
Abstract

Insulin secretion from pancreatic islet beta cells is
acutely regulated by a complex interplay of metabolic
and electrogenic events. The electrogenic mechanism
regulating insulin secretion from beta cells is com-
monly referred to as the ATP-sensitive K+ (KATP)
channel dependent pathway. Briefly, an increase in
ATP and, perhaps more importantly, a decrease in
ADP stimulated by glucose metabolism depolarises
the beta cell by closing KATP channels. Membrane de-
polarisation results in the opening of voltage-depen-
dent Ca2+ channels, and influx of Ca2+ is the main
trigger for insulin secretion. Repolarisation of pancre-
atic beta cell action potential is mediated by the acti-
vation of voltage-dependent K+ (Kv) channels. Vari-

ous Kv channel homologues have been detected in in-
sulin secreting cells, and recent studies have shown a
role for specific Kv channels as modulators of insulin
secretion. Here we review the evidence supporting a
role for Kv channels in the regulation of insulin secre-
tion and discuss the potential and the limitations for
beta-cell Kv channels as therapeutic targets. Further-
more, we review recent investigations of mechanisms
regulating Kv channels in beta cells, which suggest
that Kv channels are active participants in the regula-
tion of beta-cell electrical activity and insulin secre-
tion. [Diabetologia (2003) 46:1046–1062]
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Glucose-stimulated insulin secretion from pancreatic
beta cells is regulated by a series of electrogenic
events leading to exocytosis of insulin containing
granules (Fig. 1). These events, including depolarisa-
tion resulting from closure of ATP-sensitive K+ (KATP)
channels, opening of voltage-dependent Ca2+ channels
(VDCCs), increased intracellular Ca2+ ([Ca2+]i), and
subsequent repolarisation of the membrane by volt-
age-dependent K+ (Kv) and Ca2+-sensitive voltage-de-
pendent K+ (KCa) channel activation, are collectively
referred to as KATP channel dependent stimulus-secre-
tion coupling. Although KATP channel independent
signals from glucose metabolism have been estab-
lished as an important component of stimulus-secre-
tion coupling within the last 10 years [1, 2], the ionic
mechanisms are of primary importance in triggering
and maintaining insulin secretion. The importance of
the KATP channel dependent pathway is shown by the
reliance of the KATP channel independent pathway on
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increased [Ca2+]i, and by the fact that second phase in-
sulin secretion, the component thought most closely
linked with the KATP channel independent pathway, is
strongly affected by agents that perturb beta-cell
membrane potential responses [3, 4, 5]. There is evi-
dence for a KATP channel independent and Ca2+-inde-
pendent stimulation of insulin secretion by glucose
[6], however this effect requires activation of the
cAMP/PKA and PKC signalling pathways. As sug-
gested previously [7] the KATP channel dependent and
independent signalling pathways could be more ap-
propriately referred to as the triggering and amplify-
ing pathways, respectively.

The ability of glucose to cause depolarisation of
pancreatic beta cells was first recognised in 1968 [8],
and in the 1970’s this was attributed to a reduction in
whole cell K+ permeability [9, 10]. In the 1980’s, 
K+ channels that are closed by glucose [11] and ATP
[12] were identified in rat beta cells. These were sub-
sequently shown in mouse beta cells to be the same
channel [13], closure of which precedes depolarisa-
tion-induced Ca2+ influx [14]. The KATP channel re-
sponsible for transducing the metabolic signal to an
electrical response (Kir6.2) and its regulatory sulpho-
nylurea receptor (SUR1) subunit were cloned in 1995
(Fig. 2) [15, 16, 17]. SUR binding and antagonism of
KATP channels [18] is the primary mechanism of the
anti-diabetic sulphonylurea drugs [19]. Conversely,
the sulphonamide drug diazoxide opens KATP channels
[20], preventing insulin secretion [21], and is used to
treat hyperinsulinaemia, particularly hyperinsulinae-

Fig. 1. The KATP channel dependent mechanism for glucose-
stimulated insulin secretion. Rises in circulating glucose con-
centrations increase intracellular ATP and decrease intracellu-
lar ADP, closing ATP-sensitive K+ (KATP) channels. This re-
sults in membrane depolarisation, opening voltage-dependent
Ca2+ channels (VDCCs) and allowing a rise in the intracellular
Ca2+ concentration ([Ca2+]i) that is the main trigger for insulin
secretion. Also upon membrane depolarisation, voltage-depen-
dent K+ (Kv) channels open to repolarise the action potential,
limit Ca2+ entry through VDCCs, and limit insulin secretion.
The sulphonylurea drugs (SU’s) stimulate insulin secretion by
blocking KATP channels, and tetraethylammonium (TEA) en-
hances insulin secretion in a glucose-dependent manner by
blocking Kv channels

Fig. 2. Some important ion channels in pancreatic beta cells.
Examples are shown for the membrane topology of some of
the ion channels expressed in insulin-secreting cells. All of
these channels contain one or more pore-forming loop (P-loop)
and all of the voltage-sensitive channels contain a transmem-
brane ‘voltage-sensor’ (+++). Also shown are sites important
for sensitivity to hanatoxin (HaTX), external tetraethylammo-
nium (TEA), sulphonylurea drugs (glibenclamide and tolbuta-
mide), diazoxide (diaz.) and dihydropyridines (DHP- such as

nifedipine). Truncating the Kv2.1 α-subunit at the site shown
(scissors) resulted in our dominant-negative Kv2 construct.
Functional Kv, BK (large-conductance and Ca2+ sensitive K+

channels) and KATP channels are formed by the tetrameric as-
sembly of subunits while the VDCC pore forming subunit con-
tains four repeated domains with similar architecture to Kv 
α-subunits. Although not shown, multiple accessory (non-pore
forming) subunits are required for VDCC function



1048 P. E. MacDonald et al.: Voltage-dependent K+ channels in pancreatic beta cells

mia in polycystic ovary syndrome, pancreatic insu-
linomas, and cases of persistent hyperinsulinaemic 
hypoglycaemia of infancy (PHHI) that are not attrib-
utable to KATP channel defects [22, 23, 24].

Action potentials in rodent beta cells were shown
to result largely from activation of a Ca2+ rather than a
Na+ current [25, 26]. The activation of single VDCCs
in mouse beta cells was first inferred from voltage
noise analysis by Atwater et al. [27]. Subsequently,
VDCC currents were measured from isolated mouse
[28] and human [29] beta cells. Transcripts encoding
L-type Ca2+ channels (Fig. 2) thought to be largely re-
sponsible for Ca2+ influx in beta cells were identified
in the early 1990’s [30, 31, 32], however there is still
some controversy regarding the role of other Ca2+

channels as N-type, P/Q-type and T-type channels
have also been detected in insulin-secreting cells [33].
Clinically, some cases of PHHI, particularly those re-
sulting from KATP channel defects which are therefore
not responsive to diazoxide, could be treated with
VDCC antagonists [34, 35, 36].

