
to insulin in several downstream targets of PI3-kinase
including PKB, p70S6K, GSK3β (the predominant isoform
in the heart) and aPKC. PKB phosphorylation on Ser473
and Thr308 was significantly increased in response to
insulin, as expected, and interestingly, this response was
further increased following AMPK activation (Fig. 4a–c).
Insulin stimulates p70S6K phosphorylation as shown by a
shift in electrophoretic mobility (Fig. 5a). Interestingly,
AMPK activation did not alter basal levels (without insulin),
but further increased p70S6K phosphorylation in response to
insulin, as demonstrated by the elevated proportion of shift-
ed protein (Fig. 5a, bottom panel). We also measured the
level of p70S6K phosphorylation on Thr389, a residue for
which the phosphorylation has been shown to be rapamycin-
sensitive [52, 53]. Interestingly, we observed a significant
increase in p70S6K phosphorylation on Thr389 in response
to insulin that was further significantly elevated by prior
AMPK activation (Fig. 5b). We observed a similar pattern,
i.e. an increase with insulin and greater insulin response
following AMPK activation, with our measurements of
GSK3β phosphorylation (Fig. 6a,b). In contrast, aPKC ac-

Fig. 5 p70S6K phosphorylation. Representative western blots of
heart lysates from rats injected with vehicle (−) or insulin (Ins), with
and without AICAR or metformin. Blots were probed with an
antibody to phospho-p70S6K (Thr389), stripped and reprobed with
p70S6K antibody (a). Results were quantified, normalised by total
levels and plotted (b). Values are means±SEM. *, significantly
different from corresponding value without insulin; #, significantly
different from corresponding value without AICAR or metformin;
p<0.05, n=5–6 hearts

Fig. 6 GSK3β phosphorylation. Representative western blots of
heart lysates from rats injected with vehicle (−) or insulin (Ins), with
and without AICAR or metformin. Blots were probed with an
antibody to phospho-GSK3α/β(Ser21/9), stripped and reprobed
with GSK3α/β antibody (a). Results for the predominant form,
GSK3β, were quantified, normalised by total levels and plotted (b).
Values are means±SEM. *, significantly different from correspond-
ing value without insulin, #, significantly different from correspond-
ing value without AICAR or metformin; p<0.05, n=4–9 hearts
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tivity was significantly increased by insulin, AICAR and
metformin, but was not further elevated by insulin following
AMPK activation (Fig. 7). As aPKCs may be activated by
AICAR via ERK, we measured ERK1/2 phosphorylation on
Thr202/Tyr204 (Fig. 8a). We observed a significant increase
in ERK1/2 phosphorylation (Thr202/Tyr204) in response to
both AICAR and metformin (Fig. 8b). Alone, insulin re-
sulted in a small, but significant, increase in ERK1/2
phosphorylation of Thr202/Tyr204. Other reports have not

measured a significant increase in ERK1/2 Thr202/Tyr204
phosphorylation under similar conditions [51, 54], prob-
ably because it was measured at least 30 min following
insulin administration. ERK phosphorylation has been dem-
onstrated to peak at approximately 5 min of insulin exposure
and to return to basal levels by 30 min in cardiomyocytes
[55]. Interestingly, following AMPK activation, insulin-
induced ERK1/2 phosphorylation of Thr202/Tyr204 was
significantly elevated. Further, in the presence of AICAR,
ERK1/2 Thr202/Tyr204 phosphorylation was elevated
compared with control or metformin-treated rats.

Discussion

We report here, for the first time to the best of our
knowledge, that the insulin response in elements down-
stream of PKB is potentiated following AMPK activation
in the heart in vivo. We also show that the insulin-induced
stimulation of PI3-kinase associated with IRS1 is reduced
with AMPK activation. In addition, we show that ERK1/2
phosphorylation is increased with AMPK activation and
that insulin and the AMPK activators, AICAR and met-
formin, all stimulate aPKC activity to a similar level in the
rat heart in vivo.

