
Abstract

Aims/hypothesis. Type 2 diabetes mellitus is a com-
plex genetic disease, which results from interactions
between multiple genes and environmental factors
without any single factor having strong independent
effects. This study was done to identify gene to gene
interactions which could be associated with the risk of
Type 2 diabetes.
Methods. We genotyped 23 different loci in the 15
candidate genes of Type 2 diabetes in 504 unrelated
Type 2 diabetic patients and 133 non-diabetic control
subjects. We analysed gene to gene interactions
among 23 polymorphic loci using the multifactor-di-
mensionality reduction (MDR) method, which has
been shown to be effective for detecting and charac-
terising gene to gene interactions in case-control stud-
ies with relatively small samples.
Results. The MDR analysis showed a significant gene
to gene interaction between the Ala55Val polymor-
phism in the uncoupling protein 2 gene (UCP2) and

the 161C>T polymorphism in the exon 6 of peroxi-
some proliferator-activated receptor γ (PPARγ) gene.
This interaction showed the maximum consistency
and minimum prediction error among all gene to gene
interaction models evaluated. Moreover, the combina-
tion of the UCP2 55 Ala/Val heterozygote and the
PPARγ 161 C/C homozygote was associated with a 
reduced risk of Type 2 diabetes (odds ratio: 0.51, 95%
CI: 0.34 to 0.77, p=0.0016).
Conclusions/interpretation. Using the MDR method,
we showed a two-locus interaction between the UCP2
and PPARγ genes among 23 loci in the candidate genes
of Type 2 diabetes. The determination of such geno-
type combinations contributing to Type 2 diabetes mel-
litus could provide a new tool for identifying high-risk
individuals. [Diabetologia (2004) 47:549–554]
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Type 2 diabetes mellitus is a common complex genetic
disease. Its high incidence in certain populations and
among first-degree relatives of Type 2 diabetic patients,
as well as the high concordance in identical twins, pro-
vides strong evidence that genetic factors underlie sus-
ceptibility to the disease [1]. Monogenic forms account
for only five per cent or less of all cases of Type 2 dia-
betes [2], while the common form of the disease results
from interactions between multiple genes and environ-
mental factors, without any single factor having strong
independent effects [3]. Thus, searching for susceptibil-
ity genes for the common form of Type 2 diabetes re-
quires a thorough understanding of gene to gene and
gene to environment interactions.



Traditionally, gene to gene interactions in complex
diseases have been examined by logistic regression,
multilocus linkage disequilibrium tests and the Hardy-
Weinberg equilibrium test, all of which have limita-
tions in their general application [4]. Thus, the identi-
fication and characterisation of gene to gene interac-
tions has been limited mainly by a lack of powerful
statistical methods and a lack of large sample size [4].
To overcome these limitations, the multifactor-dimen-
sionality reduction (MDR) method was developed. It
is used for detecting and characterising high-order
gene to gene interactions in case-control and discor-
dant-sib-pair studies with relatively small samples [5].
The MDR defines a single variable that incorporates
information from several loci and/or incorporates en-
vironmental factors that can be divided into high-risk
and low-risk combinations. This new variable can be
evaluated for its ability to classify and predict disease
risk status using cross-validation (CV) and permuta-
tion testing. It can also be used in conventional ana-
lytic methods [4]. The MDR method has been shown
to have good power in relatively small case-control
studies [6, 7].

In this study, we genotyped 23 different loci in the
15 candidate genes of Type 2 diabetes in unrelated
Type 2 diabetic patients and non-diabetic control sub-
jects, and examined gene to gene interactions with the
MDR method.

Subjects and methods

Subjects. We studied 504 unrelated patients with Type 2 diabe-
tes mellitus (age: 59±10 years, 241 men, 263 women) and 133
non-diabetic control subjects (age: 65±3 years, 40 men, 93
women). Type 2 diabetes was diagnosed according to World
Health Organization criteria [8]. Selection of the non-diabetic
control subjects was according to the following criteria: 60
years or older, no past history of diabetes, no diabetes in first-
degree relatives, a fasting plasma glucose concentration of less
than 6.1 mmol/l, and an HbA1c value of less than 5.8%. The
Institutional Review Board of Clinical Research Institute in
Seoul National University Hospital, Korea approved the study
protocol and informed consent for genetic analysis was ob-
tained from each subject. This study was carried out in accor-
dance with the Declaration of Helsinki as revised in 2000
(http://www.wma.net/e/policy/17cnote.pdf).