In the early 1980’s the Drosophila melanogaster
locus Shaker was determined to contain a gene encod-
ing a Kv channel (Fig. 2) [37]. Subsequently, the
shaker gene was cloned [38, 39, 40], followed by the
first mammalian homologues in 1988 (mouse) and
1989 (rat) [41, 42]. There are 11 mammalian Kv chan-
nel families and various related families (EAG related,
KCNQ or KvLQT and KCa) currently known (Table 1)
[43, 44, 45, 46, 47, 48, 49, 50, 51]. Due to this diversi-
ty, coupled with the existence of heteromultimeric
channels and lack of selective antagonists, the specific
Kv channels mediating beta-cell repolarisation and
their role in insulin secretion are only now becoming
known. Recent work identifies Kv2.1 as a major con-
tributor to voltage-dependent outward K+ currents in
insulinoma cells and rodent pancreatic beta cells [3,

52]. Kv2.1 has been shown, with both a dominant-
negative strategy and selective antagonists, to regulate
excitability, [Ca2+]i dynamics and insulin secretion in
insulinoma cells and rodent models [3, 52, 53]. Fur-
thermore, regulation of Kv channels could contribute
to the modulation of insulin secretion as evidenced by
the studies showing regulation of beta-cell Kv chan-
nels by exocytotic SNARE (soluble N-ethylmaleimi-
de-sensitive factor attachment protein receptor) pro-
teins, insulin-stimulating incretin hormones, and prod-
ucts of glucose metabolism [54, 55, 56].

Here we discuss the identification, role and regulation
of Kv channels in pancreatic beta cells as well as their
potential and their limitations as therapeutic targets for
the treatment of Type 2 diabetes. The evidence support-
ing a role for these channels in the regulation of insulin
secretion is reviewed. We discuss the different voltage-
dependent K+ current components observed in insulin
secreting cells, their likely molecular correlates, and re-
cent work identifying a role for specific Kv channels as
regulators of secretion. The potential for tissue-specific
differences in Kv channel function is also examined, as
this could provide a key to the appropriate targeting of
therapeutic agents. Finally, we examine evidence that
hormonal stimuli and intracellular mechanisms can
acutely regulate beta-cell Kv channels as a potential
means for modulating excitability and insulin secretion.

Evidence supporting a role for voltage-dependent
K+ currents as regulators of insulin secretion

Voltage-dependent K+ currents and beta cell 
stimulus-secretion coupling

Early evidence for the role of depolarisation as a key
feature of stimulus-secretion coupling in the beta cell

Table 1. Organisation of mammalian Kv channel α-subunit and related families and the properties of cloned subunits

Kv1 Kv2 Kv3 Kv4 Modulatory Kv KCa
(shaker) (shab) (shal) (shaw) α-subunits Related

Family Members 1.1 2.1 3.1 4.1 5.1 EAG related: BK1 (slo1)
1.2 2.2 3.2 4.2 6.1, 6.2, 6.3 EAG(1, 2) BK2 (slo2)
1.3 3.3 4.3 7.1 ERG(1–3) BK3 (slo3)
1.4 3.4 8.1 ELK(s, e, 2) SK1
1.5 9.1, 9.2, 9.3 SK2
1.6 10.1 KCNQ(1–5) SK3
1.7 11.1 SK4

Current Type delayed- delayed- delayed- A-current do not form delayed-rectifier Ca2+-sensitive 
rectifier rectifier rectifier functional (EAG, ELKs/e); delayed-rectifier; 
(1.1, 1.2, 1.3, (3.1, 3.2) and channels alone voltage-dependent large (BK) and 
1.5, 1.7) and A-current but can interact inward rectifier small (SK) 
A-current (3.3, 3.4) with and (ERG, ELK2); conductance; 
(1.4) modulate some slow delayed- SK shows little 

other channels rectifier voltage-
(notably Kv2.1) (KCNQ) dependence

EAG—ether-a-go-go; ERG—eag-related gene; ELK—eag-like K+channel



was provided by studies carried out using high resis-
tance microelectrode measurement of electrical activi-
ty in mouse islet cells [8], which was subsequently
linked to insulin secretion [25, 57, 58]. It was clear
from these early studies that glucose stimulates action
potentials in pancreatic beta cells. As early as 1952,
the work of Hodgkin and Huxley showed that action
potential repolarisation in giant squid axon was an ac-
tive process mediated by activation of a K+ permeabil-
ity [59, 60]. It could therefore be reasonably hypothe-
sised, even in the late 1960’s and early 1970’s that a
repolarising K+ current is involved in regulating beta-
cell electrical activity and insulin secretion. The first
direct evidence that repolarising outward K+ currents
are involved in insulin secretion is from studies show-
ing that the general Kv and KCa channel antagonist
tetraethylammonium (TEA) prolongs mouse beta-cell
action potentials [61] and enhances insulin secretion
from rat islets (Fig. 3) [4, 5, 62]. Since these initial ex-
periments, numerous studies have examined the effect
of TEA on beta-cell insulin secretion, electrical activi-
ty and [Ca2+]i signalling [3, 52, 63, 64, 65, 66, 67]. Al-
though TEA also antagonises KATP channels at higher
concentrations, the general conclusion from these
studies is that blocking Kv (and possibly KCa) chan-
nels potently enhances insulin secretion in a glucose-
dependent manner.