Following AMPK activation, PKB phosphorylation on
Ser473 and Thr308 is significantly increased in response to
insulin. The mechanism of PKB-Ser473 phosphorylation
remains contentious, with evidence for autophosphoryla-
tion and for phosphorylation by exogenous kinase(s) [56].
However, a recent report indicates that the rictor/GβL/
mTOR complex directly phosphorylates Ser473 in vitro
[57]. Thus, the increase in insulin-induced Ser473 phos-
phorylation following AMPK activation may be mediated
by mTOR, which indicates increased mTOR activity, in
agreement with potentiation of insulin action downstream
of PKB. PKB is phosphorylated on Thr308 by PDK1 [58].
However, PDK1 is a constitutively active enzyme, thus
elevated levels of Thr308 phosphorylation may be re-
flective of: (1) increased levels of PI-P3 and thereby
increased recruitment of PKB to the membrane where it is
phosphorylated; and/or (2) reduced activity of the Thr308
phosphatase, protein phosphatase 2A (PP2A) [59]. The
inhibited insulin stimulation of PI3-kinase following AMPK
activation is not transmitted to PKB phosphorylation. This
dissociation between PI3-kinase and PKB is similar to that
described in previous reports [18, 60]. Interestingly, it has
been demonstrated that the IRS1/SHP2 association may be
important for PKB phosphorylation [61]. This concept may
explain our results; however, the precise mechanisms of
AMPK-PKB interactions remain to be characterised.

AMPK activation enhances insulin’s stimulatory effects
on p70S6K phosphorylation. In contrast, several studies have
reported that AMPK activation is associated with reduced
p70S6K phosphorylation [62–66]. However, this inhibitory
effect of AMPK has consistently been reported following
p70S6K stimulation by various agents. We examine the
effects of AMPK activation prior to insulin stimulation of
p70S6K, which is highly physiologically relevant since

Fig. 7 aPKC activity. aPKC activity measured in hearts from rats
injected with vehicle (−) or insulin (Ins), with and without AICAR
or metformin. Values are means±SEM. *, significantly different
from corresponding value without insulin; #, significantly different
from corresponding value without AICAR or metformin; p<0.05,
n=4–8 hearts

Fig. 8 ERK1/2 phosphorylation. Western blot analysis of heart
lysates from rats injected with vehicle (−) or insulin (Ins), with and
without AICAR or metformin. Blots were probed with an antibody
to phospho-ERK (Thr202/Tyr204), stripped and reprobed with
ERK1/2 antibody (a). Results were quantified, normalised by total
levels and plotted (b). Values are means±SEM. *, significantly
different from corresponding value without insulin; #, significantly
different from corresponding value without AICAR or metformin; §,
significantly different from corresponding AICAR value; p<0.05,
n=4–6 hearts
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therapies, such as metformin, that activate AMPK are used
in combination with insulin. Clearly, the timing of input
signals is critical for the understanding of crosstalk between
insulin- and AMPK-signalling and, thus, the characterisation
of both patterns of stimulation is essential.

The activation of p70S6K involves its phosphorylation at
multiple sites, although the precise mechanisms are not yet
completely understood. p70S6K phosphorylation may result
from signalling through: (1) PI3-kinase/PDK1 and poten-
tially PKB; and (2) mTOR [55]. The role of the: MAPK/
ERK kinase cascade remains contentious; however, it may
activate p70S6K in a mTOR-dependent manner [67, 68].
Further, aPKC may contribute to p70S6K phosphorylation
[69, 70]. mTOR is believed to phosphorylate p70S6K on
Thr389 [52, 53], and phosphorylation of this residue most
closely correlates with p70S6K activity in vivo [71]. Here,
AMPK-activated ERK may play a role in stimulating
mTOR, as ERK has been reported to be involved in mTOR
activation [68, 72]. Inputs from PDK1, aPKCs and PKB
have been reported to cooperate to increase the phosphor-
ylation of Thr389 [69, 70]. Thus, in our study, increased
insulin-induced Thr389 phosphorylation following AMPK
activation probably resulted from increased mTOR signal-
ling, and may have been further promoted by PDK1, aPKC
and PKB.

In the heart, both insulin and AMPK activators stim-
ulated aPKC. Our data are consistent with the concept that
insulin and AMPK activate aPKCs through different
mechanisms; insulin acts via PI3-kinase/PDK1 [73] and
AMPK via ERK [13]. Interestingly, no additional increase
in aPKC activity was observed in the presence of both
AMPK activation and insulin. The AMPK-induced reduc-
tion in IRS1-associated PI3-kinase activity may result in the
lack of further stimulation of aPKC by insulin under these
conditions. Alternatively, aPKC may already be maximally
activated by AMPK or, once activated, aPKC may no
longer be accessible for further stimulation.

The insulin-induced increase in GSK3β phosphorylation
was further elevated by AMPK activation. GSK3 may be
phosphorylated by PKB and by p90RSK, which lies
downstream of ERK [9]. In the present study, AMPK stim-
ulated phosphorylation of PKB and ERK, both of which
may contribute to the elevated phosphorylation of GSK3β
observed in response to insulin.