Selection of polymorphisms. Using public databases, e.g.
PubMed and Online Mendelian Inheritance in Man (http://www.
ncbi.nlm.nih.gov/Omim/), we selected 15 candidate genes that
have been characterised and potentially associated with Type 2
diabetes. Among these candidate genes, calpain 10 and
adiponectin genes (located in 2q37.3 and 3q27 respectively) are
positional candidates evidenced by genome-wide linkage analy-
sis [9, 10]. In addition, peroxisome proliferator-activated recep-
tor γ (PPARγ), fatty acid binding protein (FABP) 2, β3-adrener-
gic receptor (ADRB3) and insulin receptor substrate 1 (IRS1)
have been linked to the phenotypes of Type 2 diabetes, e.g. 
obesity or insulin resistance [11, 12, 13, 14]. GenBank acces-
sion numbers for genes studied in this article are as follows: 
uncoupling protein (UCP) 2 (NM_003355), adiponectin

(NM_004797), PPARγ (NM_015869), FABP2 (NM_000134),
PPARγ coactivator 1 (NM_013261), FABP3 (NM_004102), 
uncoupling protein 3 (NM_003356), calpain 10 (NM_021251),
resistin (NM_020415), mitochondrial NADH dehydrogenase
subunit 2 (J01415), mitochondrial ATPase 8 gene (J01415), 
mitochondrial D-loop (J01415), ADRB3 (NM_000025), IRS1
(NM_005544), and glycogen synthase 1 (NM_002103).

We further selected 23 polymorphisms, mostly single nu-
cleotide polymorphisms (SNPs), within these genes. The 23
polymorphisms examined in this study are listed in Table 1.
The minus signs before the numbered nucleotide in some poly-
morphisms, such as −345 in Table 1, refer to the 5′ upstream
region relative to the transcription–initiation site of a gene. To
identify the polymorphisms in FABP3 gene, we sequenced the
full gene, including −1500 bp promoter region, with 24 Korean
DNA samples using ABI PRISM 3700 DNA analyser (Applied
Biosystems, Foster City, Calif., USA). As a result, 14 polymor-
phisms were identified: 2 ins/dels, 2 short tandem repeats and
10 SNPs [15]. Among identified polymorphisms, −345T>C,
+5428G>C, +7836 T ins>del, and −530CTC ins>del were in-
cluded in this study.

Genotyping of polymorphisms. Genomic DNA was isolated
with a commercial kit (Gentra Systems, Minneapolis, Minn.,
USA). The amplifying and extension primers were designed
for single base extension for SNPs and ins/del. Primer exten-
sion reactions were done with SNaPshot ddNTP Primer Exten-
sion Kit (Applied Biosystems). To clean up the primer exten-
sion reaction, one unit of shrimp alkaline phosphatase was
added to the reaction mixture, which was then incubated for
1 h at 37°C, followed by 15 min at 72°C. The DNA samples
containing extension products and GeneScan 120 Liz size stan-
dard solution were added to Hi-Di Formamide (Applied
Biosystems) according to the manufacturer’s instructions. The
mixture was incubated for 5 min at 95°C followed by 5 min on
ice, and then was electrophoresed by ABI Prism 3100 Genetic
Analyzer. Automatic genotype assignment was done by ABI
Prism GeneScan and Genotyper software (Applied Biosys-
tems).

Multifactor-dimensionality reduction analysis. MDR was done
as described previously [4, 5, 6, 7]. Briefly, the data set is di-
vided into ten parts of equal size for 10-fold CV. A training set
composed of 9/10 of the data used to build the MDR model is
selected. The remaining 1/10 of the data is used to compose
the testing set, which is used to determine the generalisability
of the MDR model. Next, a set of n genetic and/or environ-
mental factors is selected. The n factors are represented in
n-dimensional space. During the model selection process, each
multifactor cell class in n-dimensional space is labelled as
high-risk if the ratio of cases to controls meets or exceeds the
threshold of 1.0 and as low-risk if the threshold is not exceed-
ed. We have observed in simulation studies that a threshold of
1.0 is optimal at this stage of MDR modelling for unbalanced
data sets (unpublished results by the authors).