Inherent glucose (depolarisation)-dependence 
of secretion stimulated by Kv channel antagonists

The realisation that a Kv channel antagonist acts as a
glucose-dependent insulinotropic agent (Fig. 3) raises
the possibility of developing Kv channel based thera-
peutics. The enormous interest in potential glucose-
dependent therapeutics is evidenced by current re-
search into glucose-dependent secretagogues such as
the incretin hormones glucagon-like peptide-1 (GLP-1)
and gastric inhibitory polypeptide (GIP) and their ana-
logues [68], the imidazoline compounds [69, 70], and
agonists of the protein kinase A (PKA) signalling
pathway [71]. The theory behind the glucose-depen-
dence of Kv channel antagonists is quite simple. Beta-
cell Kv channels are closed under basal (i.e. non-stim-
ulatory) conditions. Evidence supporting this includes
the inability of TEA to alter resting membrane poten-
tial in mouse beta cells [61] and the fact that voltage-
dependent K+ currents in rodent beta cells and insuli-
noma cells activate only at membrane potentials well
above the resting values [28, 52, 66, 72, 73, 74, 75].
Therefore, inhibiting these channels in the absence of
stimulatory glucose will have no effect on insulin se-
cretion (Fig. 3). Only after glucose-dependent closure
of KATP channels and subsequent membrane depolari-
sation, will Kv channels open to restore the outward
flux of K+, and inhibition under these conditions pre-
vents or delays action potential repolarisation (Fig. 3)
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[61]. Therefore, the insulinotropic effect of Kv chan-
nel inhibition is not strictly glucose-dependent, but
depolarisation-dependent. This is highlighted by the
ability of TEA and 4-aminopyridine (4-AP, another
general Kv antagonist) to enhance insulin secretion
from rat islets and insulinoma cells stimulated by sul-

Fig. 3A–C. The effects of a Kv channel antagonist on pancre-
atic beta cells. The effects of the general Kv channel antagonist
tetraethylammonium (TEA) on rat beta cells, rat insulinoma
cells and isolated rat islets are shown. (A) Blocking Kv cur-
rents with 15 mmol/l TEA prevents the after-hyperpolarisation
and prolongs rat beta-cell action potentials generated by cur-
rent injection. (B) Blocking Kv currents with 20 mmol/l TEA
enhances the membrane potential (grey line) and [Ca2+]i (black
line) responses of rat beta cells (INS-1) to glucose as measured
by DiBAC and Fura-2-AM fluorescence respectively (courtesy
S.R. Smukler and A.M.F. Salapatek). (C) Blocking Kv currents
in isolated rat islets did not affect insulin secretion under 
low (2.5 mmol/l) glucose conditions, but dose-dependently 
enhanced insulin secretion stimulated with 15 mmol/l glucose
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phonylureas, even without glucose [52, 75]. Addition-
ally, TEA has also been shown to enhance the mem-
brane electrical activity of rat beta cells depolarised
with the sulphonylurea tolbutamide [76]. Glucose-
dependent stimulation of insulin secretion from rodent
islets and insulinoma cells has also been reported for
4-AP [77], the peptide Kv2.1 antagonist hanatoxin
[53], and a small molecule Kv2.1 antagonist termed
compound 1 (C-1, a bispidine derivative related to
class III anti-arrhythmic agents) [3]. Recent research
has been aimed at identifying the molecular mediators
of beta-cell voltage-dependent outward K+ currents to
gain a better understanding of beta-cell stimulus-
secretion coupling and with the hope that this might
lead to the development of beta cell-specific therapies.

Voltage-dependent K+ channel expression 
in insulin-secreting cells

Electrophysiological evidence 
for different repolarising currents

Generally speaking, Kv currents are classified based on
their biophysical and pharmacological properties (i.e.
A-current/delayed-rectifier, sensitivity to block by 4-
AP or TEA, and Ca2+ sensitivity). A-currents activate
and inactivate quickly upon a step membrane potential
depolarisation, giving rise to the characteristic wave-
form for which reason they are named (Fig. 4A). De-
layed-rectifier currents activate more slowly and do not
inactivate (or inactivate slowly over seconds; Fig. 4A).
One should be cautious, however, when classifying cur-
rents based on these broad definitions since it is now
clear that current kinetics can be heavily influenced by
the experimental conditions, such as the presence or ab-
sence of regulatory subunits, phosphorylation state,
temperature, redox state and/or concentration of O2 [56,
78, 79, 80]. The same channel therefore could be classi-
fied as a delayed-rectifier or A-current, or have a differ-
ent pharmacology, under different experimental condi-
tions. Certain voltage-dependent K+ currents are also
dependent on or enhanced by [Ca2+]i. These are denot-
ed as KCa and are sensitive to external TEA.

The voltage-dependent outward K+ currents re-
sponsible for repolarising pancreatic beta cells were
first described in mouse beta cells in 1986 [28] and
subsequently in human beta cells in 1991 [29]. The
slow activation and inactivation kinetics of these cur-
rents, usually observed in insulin-secreting cells in ex-
periments at room temperature, place them in the
broad category of delayed-rectifier K+ currents. More
recent studies have shown that one can indeed also 
detect A-currents in insulin-secreting cells (Fig. 4B).
A TEA-insensitive and 4-AP-sensitive A-current com-
ponent was first described in mouse beta cells in 1989
[81]. Our group has subsequently identified a TEA-
insensitive A-current component in rat beta cells [52],

and recently demonstrated a large A-current compo-
nent in MIN6 (mouse) insulinoma cells patch-clamped
at near-physiological temperatures [3]. Interestingly,
this large rapidly-inactivating component, unlike clas-
sical A-currents, was readily blocked by external ap-
plication of TEA, similar to the rapidly-inactivating
component described by Gopel et al. [82] in mouse
beta cells of intact islets. As well, our group has re-
cently shown that fast inactivation of TEA-sensitive
rat beta-cell Kv currents can be regulated by tempera-
ture and the intracellular NADPH/NADP+ ratio [56].
These TEA-sensitive and -insensitive transient com-
ponents likely reflect activation of separate channels
and apparently differ between species.

Fig. 4A, B. A-currents and delayed-rectifier currents and their
presence in insulin-secreting cells. (A) Examples of A-currents
(cloned Kv1.4) and delayed-rectifier currents (cloned Kv2.1)
measured at 32–35°C using the voltage-clamp protocols
shown. (B) Experiments done at 32–35°C, A-current compo-
nents and delayed-rectifier components can be separated in rat
beta cells (left panels) by expressing a dominant-negative Kv2
construct (average of six cells), or in MIN6 insulinoma cells
(mouse- right panels) using the voltage-clamp protocol shown
(average of eight cells). In each case, subtraction of the result-
ing currents yields the A-current component shown
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It is recognised that voltage-dependent outward K+

currents in insulin secreting cells are comprised of both
Ca2+-dependent (KCa) and a Ca2+-independent (Kv)
current components. Studies by us and others suggest
that the Kv and KCa components contribute 80 to 85%
and 15 to 20% of total voltage-dependent outward cur-
rents respectively [3, 74, 83]. Single Kv and KCa chan-
nels have also been resolved in insulinoma (HIT) cells
[84] and mouse beta cells [72, 74]. Based on pharma-
cological properties the KCa component seems to be
composed mostly of large-conductance charybdotoxin/
iberiotoxin-sensitive channels (called BKCa channels
as opposed to small conductance or SKCa channels)
[85, 86], although a number of studies have detected
atypical components that are not blocked by selective
antagonists [67, 87, 88]. The role of the Ca2+-sensitive
current components is unclear as inhibitors of both
large- and small-conductance KCa channels fail to af-
fect insulin secretion from rodent islets [52, 89, 90].

