
Abstract

To unravel the molecular mechanisms and the causal
chain of how thiazolidinediones (TZDs) affect glu-
cose homeostasis, it is helpful to analyse their direct
influence on isolated specimens of fat, muscle, and
liver in vitro. Studies on isolated adipocytes have
shown that the nuclear peroxisome proliferator-acti-
vated receptor-γ (PPARγ) is an important molecular
target for TZDs, through which they trigger adipocyte
differentiation and adipose tissue remodelling. It is
not clear, however, if the activation of PPARγ in adi-
pose tissue is the cause of all the metabolic actions 
of TZDs. Based on in vitro studies, two hypotheses
have been developed. The first emphasizes PPARγ-
mediated actions on adipose tissue, suggesting that
insulin sensitization of skeletal muscle and liver is
triggered indirectly by changes in circulating concen-
trations of adipocyte-derived non-esterified fatty 

acids and peptide hormones. The second states that
TZDs improve glucose homeostasis independently
from adipose tissue actions by the direct interaction
with muscle and liver. This hypothesis is supported
by direct TZD actions on fuel metabolism of skeletal
muscle and liver in vitro, which seem to be indepen-
dent from PPARγ signalling. Major progress has been
made in understanding the mechanisms involved in
the effects of TZDs on adipose tissue but the causal
chain responsible for their antihyperglycaemic action
is still not clear. The involvement of other molecular
targets in addition to PPARγ, of adipocyte-derived
messengers, and of direct interaction with skeletal
muscle and liver have yet to be clarified. [Dia-
betologia (2002) 45:1211–1223]
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drawn from the market because of its detrimental he-
patic side effects [1, 2]. Other TZDs, rosiglitazone and
pioglitazone, are now available and are not toxic to
the liver [3, 4]. At present, additional compounds of
this class are under preclinical evaluation.

The structural characteristic common to all TZDs is
a thiazolidinedione ring, to which divergent molecular
moieties are attached (Fig. 1). Because different TZDs
as well as compounds with structures resembling the
thiazolidinedione ring (e.g., isoxazolidinediones, ox-
adiazolidinediones; Fig. 1) carry comparable antidia-
betic potentials, the thiazolidinedione ring is assumed
to relate to antihyperglycaemic TZD action, whereas
the substituted moieties seem to modulate pharmaco-
kinetic and pharmacodynamic properties.

The glucose lowering action of TZDs depends on
the presence of insulin. Insulin-deficient rats treated

Thiazolidinediones (TZDs) are increasingly important
in the treatment of Type II (non-insulin-dependent) di-
abetes mellitus. Troglitazone was the first TZD ap-
proved for treating Type II diabetes but it was with-



with TZDs have persistent hyperglycaemia as long as
insulin is absent, but respond better to exogenous in-
sulin administration [5, 6]. This implies that TZDs
amplify the action of insulin on target tissues and,
therefore, they have been categorized as insulin sensi-
tizers.

Euglycaemic-hyperinsulinaemic clamp tests on
Type II diabetic patients and insulin resistant rodents
showed that oral TZD treatment improves insulin-
stimulated glucose disappearance [7, 8, 9, 10, 11, 12,
13, 14, 15], which is reflected by increased glucose
transport into insulin-stimulated skeletal muscle [16,
17, 18] and fat [5, 6, 8, 19] ex vivo. In parallel to
TZD-induced peripheral insulin sensitization, an im-

proved ability of insulin to suppress glucose appear-
ance, which is basically a function of the liver, was
observed in most [7, 8, 9, 10, 11] but not all [12, 13,
15] clamp studies. Hence, TZD treatment amplifies
the effects of insulin on the most important tissues of
carbohydrate metabolism including muscle, liver, and
fat. Skeletal muscle, being the primary target tissue
for insulin-stimulated glucose disposal [20, 21], plays
the quantitatively predominant role in TZD-dependent
glucose lowering [7, 12, 13, 15, 17, 22].