When the final best model is selected, a model for high-risk
and low-risk genotype combinations is formed using an adjust-
ed threshold that is equal to the ratio of cases and controls in
the dataset. Among all of the two-factor combinations, a single
model that maximises the cases to controls ratio is selected.
This two-locus model has the minimum classification error
among the two-locus models. To evaluate the predictive ability
of the model, the model is evaluated on the basis of the 1/10 of
the data left out for testing. This procedure is done ten times,
each time using a different 1/10 of the data for testing. In our
study we also performed this entire ten-fold CV procedure ten
times, each time using different random number seeds to re-
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duce the chance of observing spurious results due to chance 
divisions of the data.

This MDR procedure can be carried out for each possible
model size (i.e. each number of loci and/or environmental fac-
tors), if computationally feasible. Due to computation restric-
tions, we set out to detect all two-locus interactions through
five-locus interactions. The result is a set of models, one for
each model size considered. From this set, the model with the
combination of loci and/or discrete environmental factors that
maximises the CV consistency and minimises the prediction
error is selected. Cross-validation consistency is a measure of
the number of times a particular set of loci and/or factors are
identified in each possible 9/10 of the subjects [5, 6, 7]. The
proportion of subjects for whom an incorrect prediction was
made is the prediction error. When CV consistency is maximal
for one model and prediction error is minimal for another, sta-
tistical parsimony is used to choose the best model. Thus when
the CV metric and the prediction error metric support different
models, the model with the fewest loci/factors is selected. 
Hypothesis testing of this final best model can then be done 
by evaluating the magnitude of the prediction error. We deter-
mined statistical significance by comparing the average predic-
tion error from the observed data with the distribution of aver-
age prediction errors under the null hypothesis of no associa-
tions derived empirically from 100 permutations. In this study,
prediction error is evaluated for the best model identified by
MDR in each permuted dataset. The null hypothesis was re-
jected when the upper-tail Monte Carlo p value derived from
the permutation test was 0.05 or lower.

Statistical analysis. Allele frequencies were estimated by gene-
counting method, and the chi-square test was used to examine
the Hardy-Weinberg equilibrium. Each genotype was assessed
by chi square test with the use of dominant, recessive and addi-
tive genetic models. To examine the results of the MDR analy-
sis, logistic regression analysis was used and odds ratios (OR)
with 95% CIs were obtained. A p value of less than 0.05 was
considered statistically significant.

Results

Allele frequencies and association with Type 2 diabe-
tes mellitus. All 23 polymorphisms examined in this
study were in Hardy-Weinberg equilibrium and their
allele frequencies were similar in the patients with
Type 2 diabetes and in the control subjects (Table 1).
Among the results of the association study using the
dominant, recessive and additive genetic models, no
locus was found to be associated with Type 2 diabetes
after correction for multiple comparisons.

MDR analysis. Table 2 summarises, for each number
of loci evaluated, the average CV consistency and 
average prediction error obtained from MDR analysis
of the data set of subjects with and without Type 2 di-
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Table 1. Allele frequency of each polymorphism

Gene Polymorphism Diabetic subjects Control subjects p value

Common allele Rare allele Common allele Rareallele

UCP2 Ala55Val 0.54 0.46 0.51 0.49 0.3937
APM1 45T>G 0.72 0.28 0.65 0.35 0.0525

276G>T 0.69 0.31 0.72 0.28 0.3492
PPARγ 161C>T 0.82 0.18 0.86 0.14 0.2283

Pro12Ala 0.97 0.03 0.95 0.05 0.4390
FABP2 Ala54Thr 0.63 0.37 0.69 0.31 0.1373
PGC1 Gly482Ser 0.55 0.45 0.56 0.44 0.7883
FABP3 −345T>C 0.51 0.49 0.45 0.55 0.1108

5428G>C 0.82 0.18 0.84 0.16 0.4705
ins/del in 7848T 0.86 0.14 0.87 0.13 0.7042
ins/del in −530 CTC 0.81 0.19 0.83 0.17 0.4269