Molecular correlates of beta-cell 
voltage-dependent K+ channels

Kv channels are formed by the tetrameric assembly of
6-transmembrane (TM) domain α-subunits (Fig. 2)
[44, 91]. This is in contrast to KATP channels that are
composed of four 2-TM domain pore forming sub-
units and four regulatory sulphonylurea receptor sub-
units (Fig. 2). Kv α-subunits can co-assemble as het-
ero-tetramers in a family specific manner (see Table 1
for the known Kv and related channel family mem-
bers), and some of these associate with cytosolic or
transmembrane regulatory subunits. Due to this, the
combinations of naturally occurring, functionally dis-
tinct, channels is enormous, and makes identification
of channels solely based on kinetic and pharmacologi-
cal properties unreliable. Numerous Kv channel α-
subunits have been detected in insulin-secreting cells
(Table 2). The majority of studies have been carried
out using reverse transcriptase-PCR (RT-PCR) identi-
fication of mRNA transcripts, and in general studies
examining immortalised cell lines detect a larger num-
ber of Kv channel mRNA transcripts than in primary
cells. Less sensitive, and therefore more likely to de-
tect relevant subunits expressed abundantly at the pro-
tein level, are more recent western blot and immuno-
histochemical studies (Table 2).

Although many pore-forming Kv channel subunits
have been detected in insulin-secreting cells, until re-
cently little was known about which channels contrib-
ute to beta-cell repolarising currents and therefore reg-
ulate insulin secretion. This is, in part, due to the lack
of appropriate pharmacological and/or molecular
agents. Studies with the limited number of Kv1 antag-
onists suggest little contribution from this family [52,
83], although Kv1.1 might contribute somewhat in 
the HIT-T15 insulinoma cell line [83]. The ability of

these antagonists to block heterotetrameric channels is
not known, however. Using a dominant-negative ap-
proach, our group has shown that Kv1 and Kv2 chan-
nels mediate 20 and 60% of the delayed rectifier cur-
rents, respectively in rat beta cells, and knock out of
these channels in rat islets enhances glucose-depen-
dent insulin secretion [52]. Similar results were ob-
tained in the HIT-T15 insulinoma cell line where the
Kv1 and Kv2 dominant-negative constructs inhibited
currents by 30 and 70%, respectively [52]. The Kv1
family channel that, in our experience, is detected
with the greatest abundance is Kv1.4, for which there
are no selective antagonists. It is unlikely that this
channel contributes to the insulinotropic effect of TEA
however, since it is insensitive to the commonly used
concentrations of this compound when applied extra-
cellularly. Kv1.4, and possibly Kv4.2 [54], therefore
could contribute to the TEA-insensitive inactivating
current in rat beta cells, although the small amplitude
of the inactivating currents observed [52] does not
seem to reflect the abundance of these channels at the
protein level [52, 54]. As for the TEA-sensitive A-cur-
rent detected in mouse beta cells [81] and mouse insu-
linoma cells [3], it seems likely that this current is 
mediated by Kv3.4, detected in mouse beta cells by
immunohistochemistry [82], since this fast-inactivat-
ing Kv channel is sensitive to TEA.

We now know that Kv2.1 mediates the majority of
the voltage-dependent outward K+ current in rat and
mouse beta cells. The first report of Kv2.1 protein ex-
pression in an insulin-secreting cell (βTC-neo) was in
1996 [66]. However, these investigators were unable
at the time to discern the absolute contribution of this
channel in these cells due to the lack of an appropriate
pharmacological inhibitor. Using a dominant-negative
strategy, we were able to show that Kv2.1 contributes
60 to 70% of the voltage-dependent outward K+ cur-
rent in rat beta cells and HIT-T15 insulinoma cells and
does indeed regulate glucose-stimulated insulin secre-
tion from rat islets [52]. Although the dominant-nega-
tive construct we used is expected to ‘knockout’ all
Kv2 family channels, Kv2.2 is the only other Kv2
channel known to form functional channels, and this
could not be detected by RT-PCR [52]. Further studies
have investigated the contribution of Kv2.1 in beta
cells using recently-identified selective antagonists.
Using the novel Kv2.1 antagonist C-1 (described
above) we showed that Kv2.1 contributes up to 85%
of the steady-state outward K+ current in mouse beta
cells and MIN6 insulinoma cells. In this study, antago-
nism of Kv2.1 with C-1 enhanced the membrane 
potential and [Ca2+]i responses of insulin-secreting
cells to glucose, and stimulated insulin secretion from
MIN6 insulinoma cells and perfused mouse pancreas
in a glucose-dependent manner. These results are 
supported by a recent report that the Kv2.1 peptide 
antagonist hanatoxin blocks voltage-dependent K+

current in mouse beta cells, enhances Ca2+ oscillations
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in mouse islets, and augments insulin secretion from
rat islets and βTC3 insulinoma cells [53].

Kv channels and human beta cells

To our knowledge, there has only been one study to
investigate human beta-cell voltage-dependent K+ cur-
rents, which were reported to be similar to those ob-
served in rodent beta cells and insulinoma cells [29].
There is also little known regarding Kv channel ex-
pression in human beta cells. Our group has recently
reported expression of Kv2.1 protein in human islets
[55], and we have observed Kv1.5, 1.6 and 2.1 mRNA
transcripts in human islets (MacDonald and Wheeler,

unpublished observations). Additionally, mRNA tran-
scripts for Kv1.5 have been detected in human insuli-
noma cells [92]. A number of Kv channel regulatory
β-subunits (described below) have been detected in
human islet cDNA by PCR [93]. In this study Kvβ1.1,
2.1 and 2.2 were detected with high abundance, while
Kvβ1.2, 1.3 and 3 were detected at lower levels. 
Additionally, one report showed the presence of the
Kv-related human-ERG (hERG) K+ channel (Table 1)
in human islets [94]. Although these channels are
thought to facilitate action potential repolarisation and
perhaps modulate glucose-dependent bursting, the
hERG antagonist WAY123 398 did not enhance glu-
cose-stimulated insulin secretion in that study making
the true role of these channels unclear.