We report that AMPK inhibits insulin-stimulation of
IRS1-associated PI3-kinase activity. The effects of AICAR
on PI3-kinase are controversial; it has been reported not to
alter its activity [16] and to enhance its stimulation [18].
Further, IRS1-associated PI3-kinase activity may be in-
hibited by aPKC [74, 75] or ERK [76]. AMPK directly
phosphorylates IRS1 on Ser-789 [18]. However, this phos-
phorylation has been reported both to promote [18] and to
inhibit [77] downstream responses. mTOR phosphorylates
IRS1 on Ser636/639 [78], thereby promoting reduced
IRS1-associated PI3-kinase activity. Here, AMPK activa-
tion enhanced insulin-induced IRS1 Ser636/639 phosphor-
ylation and reduced IRS1-associated PI3-kinase activity,
consistent with potentialisation of insulin signalling down-
stream of PKB by AMPK. Taken together, mTOR, aPKC

and ERK may all have contributed to reduced insulin-
stimulated IRS1 activity following AMPK activation. The
precise mechanism of IRS regulation by AMPK remains to
be determined, as do possible tissue- and/or species-related
variations.

Increased levels of circulating fatty acids are known to
inhibit the insulin response. Fatty acid oxidation is stim-
ulated by AMPK in the heart through the phosphorylation
and inhibition of ACC, leading to the relieved inhibition of
mitochondrial fatty acid uptake [2]. In isolated hearts,
increased exogenous fatty acid levels are associated with di-
minished insulin-induced phosphorylation of PKB (Ser473
and Thr308) and GSK3 [54]. We do not believe that fatty
acid-induced alterations are responsible for the AMPK
alterations of insulin action in this study, as we observe
increased, rather than decreased, phosphorylation of PKB
and GSK3β, and circulating levels of NEFAs were not
increased. Nonetheless, AMPK-induced modifications of
fatty acid metabolism may contribute to our reduced
insulin stimulation of IRS1-associated PI3-kinase in the
heart.

TSC1/2 has been shown to tightly control mTOR.
AMPK enhances the ability of the TSC1/2 complex to
suppress mTOR signalling towards p70S6K, while ERK
signalling and PKB reduce the ability of the complex to
inhibit p70S6K [27]. We simultaneously stimulated all three
TSC1/2 modulators in the heart in vivo. Under these con-
ditions, the stimulatory effects of AMPK on TSC1/2 are

Fig. 9 Crosstalk between insulin- and AMPK-signalling pathways.
AMPK has been reported to inhibit mTOR by promoting TSC1/2
activity [26]. However, we demonstrate here (represented by thick
lines) that the dominant effect of AMPK activation in the rat heart in
vivo is to potentiate the insulin response downstream of PKB.
Heightened mTOR signalling may then, in turn, feedback to inhibit
IRS1-associated PI3-kinase (PI3K) activity stimulated by insulin.
Dotted lines indicate that the precise mechanism remains unclear
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overridden by the inhibitory effects of ERK signalling and
PKB. PKB and AMPKmay also directly regulate mTOR in
an antagonistic manner through the phosphorylation of
mutually exclusive sites [63]. However, alterations inmTOR
activity in response to phosphorylation remain unclear.
Interestingly, the elevation in mTOR signalling by AMPK
requires insulin stimulation, thereby implying hierarchical
regulation of mTOR. This dominant effect is intriguing in
light of the data demonstrating that AMPK inhibits prior
stimulation of p70S6K. Thus, it appears that the final outcome
on TSC1/2 and mTOR activities may depend on the timing
of the signalling inputs. Interestingly, mTOR inhibits insulin
signalling by phosphorylating IRS1 on Ser636/639 [78] and
we observed that this feedback is heightened following
AMPKactivation (Fig. 9). On the other hand, insulin reduces
AMPKactivity [28–30]. Thus, the integrated control of these
two pathways is complex and the outcome of multiple sig-
nalling inputs is highly likely to vary with time.

In summary, we report that AMPK activation in rat hearts
in vivo enhances insulin signalling downstream of PKB. To
the best of our knowledge, this is the first report of height-
ened insulin responses of GSK3β and p70S6K following
AMPK activation. In addition, we report that AMPK in-
hibits insulin signalling at the level of IRS1-associated PI3-
kinase activity, and that AMPK activates aPKC and ERK in
the heart. These novel data are indicative of differential
effects of AMPK on the activation of components in the
cardiac insulin-signalling pathway. These intriguing ob-
servations are critical for characterisation of the crosstalk
between AMPK and insulin signalling.
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