UCP3 −55C>T 0.71 0.29 0.69 0.31 0.7078
CAPN10 UCSNP 43 0.90 0.10 0.92 0.08 0.4307

UCSNP 19 0.66 0.34 0.62 0.38 0.2898
Resistin −420C>G 0.68 0.32 0.70 0.30 0.5931

−537A>C 0.92 0.08 0.93 0.07 0.6724
mtND2 5178C>A 0.66 0.34 0.70 0.30 0.2024
mtATPase8 8414C>T 0.73 0.27 0.77 0.23 0.3123
mtD-loop 16189T>C 0.65 0.35 0.65 0.35 0.8914
ADRB3 Trp64Arg 0.86 0.14 0.85 0.15 0.8041
IRS1 Gly972Arg 1.00 0.00 1.00 0.00 NA-
GYS1 Met416Val 0.89 0.11 0.89 0.11 0.8404

Xba I 1.00 0.00 1.00 0.00 NA

UCP2, uncoupling protein 2; APM1, adiponectin; PPARγ, per-
oxisome proliferator-activated receptor gamma; FABP2, fatty
acid binding protein 2; PGC1, peroxisome proliferator-acti-
vated receptor gamma coactivator 1; FABP3, fatty acid bind-
ing protein 3; UCP3, uncoupling protein 3; CAPN10, calpain

10; mtND2, mitochondrial NADH dehydrogenase subunit 2;
mtATPase8, mitochondrial ATPase 8; mtD-loop, mitochondri-
al D-loop (control region); ADRB3, β3-adrenergic receptor;
IRS1, insulin receptor substrate 1; GYS1, glycogen synthase 1;
NA, not applicable



abetes. One two-locus model had a minimum predic-
tion error of 20.43% (p=0.01) and a maximum CV
consistency of 8.6 out of 10. This two-locus model,
which included the Ala55Val polymorphism in the
UCP2 gene and the 161C>T polymorphism in exon 6
of the PPARγ gene (Fig. 1), was regarded as the best
model.

Conventional statistical analyses. With regard to the
question of whether the genotype combinations from

the UCP2 Ala55Val polymorphism and the PPARγ
161C>T polymorphism are associated with suscepti-
bility to Type 2 diabetes, the overall chi square of all
the genotype combinations of UCP2 Ala55Val and
PPARγ 161C/C was 8.805 (df=4, p=0.0030). As geno-
type combinations with PPARγ 161T/T homozygote
are very rare (as shown in Fig. 1), it is difficult to clas-
sify these combinations into high- or low-risk groups.
Excluding the rare genotype combinations harbouring
PPARγ 161T/T homozygote, the combination of UCP2
55Ala/Val and PPARγ 161C/C was the low-risk com-
bination, while all others corresponded to the high-
risk combination. In this model, the OR for the low-
risk combination of the UCP2 55Ala/Val heterozygote
and the PPARγ 161C/C homozygote was 0.51 (95%
CI: 0.34 to 0.77, p=0.0016).

Discussion

Using the MDR method followed by conventional sta-
tistical analysis, we showed an interaction between
two of 23 loci in 15 candidate genes of Type 2 diabe-
tes. It is well known that Type 2 diabetes is polygenic
or multifactorial in nature but the gene to gene inter-
actions associated with the disease have been very dif-
ficult to demonstrate. This obstacle has been mainly
explained by the lack of powerful statistical methods
and lack of large sample sizes [4]. In this study, we 
effectively found evidence for a significant gene to
gene interaction among two loci out of a total of 23
loci, proving the MDR method used by us to be effec-
tive in detecting multigenic interactions among many
different loci in many different genes.