Table 2. Voltage-dependent K+ channels detected in insulin-secreting cells (method of detection)

Channel Detected In Not Detected In

Kv1.1 HIT-T15 (RT-PCR [52, 179], WB [83]), HIT-T15 (WB [52]), βTC (WB [52]), INS-1 (RT-PCR [75]),
RIN (RT-PCR [179]), Pig Islets (RT-PCR*) Rat Islets (RT-PCR [52], WB [52]), Rat beta cells (RT-PCR

[66]), Human Islets (RT-PCR*)

Kv1.2 HIT-T15 (RT-PCR [179]), RIN (RT-PCR [179]), HIT-T15 (RT-PCR [52], WB [52]), βTC (WB [52]), INS-1
Rat Islets (RT-PCR [52], WB?[52]), ob/ob Islets (RT-PCR [75]), Pig Islets (RT-PCR*), Human Islets 
(RT-PCR [179]) (RT-PCR*)

Kv1.3 HIT-T15 (RT-PCR [52]), Rat Islets (RT-PCR [52]), HIT-T15 (WB [52]), INS-1 (RT-PCR [75]), Rat Islets 
ob/ob Islets (RT-PCR [52]) (WB [52]), Rat beta cells (RT-PCR [66]), Pig Islets 

(RT-PCR*)

Kv1.4 HIT-T15(RT-PCR [52], WB [52]), βTC (WB [52]), Mouse beta cells (IHC [82]), Human Islets (RT-PCR*)
INS-1 (RT-PCR [75]), RIN (RT-PCR [179]), 
Rat Islets (RT-PCR [52], WB [52, 54]), ob/obIslets 
(RT-PCR [179]), Pig Islets (RT-PCR*)

Kv1.5 HIT-T15 (RT-PCR [179]), INS-1 (RT-PCR [75]), HIT-T15 (RT-PCR [52]), Rat Islets (RT-PCR [52]), 
Human Islets (RT-PCR [92]*) Pig Islets (RT-PCR*)

Kv1.6 Rat Islets (RT-PCR [52], WB [52, 54]), HIT-T15 (RT-PCR [52], WB [52]), βTC (WB [52]), 
Human Islets (RT-PCR*) INS-1 (RT-PCR [75]), Pig Islets (RT-PCR*)

Kv1.7 HIT-T15 (RT-PCR [95, 179]), RIN (RT-PCR [179]), HIT-T15 (RT-PCR [52]), Rat Islets (RT-PCR [52]), 
ob/obIslets (RT-PCR [179]), db/dbIslets (ISH[95]) Pig Islets (RT-PCR*)

Kv2.1 HIT-T15 (RT-PCR [52], WB [52, 55]), βTC (RT-PCR [66], HIT-T15 (RT-PCR [52])
WB [52, 66]), INS-1 (RT-PCR [75], WB [55]), MIN6 
(WB [3]), Rat Islets (RT-PCR [52]), WB [52, 54]), 
Rat beta cells (RT-PCR [66]), Mouse Islets (IHC [3]), 
Mouse beta cells (RT-PCR [66]), Pig Islets (RT-PCR*), 
Human Islets (RT-PCR*, WB [55])

Kv2.2 INS-1 (RT-PCR [75]) HIT-T15 (RT-PCR [52]), Rat Islets (RT-PCR [52])

Kv3.1 INS-1 (RT-PCR [75]), Pig Islets (RT-PCR*)

Kv3.2 βTC (RT-PCR [66]), INS-1 (RT-PCR [75]) HIT-T15 (WB*), βTC(WB*), Rat Islets (WB*)

Kv3.3

Kv3.4 INS-1 (RT-PCR [75]), Mouse beta cells (IHC [82]) HIT-T15 (WB*), βTC(WB*), Rat Islets (WB*)

Kv4.1 Mouse beta cells (RT-PCR [66])

Kv4.2 Rat Islets (WB [54])

Kv4.3 Mouse beta cells (IHC [82])

* MacDonald and Wheeler, unpublished observations



Potential contribution of Kv channels in diabetes

Few studies have examined the possible role of Kv
channels in the development of beta-cell defects and
diabetes. Genes encoding both Kv1.7 and Kv3.3 
have been mapped to a region of chromosome 19
(19q13.3–13.4) containing a diabetes susceptibility 
locus [95], although the incidence of Kv channel poly-
morphism in a diabetic cohort has not been investigat-
ed. Mutations in Kv and related channels are known 
to play important roles in disorders such as familial
long QT syndrome, episodic ataxia type 1, benign fa-
milial neonatal convulsion, familial and thyrotoxic hy-
pokalemic periodic paralysis, and autosomal dominant
deafness [96]. Polymorphism of Kv channels or their
numerous regulatory proteins could lead to loss or
gain of function. Either situation might contribute to
the pathogenesis of the beta-cell defect. Increased Kv
channel function would compromise glucose-stimulat-
ed insulin secretion by causing premature repolarisat-
ion of the action potential. Decreased Kv channel
function could lead to beta-cell over-excitability and
increased cytosolic Ca2+, possibly leading to apoptosis
through activation of mitochondrial permeability tran-
sition pores and/or the caspase cascade [97].

Alterations in Kv channel function could also con-
tribute indirectly to the development of diabetes. One
recent study reports that Kv1.3 -/- mice had an in-
creased basal metabolic rate and were resistant to the
development of obesity, a well known risk factor for
Type 2 diabetes, in response to a high fat diet [98]. In
addition, it should be noted that channel function
might be altered by external factors, rather than
through genetic mutation. For example, high glucose
or exogenous superoxide both decreased Kv current
density and 4-AP induced constriction in rat small
coronary arteries, an effect which is implicated in the
pathogenesis of vascular complications [99]. It re-
mains to be determined whether a similar glucotoxic
effect on Kv currents occurs in pancreatic beta cells.
To our knowledge no study has investigated Kv chan-
nel function in beta cells from diabetic humans or ani-
mal models of diabetes. The role, if any, of Kv chan-
nels in the development of diabetes is unknown.

The potential basis for tissue-specific differences 
in Kv2.1 currents

One clear difficulty for those wishing to develop Kv
channel antagonists as potential therapeutics is the
wide range of tissues that express these channels. In
particular, Kv2.1 mRNA transcripts were recently
identified in placenta, lung, liver, skeletal muscle, kid-
ney, pancreas, spleen, thymus, prostate, testes, ovary,
small intestine, colon and blood leukocytes [47].
Thus, there is the likelihood for undesirable side ef-
fects of any Kv2.1 antagonist that is not appropriately

targeted. Although the problem of specificity must be
dealt with regarding the potential use of Kv channel
antagonists to treat Type 2 diabetes, similar problems
have been (and are continually being) dealt with in
other fields. For example, Kv1.3 antagonists are being
investigated for their immune-suppressive effects, and
have even been studied in animal models [100], and
Kv channel antagonists are also being studied for their
ability to limit adhesion and proliferation of some can-
cer cells [101, 102, 103]. It is possible that although
the Kv2.1 α-subunit is widely expressed, the function-
al properties of native Kv2.1 channels differ between
tissues. These differences could be sufficient to allow
tissue-specific targeting of an antagonist. As discussed
in the following sections, there are a number of ways
in which tissue-specific differences in Kv channels
can result, including tissue specificity of modulatory
α-subunit or regulatory β-subunit expression, post-
translational processing and/or channel localisation.