Although metabolic changes caused by prolonged
TZD treatment have been thoroughly described in 
vivo and ex vivo, clinical TZD therapy still relies on
limited knowledge as to the early cascade of molecu-
lar and metabolic events that are the basis for anti-
hyperglycaemic TZD action. A major difficulty in un-
derstanding the mechanisms of TZD action is to sepa-
rate events that are causal for antidiabetic action from
other humoral and metabolic phenomena that arise
secondarily to glucose lowering or are unrelated to 
antidiabetic action. In this context, studies on the 
direct interaction of TZDs with isolated cells and 
tissues in vitro are important, because such an ap-
proach allows distinguishing the direct interaction of
TZDs with a target tissue from events related to TZD-
induced changes in ambient hormones and metabo-
lites. This review summarizes available knowledge 
regarding metabolic TZD action on fat, muscle, and 
liver in vitro, and discusses to which extent in vitro
studies have provided a basis for understanding the
mechanisms of antidiabetic action in vivo.

Adipose tissue

Direct TZD action on isolated fat. The observation that
in vitro, TZD compounds are specific and potent ago-
nists of peroxisome proliferator-activated receptor-γ
(PPARγ) [23, 24] was a breakthrough in the search of
molecular targets. PPARγ is a member of the nuclear
hormone receptor family, it is abundantly expressed in
adipose tissue [25, 26, 27], and forms heterodimers
with retinoid X receptor-α (RXRα) [28, 29]. Like 
other nuclear receptors, PPARγ is considered to act ex-
clusively by modulating gene expression. Any binding
of an agonistic ligand thus triggers structural reconfor-
mation of the PPARγ-RXRα heterodimer with the re-
lease of corepressors and the recruitment of coactiva-
tors [30, 31]. The activated receptor-cofactor complex
modulates transcription patterns due to interacting with
peroxisome proliferator response elements (PPREs) 
located in the promotor regions of many genes, most of
which are important for lipid metabolism [32].

The major physiologic role of PPARγ is its involve-
ment in adipocyte differentiation. PPARγ is increas-
ingly expressed during the early phase of the develop-
ment of preadipocytes into mature fat cells and acts
together with CCAAT/enhancer binding proteins
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Fig. 1. Structures of TZDs and related compounds. All depict-
ed compounds carry similar antidiabetic potentials. TZDs
share a thiazolidinedione ring structure, while JTT-501 and
YM440 structurally have very similar isoxazolidinedione and
oxadiazolidinedione rings, respectively (right parts of the mol-
ecules). Major similarities in structure suggest that a common
molecular mechanism underlies their antidiabetic action



(C/EBPs) to stimulate full differentiation [33, 34]. In
vitro, the adipogenic activity of PPARγ is shown, for
example, by the increased expression of PPARγ which
stimulates cultured fibroblasts to develop into mature
fat cells [35], and by the ectopic expression of PPARγ
which together with C/EBPα can trigger myoblasts
with no inherent adipogenic potential to transdifferen-
tiate into adipocytes [36].

PPARγ-agonistic potencies and efficacies of TZDs
are routinely determined by means of reporter assays,
which quantify in vitro the transcriptional rates of
genes provided with PPREs (e.g. [37, 38, 39]). As
functional PPARγ agonists, TZDs strongly induce the
differentiation of many cell types into mature adipo-
cytes in vitro [23, 40, 41, 42, 43, 44, 45, 46]. Of note,
during the TZD-induced transition of a stem cell into
a mature adipocyte, the cell increasingly acquires the
ability to respond to insulin and progressively ex-
presses genes important for glucose metabolism, like
glucose transporters [40, 45, 47] or uncoupling pro-
teins [48, 49, 50]. Whereas the induction of a set of
genes required for insulin responsiveness and carbo-
hydrate handling seem to be part of the normal adipo-
genic program, other attributes seem specific for fat
cell differentiation under TZD exposure. Thus, TZDs
favour the development of brown rather than white fat
cells [48, 49], and specifically address preadipocytes
from subcutaneous fat with little influence on pre-
adipocytes obtained from an omental depot [41].

The role of PPARγ in adipocyte differentiation as
well as the potential of TZDs to trigger differentiation
of adipocytes via PPARγ has been established and
summarized in a number of other reviews (e.g. [31,
32, 51, 52, 53, 54]). It is less clear, however, in what
way and to what extent PPARγ-activation and direct
interaction with fat cells are the initial events that ulti-
mately lead to antidiabetic TZD action in vivo.