Using only two candidate SNPs, several studies
have shown gene to gene interactions in obesity and
insulin resistance but not in Type 2 diabetes. The
ADRB3 gene has been the gene most frequently exam-
ined and reported in connection with gene to gene in-
teraction, e.g. with UCP1 gene in Danish [16] and in
Finnish populations [17], with the human type 2 deio-
dinase gene in white populations [18], with the FABP2
gene in Japanese [19] and with the PPARγ2 genes in
Mexican American populations [20]. In a different
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Table 2. Summary of MDR results

No. of loci in model Genes included in the best combination in each modela Cross-validation consistency Prediction error

2 UCP2, PPARγ 8.60 20.43 b

3 UCP2, PPARγ, FABP3a 4.14 21.91
4 APM1, PPARγ, FABP3b, CAPN10 5.20 22.96
5 UCP2, FABP2, PGC1, FABP3b, CAPN10 4.67 28.46

The multilocus model with maximum cross-validation consis-
tency and minimum prediction error is indicated in bold type
a UCP2, UCP2 Ala55Val polymorphism; PPARγ, PPARγ
161C>T polymorphism; FABP3a, FABP3 5428G>C polymor-
phism; APM1, adiponectin 45T>G polymorphism; FABP3b,

FABP3 −345T>C polymorphism; CAPN10, UCSNP19 of the
calpain 10 gene; FABP2, FABP2 Ala45Thr polymorphism;
PGC1, PGC1 Gly482Ser polymorphism
b p=0.01

Fig. 1. Distribution of high-risk and low-risk genotypes in the
best two-locus model. This summary of the distribution shows
high-risk (dark shading) and low-risk (light shading) geno-
types associated with Type 2 diabetes mellitus in the two-locus
interaction detected by MDR analysis. The percentage of dia-
betic subjects (left black bar in boxes) and control subjects
(right hatched bar in boxes) is shown for each two-locus geno-
type combination. Boxes were labelled as high-risk if the ratio
of the percentage of cases to controls met or exceeded the
threshold of 1.0 (the ratio of the total number, not the percent-
age, of cases to the total number of controls in the dataset was
3.789). Boxes were labelled as low-risk if the threshold was
not exceeded. Based on the pattern of high-risk and low-risk
genotypes, this two-locus model is evidence of gene to gene
interaction



way, using multi-point allele-sharing analysis with lod
score, other investigators showed that the loci on
chromosome 2 (NIDDM1) and 15 (near CYP19) inter-
act to increase susceptibility to Type 2 diabetes in
Mexican Americans [21].

Among several models with different numbers of
loci, the best gene to gene interaction model identified
in our study from 23 loci of 15 candidate genes was a
two-locus model including the UCP2 Ala55Val poly-
morphism and the PPARγ 161C>T polymorphism. In
this model, the combination of the UCP2 55Ala/Val
heterozygote and the PPARγ 161C/C homozygote was
associated with a reduced risk of Type 2 diabetes. Al-
though these variants have been studied for their asso-
ciation with susceptibility to Type 2 diabetes in sever-
al populations [22, 23, 24], a significant association
with Type 2 diabetes has not been reported indepen-
dently for each variant. In this study, by contrast, the
combined effect of these variants was a significantly
reduced risk of Type 2 diabetes, which implies a 
genetic interaction between these genes in the patho-
genesis of the disease.

However, the nature of the gene to gene interaction
between the UCP2 Ala55Val polymorphism and the
PPARγ 161C>T polymorphism is not clear, as sug-
gested previously when the MDR method was applied
to breast cancer [5]. If there was a consistent trend of
high-risk or low-risk cells across a series of rows or of
columns, it could indicate that a particular locus had a
main effect. We could not find such a trend in our best
two-locus model. As Type 2 diabetes does not have a
typical pattern of Mendelian inheritance that can be
explained by a linear model, our observation could be
regarded as quite natural. Similarly, other investiga-
tors reported that the greatest risk of Type 2 diabetes
in Mexican Americans was associated with the
112/121-haplotype combination in CAPN10 gene, but
they were unable to find an increased risk of Type 2
diabetes in subjects who were homozygous for either
of the haplotypes [9].

Although Type 2 diabetes is a heterogeneous syn-
drome resulting from defects of insulin secretion and
insulin action [25], we mainly included the genes re-
sponsible for insulin resistance in this study. A bal-
anced number of genes responsible for both insulin se-
cretion and insulin action was not studied. Given gene
to gene interactions are expected to be a ubiquitous
component of the genetic architecture of common hu-
man diseases such as Type 2 diabetes mellitus [26],
and the identification, by MDR, of genotype combina-
tions contributing to Type 2 diabetes could enable
timely identification of high-risk individuals, who
could benefit from early behavioral or medical inter-
vention to prevent the disease developing.
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