Modulatory α-subunits

It was mentioned above that there are at least 11 Kv
channel families currently known (Table 2 only ad-
dresses the expression of Kv1–4). To date, no studies
on insulin-secreting cells have investigated the expres-
sion of subunits from the Kv5–11 families. Subunits
of these families have not been shown to form func-
tional channels alone, but rather associate with mem-
bers of the Kv1–4 families as modulator α-subunits
(Table 1) [46, 47, 48, 49, 104]. Kv2.1 in particular, is
often a target for these modulatory subunits, which
have been shown to alter this channel’s biophysical
properties including kinetics of activation and inacti-
vation, voltage-dependencies of activation and inacti-
vation, and recovery times [47, 48, 105, 106, 107,
108]. One recent study shows mRNA expression in
human pancreas of Kv10.1 and 11.1, which can form
heterotetrameric channels with, and modulate the
properties of, Kv2.1 [47]. In this study, the modulator
α-subunits Kv6.3, 10.1 and 11.1 showed a more selec-
tive tissue distribution than Kv2.1. It seems then, that
although there are only two known members of the
Kv2 channel family, the tissue-specific biophysical
characteristics of Kv2.1 can be determined by the ex-
pression of modulatory α-subunits. Heterogeneity of
Kv2.1 currents resulting from modulatory α-subunit
expression has been speculated to exist in the heart
[106], and could result in fundamentally different
Kv2.1 containing channels in different tissues.

Regulatory β-subunits

Kv channel heterogeneity can also result from tissue-
specific differences in the expression of cytoplasmic
regulatory proteins such as Kvβ-subunits. These sub-
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units interact with the channel N-terminus and modu-
late channel function and expression [109]. The Kvβ
subunits are related to the NADPH-dependent oxido-
reductase family of enzymes and are postulated to
confer intracellular redox sensitivity to Kv α-subunits
(this will be discussed further below). As mentioned
above, human islets express Kvβ1–3 to varying de-
grees and the same Kvβ-subunit expression profile
was detected by PCR of rat islet and insulinoma cell
(INS-1) cDNA, while Kvβ2 was detected by western
blot of rat islet protein [93]. Currently no known Kvβ
subunits associate directly with Kv2.1 [110, 111].
However, a novel Kv2.1-associated 38-kD neuronal
protein similar to Kvβ subunits has been described
[112], and Kv2.1 interacts with cytosolic KChAP 
(K+ Channel Accessory Protein) which can in turn
bind Kvβ1.2 and Kvβ2 [113]. Additionally, one group
reports that co-expression of Kv2.1 with Kvβ2.1 in
HEK293 cells confers sensitivity of the Kv2.1 current
to hypoxia [114]. It remains to be determined how-
ever, whether there is a Kv2.1 specific β-subunit that
can be detected in vivo. It is possible that a so far un-
known β-subunit, or other cytoplasmic regulatory sub-
unit, could confer tissue-specific differences to Kv2.1
channels.

Channel localisation

Another potential mechanism contributing to tissue-
specific differences in Kv channels is the functional
localisation of particular channels. In beta cells it is
known that L-type VDCCs preferentially support in-
sulin secretion compared with other Ca2+ channel
types [33]. The L-type channels are localised to sites
of exocytosis by their interaction with the exocytotic
SNARE proteins where, when opened by depolarisat-
ion, they allow local [Ca2+] increases in the vicinity of
the secretory granule. Sub-cellular spatial localisation
of Kv2.1 has been shown in mouse retina cells [115]
and in rat hippocampal neurones [116], where a C-ter-
minal targeting sequence allows spatial separation
from other Kv channels, even its closely related fami-
ly member Kv2.2 [117, 118]. As discussed below, we
have recently described an interaction between Kv2.1
and the SNARE proteins SNAP-25 and syntaxin 1A
which might serve to localise the channel to sites of
exocytosis [55]. In that study, we detected a binding
interaction between SNAP-25 and the C-terminus of
Kv2.1, which could not be accounted for in terms of
functional channel regulation, but could contribute to
channel localisation. Another potential mechanism
regulating sub-cellular localisation of Kv channels is
their association with detergent insoluble lipid rafts.
Kv2.1 preferentially targets to lipid rafts in a heterolo-
gous expression system and in rat brain, disruption of
which by cholesterol depletion alters channel function
[119]. Furthermore, Kv2.1 targets to a different lipid

raft population than Kv1.5 when expressed in mouse
Ltk- cells, as Kv1.5 but not Kv2.1 was found to co-
localise with caveolin and follow caveolin re-distribu-
tion after microtubule disruption [120]. Therefore, the
spatial localisation of Kv2.1 in various tissues (and
the physiological processes with which the channel 
is associated with) will determine the effects of any
potential antagonist.

Post-translational phosphorylation

Kv2.1 is subject to a high level of constitutive post-
translational phosphorylation early in biosynthesis
when expressed in COS-1 cells [121]. The result is a
channel subunit that, when subjected to sodium dode-
cyl sulphate polyacrylamide gel electrophoresis (SDS-
PAGE), appears much larger (Mr 108 000) than the Mr
95 000 predicted by the amino acid sequence. This in-
crease in size does not appear to involve N-linked 
glycosylation [122]. A range of apparent molecular
weights have been detected for Kv2.1 α-subunits in
different tissues. Kv2.1 α-subunits have been de-
scribed either as Mr 130 000 in the rat brain [123], as
Mr 132 000 in PC12 cells [124], as Mr 125 000 in rat
aortic myocytes [125], and as Mr 130 000 in rat atrial
and ventricular myocytes [126, 127], while rat mesen-
teric artery smooth muscle cells express what seems to
be an unphosphorylated Mr 95 000 Kv2.1 subunit
[128]. Insulin secreting cells express a Kv2.1 α-sub-
unit that is approximately Mr 108 000 [3, 55, 66]. It
was subsequently shown that phosphorylation occurs
mainly on serine residues, and that the extent of 
channel phosphorylation, particularly at the channels’
C-terminus, can alter its voltage-dependent activation
[129]. It seems possible then, that the tissue specific
differences in post-translational phosphorylation of
Kv2.1 can result in channels that are distinct, both
biophysically and in their interactions with other pro-
teins. This may be exploited to aid in the tissue target-
ing of any potential therapeutic agent.