Adipogenic TZD action in vivo. An essential role of
PPARγ for the development of adipocytes not only in
vitro, but also under physiologic conditions in vivo, is
implicated by PPARγ knock out mice in which white
and brown adipose tissue can develop only from stem
cells with at least one intact allele for PPARγ [55, 56].
Furthermore, adipogenic action of oral TZD treatment
is indicated by increases in adiposity and body weight
which accompany the therapeutic effects on glucose
homeostasis [57, 58, 59]. Closer inspection shows,
however, that TZDs do not simply induce growth of
fat mass but trigger adipose tissue remodelling in a 
sophisticated manner. This is in line with the observa-
tion that TZD stimulation in vitro leads to the devel-
opment of adipocytes with specific attributes. In ro-
dents, TZDs stimulate the development of small adi-
pocytes and the apoptosis of large adipocytes, which
results in adipose tissue predominantly composed of
small cells [57, 60, 61]. Furthermore, considerable
growth of subcutaneous adipose mass without a

change, or even with a decrease, in visceral fat is seen
in humans treated with troglitazone [62, 63, 64] which
obviously reflects the superior effect of TZDs on 
subcutaneous versus omental adipocytes as shown 
in vitro [41].

Hence, evidence suggests that direct and PPARγ-
dependent effects on adipocytes documented in vitro
are responsible for adipose tissue remodelling in vivo.
How far the insulin sensitizing and antidiabetic activi-
ties of TZDs are secondary to stimulation of PPARγ
and/or to adipose tissue remodelling, however, has yet
to be established. Three modes of antidiabetic TZD
action seem possible (Fig. 2): (i) whole body insulin
sensitization is secondary to PPARγ-mediated adipo-
genesis and adipose tissue remodelling; (ii) both adi-
pogenesis and insulin sensitization are induced via
PPARγ, but different pathways are involved distal to
receptor activation; and (iii) insulin sensitization, in
contrast to adipogenesis, is mediated via a mechanism
that does not involve PPARγ. Although efforts to pin-
point to what extent each of these mechanisms is 
responsible for antidiabetic TZD action have not
brought forth a final answer, it is worth while to criti-
cally analyse this question on the basis of presently
available knowledge.

PPARγ and antidiabetic TZD action. Studies using
PPARγ-deficient mice could be very helpful in deter-
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Fig. 2. Possible modes of antidiabetic TZD action. It is undis-
puted that TZDs trigger adipose tissue remodelling via PPARγ
and that insulin sensitization is essential for antihyper-
glycaemic TZD action (full arrows). Several modes of action
are under discussion for the causal chain of events leading to
insulin sensitization (open arrows). Whether PPARγ activation
and/or direct effects on adipose tissue are the sole cause of im-
provement of glucose homeostasis is not yet clear



mining, whether PPARγ activation as documented in
vitro is essential for antidiabetic TZD action in vivo
but unfortunately such animals are hardly viable [55,
65]. Although changes in insulin action characterizing
heterozygous knock-out mice (PPARγ+/–) [65] and hu-
mans with mutations or polymorphisms in the PPARγ
gene [66, 67] suggest PPARγ-dependent regulation of
glucose homeostasis in vivo, there is disagreement as
to whether available data supports or challenges the
hypothesis that increased PPARγ activity relates to
higher insulin sensitivity [22, 68].

The most important observation supporting a 
causal interdependence between TZD-induced PPARγ
activation and the improvement of glucose homeosta-
sis is the association of PPARγ agonistic activity in
vitro with antidiabetic action in vivo, which character-
izes numerous TZDs [16, 37, 69, 70, 71, 72], and also
non-TZD PPARγ agonists belonging to the classes of
isoxazolidinediones [73, 74], tyrosine derivatives [75,
76, 77], and phenylacetic or phenoxyacetic acid deriv-
atives [37]. Although the maximal antihyperglycaemic
potentials of many TZDs and other PPARγ agonists
are similar, oral dose requirements for half-maximal
glucose lowering in diabetic mice differ considerably
and correlate strongly with PPARγ binding activities
and transactivating potentials of the respective com-
pound in vitro [37, 69, 71]. Furthermore, antidiabetic
action has also been ascribed to agonistic ligands of
RXRα, the heterodimeric partner of PPARγ [78, 79].
Against this background it is tempting to relate the
glucoregulatory effects of both PPARγ and RXRα
agonists to the stimulation of the PPARγ-RXRα
heterodimer and thus to the same molecular pathway.