Regulation of Kv channel activity in beta cells

Kv channels associate with and are regulated 
by the SNARE complex

SNARE proteins constitute the molecular machinery
regulating vesicle docking and fusion. Vesicle-associ-
ated SNARE proteins (or v-SNAREs) include the ves-
icle-associated membrane proteins (VAMPs or syn-
aptobrevins). SNARE proteins associated with the tar-
get membrane (or t-SNAREs) include SNAP-25 and
syntaxin. The molecular mechanism of exocytosis in
pancreatic beta cells has been extensively reviewed
elsewhere [130]. It is now becoming clear that, while
the SNARE complex mediates the molecular events of
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exocytosis upon elevation of [Ca2+]i, it is also func-
tionally coupled to the excitatory machinery in a unit
termed the ‘excitosome’. This hypothesis results
largely from studies showing that SNARE proteins
can associate with and regulate VDCCs [83, 131, 132,
133].

Recent work has shown that SNARE proteins can
also associate with and regulate Kv channels. Particu-
larly, syntaxin 1A was found to associate with Kv1.1
and augment channel inactivation by enhancing the
efficacy of the Kvβ1.1 subunit which was co-ex-
pressed with Kv1.1 in this study [134]. Additionally, 
it was recently shown that SNAP-25 can regulate the
activity of Kv1.1 in the HIT-T15 insulinoma cell line
[83], in part by slowing channel activation while en-
hancing slow inactivation. This interaction is likely of
little relevance to insulin secretion as Kv1.1 is not ex-
pressed in rat or human islets (Table 2) and the Kv1.1
inhibitor dendrotoxin has little effect on insulin secre-
tion and outward currents, even in the same HIT-T15
cell line [52]. In oesophageal smooth muscle cells,
SNAP-25 was found to inhibit both Kv and KCa cur-
rents, causing a leftward shift of voltage-dependent
activation of KCa but not Kv channels [135]. The mo-
lecular correlates of these currents were not identified
in this study. We recently reported that SNAP-25 and
syntaxin 1A can bind Kv2.1 and that SNAP-25 can 
inhibit Kv2.1 in beta cells by approximately 40%
through an interaction with the Kv2.1 α-subunit 
N-terminus [55]. In this study the effect of SNAP-25
on the biophysical properties of the current was not
investigated. Interestingly, it was determined that the
inhibitory effect of SNAP-25 was specific to Kv2.1 in
primary rat beta cells as compared to other Kv chan-
nels. In addition to the interaction with the channel 
N-terminus, we also detected a binding interaction 
between SNAP-25 and a C-terminal fragment of the
channel to which no functional role was ascribed. As
mentioned above, this interaction could be important
in terms of channel localisation, as C-terminal Kv2.1
sequences are known to be involved in channel target-
ing [118]. The potential importance of the C-terminus
in channel localisation is supported by a recent study
showing overexpression of syntaxin 1A disrupts mem-
brane targeting of cloned Kv2.1 through an interaction
with the C-terminus [136]. In this study syntaxin 1A
also reduced Kv currents in rat beta cells and modulat-
ed cloned Kv2.1 activation kinetics and voltage-
dependence of steady-state inactivation.

Although the benefits of a close association be-
tween the SNARE complex and VDCCs seem clear
(local delivery of the Ca2+ trigger), it is more difficult
to imagine the benefit of a close association with
Kv2.1. Since little is known about how ion channels
could mediate local changes in membrane potential, it
is possible that Kv2.1 could locally modulate VDCC
activity. Alternatively, the SNARE proteins might
have an important role in direct regulation of excit-

ability through their interaction with VDCCs and Kv
channels. Another possibility is that these associations
allow for the multi-protein excitosome complex to be
regulated as a single functional unit. In fact, as dis-
cussed below, all of the currently identified excito-
some components (SNARE complex, VDCCs and Kv
channels) are subject to hormonal (GLP-1) regulation.
Together, these studies support the existence of an
excitosome composed of both secretory and excitatory
machinery.

Hormonal regulation of beta-cell Kv channels

Numerous studies have described hormone-mediated
alterations in voltage-dependent K+ currents, both ex-
citatory and inhibitory. The best characterised of these
effects is β-adrenergic-mediated voltage-dependent K+

current down-regulation in lymphocytes [137] and up-
regulation in cardiac myocytes [138]. In both of these
tissues, the cAMP/PKA-signalling pathway has been
implicated in the regulation of these channels [139,
140]. Reports suggest that cAMP can reduce voltage-
dependent K+ currents in murine lymphocytes [139], 
a pituitary cell line [141], and a human melanoma 
cell line [101]. In contrast, cAMP enhances voltage-
dependent K+ currents in cardiac myocytes [140], a
study that has been confirmed at the single channel
level in frog atrial myocytes [142] and the giant squid
axon [143]. Phosphorylation can occur directly on the
channel, as PKA phosphorylation of an atrial Kv
channel near the amino terminus enhances channel 
activity [144] and phosphorylation of Kv1.1 channel
α-subunits regulates the extent of inhibition by a regu-
latory β-subunit [145]. Phosphorylation of β-subunits
themselves can also modulate the regulatory interac-
tion with pore forming α-subunits [146]. It has recent-
ly been shown that regulation of a cardiac voltage-
dependent K+ channel (KCNQ, also called KvLQT)
by cAMP requires the expression of an A kinase-
anchoring protein (AKAP15/18 or AKAP79) [147].
Additionally, an increase in voltage-dependent K+ cur-
rent is implicated in epinephrine-induced inhibition of
the glucose-dependent increase in [Ca2+]i in ob/ob and
wild-type mouse beta cells [148] as the effect was re-
versed by TEA. Interestingly, the inhibitory effect of
epinephrine on [Ca2+]i was also reversed by the ade-
nylyl cyclase activator forskolin [148]. Therefore, we
believe that there is mounting evidence to suggest that
hormonal modulation of Kv currents is physiological-
ly important.

The Kv2.1 α-subunit contains two PKA phosphor-
ylation sites on the C-terminus and a conserved PKC
phosphorylation site on the cytoplasmic loop between
the 4th and 5th transmembrane domains (Fig. 2). Inhi-
bition of PKA leads to a reduction in cloned Kv2.1
current [149], while phosphorylation at the conserved
PKC phosphorylation site suppresses Kv1 channels
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[150, 151, 152]. GLP-1 is proposed to enhance glu-
cose-stimulated insulin secretion by regulating the ac-
tivity of several ion channels (KATP, VDCC, NSCC)
involved in KATP channel-dependent insulin secretion
as well as the secretory machinery itself [153]. Since
beta-cell Kv currents are potent glucose-dependent
regulators of insulin secretion (Fig. 4), we hypothe-
sised that the physiological secretagogue GLP-1 could
regulate Kv channel function. Indeed, we have found
that GLP-1 and the GLP-1 receptor agonist exendin 4
inhibit voltage-dependent outward K+ currents in rat
beta cells voltage-clamped in the whole-cell configu-
ration by approximately 40% in a cAMP/PKA depen-
dent manner and prolongs the time-course of beta-cell
repolarisation following transient depolarisation by
current injection [54].

The ability of GLP-1 to reduce beta-cell Kv cur-
rents seems contradictory to the known effects of
PKA phosphorylation on the cloned Kv2.1 channel
(above). One recent study suggests that cAMP signal-
ling was not sufficient in itself to antagonise voltage-
dependent K+ currents in INS-1 insulinoma cells [75].
Although this discrepancy may result from differences
in the models studied (primary beta cell vs insulinoma
cell vs heterologuous expression), it is possible that
additional GLP-1 signalling pathways [153] are in-
volved. We are currently undertaking studies to inves-
tigate the latter possibility. Additionally, we have now
determined that the mechanism of Kv current block by
GLP-1 involves an approximately 20 mV leftward
shift in the voltage-dependence of steady-state inacti-
vation (MacDonald and Wheeler, unpublished), effec-
tively reducing the number of available channels. Al-
though GLP-1 receptor activation inhibits voltage-
dependent outward K+ currents in rat beta cells in the
absence of glucose, this effect could still contribute to
the glucose-dependence of GLP-1’s insulinotropic 
effect, as Kv channels are not normally expected to be
active until after glucose-induced depolarisation of the
cell membrane (Fig. 1) [154]. The absolute contribu-
tion of Kv channel inhibition to the insulinotropic 
effect of GLP-1 is unknown and is currently under 
investigation.

Kv channels as intracellular redox Sensors: 
Potential role in glucose-stimulated electrical activity

Certain Kv channels, particularly the regulatory β-
subunits associated with the pore forming α-subunits,
have the ability to act as sensors of intracellular redox
potential [155, 156, 157] and to regulate channels de-
pendant on their NADPH-dependent oxidoreductase
activity [158, 159]. At least one study has shown that
mutation of the Kvβ (Kvβ1.1) oxidoreductase active
site attenuated the ability of this subunit to confer fast
inactivation to a Kv1 channel (Kv1.5) [159]. Others
have shown that mutation of regions putatively in-

volved in NADPH co-factor binding alter the ability
of β-subunits to promote channel surface expression
[158, 160]. Regulatory β-subunits have also been im-
plicated in the regulation of Kv channels in response
to changes in [O2] [114]. Although we have stressed
the role of β-subunits as potential redox sensors, di-
rect redox modulation of a Kv α-subunit (particularly
cysteine residues) could also modify channel proper-
ties [78].

It was proposed in 1986 that, analogous to the
mechanism mediating hypoxia-induced pulmonary 
vasoconstriction, an increased intracellular redox 
potential links beta-cell metabolism to K+ channel
function, contributing to membrane excitability and
glucose-stimulated insulin secretion [161]. Recent
studies have strongly suggested that NADPH produc-
tion via the malate-aspartate shuttle [162, 163, 164],
also called pyruvate cycling [165], might be an impor-
tant metabolic signal. Indeed, metabolisable insulin
secretagogues increase the NADPH/NADP+ ratio in
rodent islets [166, 167] and inhibition of NADPH for-
mation reduces glucose-stimulated insulin secretion
from rat islets [168, 169]. Recent evidence suggests
the existence of membrane associated aldehyde oxido-
reductase-like enzyme activity in rat islets [170] and,
as mentioned above, a number of oxidoreductase-like
Kvβ subunits (Kvβ1, 2 and 3) are expressed in human
and rat islets and INS-1 insulinoma cells [93]. The
ability of the aldehyde reductase antagonist diphenyl-
hydantoin to prevent glucose-stimulated insulin secre-
tion from rat islets supports a role for an NADPH-
oxidoreductase activity in stimulus-secretion coupling
[170, 171, 172, 173], although it is suggested that this
effect could be related to the ability of diphenylhydan-
toin to block Na+ channels. However, the role for Na+

channels in stimulus-secretion coupling is unclear; in
fact, rodent beta-cell voltage-dependent Na+ channels
are thought to be completely or nearly completely 
inactivated within the operating membrane potential
range of rodent beta cells [73, 82], but could be active
in human beta cells [174].

Recently, we have described a potent regulation of
native Kv2.1 channels in primary rat beta cells by the
cytoplasmic NADPH/NADP+ ratio [56]. In that study,
increasing the intracellular redox potential by raising
the intracellular NADPH/NADP+ ratio caused beta-
cell Kv2.1 currents to inactivate quickly and more
completely, and caused a leftward shift in the voltage-
dependence of steady-state inactivation (meaning that
more channels were already inactivated, and therefore
unavailable). This has important implications since
the metabolic generation of NADPH could reduce the
efficacy of Kv channels in repolarising the beta cell
(Fig. 5). We propose that the metabolic generation of
NADPH contributes to beta-cell electrical excitability
in response to glucose by reducing the effective ability
of Kv currents to hyperpolarise the cell membrane
(Fig. 5). This model represents a modification of the
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studies should investigate the possibility that regula-
tion of beta-cell Kv2.1 channel inactivation by
NADPH contributes to the electrical response of beta
cells.

Conclusion

There is clear evidence supporting a role for voltage-
dependent K+ channels, in particular Kv2.1, in the
regulation of insulin secretion. These currents repol-
arise beta-cell action potentials when triggered by a
glucose-induced KATP channel closure. Blocking Kv
currents prolong the action potential and therefore in-
creases the activity of VDCC’s and entry of Ca2+. Re-
cent evidence supports the localisation of Kv channels
to the excitosome complex, where ion channels and
secretory SNARE proteins interact to control the com-
plex events underlying secretion. Beta-cell Kv chan-
nels are also targets of the G-protein coupled GLP-1
receptor and signals from glucose metabolism, path-
ways which could be physiologically relevant to the
control of insulin secretion. The glucose-dependence
of the insulinotropic effect of Kv inhibitors make
these channels promising targets for the development
of hypoglycaemic therapeutics. Further studies char-
acterising tissue specific differences in Kv2.1 currents
and the roles and regulation of the various Kv chan-
nels expressed in insulin-secreting cells may lead to
the development of agents with sufficient beta-cell
specificity to be considered for therapeutic use.
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