All these reports on qualitative and quantitative cor-
relations of receptor activation with improvement of
glucose homeostasis led to a broad acceptance of 
the hypothesis that TZD-induced insulin sensitization
and amelioration of hyperglycaemia are secondary to
PPARγ activation. Other evidence suggests, however,
that the mechanisms underlying metabolic TZD action
could be more complex. The new TZDs RWJ241947
(MCC-555), NC-2100, and PAT5A, and also the 
antidiabetic oxadiazolidinedione YM440 (molecular
structures in Fig. 1), carry antihyperglycaemic and in-
sulin sensitizing potentials at least equal to those of es-
tablished TZDs [38, 39, 80, 81, 82], although they have
markedly lower efficacies for PPARγ affinity, PPARγ
transactivation, and adipocyte differentiation in vitro
[38, 39, 80, 81]. In addition, no increases in fat and
body weight which characterize most TZDs [57, 58,
59] are found in response to treatment with NC-2100 or
YM440 [38, 81], which suggests little adipogenic ac-
tion in vitro and in vivo. Dissociation of adipogenic and
metabolic TZD action has also been reported for isolat-
ed adipocytes transfected with a PPARγ dominant-neg-
ative mutant, in which TZDs and other agonists main-
tained their ability to stimulate glucose transport, albeit
their adipogenic potential was severely impaired [83].

The failure of several TZDs to show PPARγ activa-
tion and adipogenic action proportionate to their glu-
cose-lowering potentials implicates that increased
PPARγ activity alone is not sufficient to explain both
adipogenic and antidiabetic properties of all TZDs.
Apart from the option that metabolic TZD action
could in part rely on molecular targets other than
PPARγ, an alternative concept referred to as the selec-
tive PPAR modulator (SPPARM) model can explain
different actions via the same receptor. Basically, the
SPPARM model holds that the repertoire of target
genes addressed via PPARγ depends on the individual
ligand, a mode of action that is established for other
nuclear receptors [84]. In vitro, structural reconfirma-
tion and cofactor recruitment by PPARγ differ be-
tween TZD versus non-TZD ligands and also between
individual TZD compounds [85, 86] suggesting that
PPARγ is indeed capable of ligand-specific signalling.
Adding to the complexity, PPREs located in the pro-
motor regions of different genes are not entirely iden-
tical and availability of cofactors could be based on
tissue-specific expression, which in turn could vary
depending on the physiologic or pathophysiologic
state (e.g. fasted vs fed, lean vs obese, healthy vs dia-
betic). Hence, the structure of receptor-ligand-cofac-
tor-PPRE-complexes that arise to modulate gene tran-
scription can depend on a number of factors including
the specific PPARγ ligand, the tissue site, and the 
metabolic state.

Challenging traditional views about the agonistic or
antagonistic character of a ligand, the SPPARM model
could explain, how each individual TZD addresses a
specific set of genes, elicits a unique pattern of gene
transcription, and triggers a unique biologic response
without requiring another primary target in addition to
PPARγ. This implies that a partial or context-depen-
dent agonism of PPARγ could be sufficient for antidi-
abetic action as long as the ligand affects a specific
and yet unidentified gene (or set of genes) responsible
for insulin sensitization.

With respect to the hypothesis of PPARγ being the
only relevant target of TZDs, the consequences of
such hypothetical ligand-specific signalling are mani-
fold. The SPPARM model invalidates the argument
that an antidiabetic compound lacking major PPARγ
activity in a reporter assay must act via an other mo-
lecular target. On the other hand, the model challenges
the basic assumption that the potential of a given 
compound to trigger insulin sensitization and glucose
lowering in vivo can be estimated from its PPARγ-
agonistic activity in vitro. The latter point questions
the usefulness of PPARγ reporter assays in search for
promising compounds and also weakens the argument
that PPARγ agonism in vitro correlates with antidia-
betic action in vivo [37, 69, 71]. Hence, the extent to
which metabolic action of TZDs is caused by PPARγ
signalling is difficult to assess and further research
will be necessary to differentiate the contribution of
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this receptor and other targets to the antidiabetic 
action of TZD compounds.

Adipose tissue and antidiabetic TZD action. The
causal relevance of PPARγ-mediated effects on adi-
pose tissue for antidiabetic TZD action can not be
evaluated only by weighing the evidence for and
against PPARγ-dependency of glucose lowering but
also by analysing if and in what way adipose tissue is
essential. In this context, TZD-induced amelioration
of hyperglycaemia in patients and mice with lipodys-
trophy (i.e. with a distinct shortage in adipose tissue
mass) has been argued to indicate a mode of action
that does not require direct interaction with fat [87,
88]. Opposing results from another lipodystrophic
mouse model [89], however, give alternative interpre-
tations such that TZD action could depend on an in-
teraction with residual fat or that fatty livers, as char-
acteristic of such syndromes, could functionally 
replace adipose mass. Thus so far, studies on TZD 
action in lipodystrophy failed to clarify whether adi-
pose tissue is the primary site of the antidiabetic 
effects of TZDs [90].

Of note, the hypothesis stating that TZDs act exclu-
sively via fat contrasts somewhat with the minor con-
tribution that adipose tissue makes to whole body glu-
cose metabolism [20, 21]. Actually, the predominant
role in TZD-dependent glucose lowering is unani-
mously attributed to increased insulin-stimulated glu-
cose disposal into skeletal muscle [7, 12, 13, 15, 17,
22] with many, but not all, reports suggesting a contri-
bution of reduced hepatic glucose output ([7, 8, 9, 10,
11, 15] vs [12, 13, 14]). To interpret antidiabetic TZD
action as mediated by adipose tissue, it is therefore
necessary to hypothesize a TZD-induced metabolic or
humoral signal, which is released from fat and acts on
skeletal muscle and probably on the liver (Fig. 3).
Identification of this hypothetical TZD-induced mes-
senger would be crucial to strengthen the contention
of fat-dependent TZD action.

Prerequisites essential for such a putative messenger
are (i) that its output from fat changes under TZD
treatment and (ii) that it modulates glucose metabolism
of skeletal muscle and perhaps the liver. At present,
non-esterified fatty acids (NEFA) are regarded as 
the main candidate, because TZD treatment reduces
plasma NEFA [5, 11, 71, 72, 82, 91, 92] and because
NEFA are established modulators of insulin-stimulated
glucose transport and glycogen synthesis in skeletal
muscle in vitro and in vivo [93, 94, 95, 96]. The causal
sequence would be that adipogenic TZD action on 
fat supports triglyceride storage and, hence, the with-
drawal of NEFA from the circulation which improves
muscle insulin sensitivity and glucose homeostasis
[97]. However, the simple association of decreased
plasma NEFA with antidiabetic TZD action is not suf-
ficient to confirm such hypothesized sequence of
events. Actually, no evidence has yet been provided 

to confirm that the TZD-induced reduction in plasma
NEFA precedes muscle insulin sensitization rather than
being a secondary phenomenon.

Beside being a source of NEFA, adipose tissue is
increasingly recognized as an endocrine organ that
produces glucoregulatory hormones like leptin, tu-
mour necrosis factor-α (TNF-α), resistin, and adip-
onectin. Since TZDs modulate their adipose expres-
sion, these secretory peptides have also been referred
to as candidates for TZD-induced fat-to-muscle sig-
nalling (Fig. 3) [58, 60, 98, 99, 100, 101, 102, 103].
Hard evidence, however, for a crucial role of fat-
derived peptides is scarce. Leptin can hardly be held
responsible for antidiabetic TZD action, because the
vast majority of animal experiments documenting 
antihyperglycaemic effects have used ob/ob mice,
db/db mice, or fa/fa rats, which are incapable of leptin
signalling because of mutations in the genes encoding
either for leptin or the leptin receptor [104, 105]. The
ability of resistin to act on skeletal muscle and liver
has not been evaluated yet, whereas TNF-α modulates
insulin action in a cultured muscle cell line [106] but
fails to influence glucose metabolism of native skele-
tal muscle specimens in vitro [107, 108]. The most
plausible peptide candidate seems to be adiponectin,
which is increasingly produced under TZD treatment
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Fig. 3. Mode of TZD action on muscle and liver: two hypoth-
eses. Amelioration of insulin resistance of skeletal muscle (and
probably also of the liver) is an essential step in the cascade of
events leading to antihyperglycaemic TZD action. At present,
it is not known, to what extent TZDs address muscle and liver
via a PPARγ-induced messenger from the adipocyte and to
what extent they act directly via PPARγ and/or other molecular
targets



[98, 99], exhibits glucose-lowering activity [98, 109,
110], and modulates fuel metabolism of hepatocytes
as well as of native and cultured muscle in vitro [109,
110]. Nevertheless, it remains to be shown that adp-
onectin is essential for the metabolic action of TZDs.
Conclusion, adipose tissue. TZDs thus have a major
direct impact on isolated adipocytes in vitro, which is
attributable to PPARγ-mediated modulation of gene
transcription leading to cellular differentiation. The
mechanisms characterized in vitro are obviously re-
sponsible for structural and functional changes in 
adipose tissue during oral TZD administration in vivo.
It is not clear, however, to what extent these direct 
effects on fat also cause TZD-induced improvement of
glucose homeostasis, which is mainly a function of
skeletal muscle. To understand whether TZD actions
on muscle and liver are secondary to signal output
from adipose tissue, it needs to be clarified, if changes
in circulating NEFA are the cause or the result of insu-
lin sensitizing TZD action and if fat-derived peptides
have the potential to act as TZD-induced messengers
to skeletal muscle and liver.

Skeletal muscle

Direct TZD action on isolated muscle. Although indi-
rect action of TZDs via a fat-derived mediator is a
plausible concept, antidiabetic action could, alterna-
tively or additionally, also relate to direct interaction
with skeletal muscle (Fig. 3). Direct action on muscle
could explain why the antidiabetic efficacy of an indi-
vidual TZD does not necessarily correlate with its adi-
pogenic and antihyperlipidaemic potentials [38, 39,
89]. Aiming to differentiate direct from indirect 
effects, the examination of TZD action on isolated
skeletal muscle in vitro, and hence in the absence of
any signal from other tissues, is an important experi-
mental approach.

In many studies, TZDs were found to stimulate glu-
cose transport into skeletal muscle in vitro [16, 70,
111, 112, 113, 114, 115, 116, 117, 118, 119, 120] but
the accompanying changes in intracellular glucose
fluxes were rather inconsistent, ranging from stimula-
tion to inhibition of both glucose oxidation and glyco-
gen synthesis [16, 70, 111, 112, 113, 114, 121]. The
heterogeneity of effects on intracellular glucose rout-
ing is obviously related to the diversity in experimen-
tal settings. Studies varied with regard to the structure
and concentration of the TZD used, the period of ex-
posure, and the muscle preparations which included
perfused rat hindlimb [120], freshly isolated rat soleus
muscle [16, 111, 112, 113, 121], pre-cultured human
muscle biopsies [114, 115, 116], and permanently cul-
tured muscle cell lines [70, 117, 118, 119]. Comparing
different studies is further complicated by the lipo-
philic character of TZDs that strongly bind to protein
[122], which implies a modulation of the bioavailable

TZD concentration in vitro by the quantity and quality
of protein and detergent added to the incubation or
perfusion medium. In spite of such differences in the
applied experimental protocols, cautious analysis of
available information leads to interesting conclusions.

TZD-induced glucose transport in vitro has been
reported to be independent of concomitant insulin
stimulation [16, 111, 112, 114, 115, 116, 117, 118,
119] and to occur very rapidly within 30 to 90 min not
only in skeletal muscle [16, 111, 112, 113, 115, 120],
but also in cardiomyocytes [123] and adipocytes
[124]. This led some authors to attribute an acute “in-
sulin-mimetic” potential to TZDs [115, 124] but such
interpretation needs to be applied with caution.
Whereas insulin is a storage signal directing intracel-
lular glucose flux mainly into glycogen [111, 125],
glucose transport into short-term TZD-exposed mus-
cle increases in association with a very marked in-
crease of the glycolytic flux and the depletion of gly-
cogen [16, 111, 112, 113, 120]. Thus insulin-mediated
glucose uptake relates to transport and glycogen syn-
thesis, which should not be mistaken for glucose
transport without concomitant glycogen storage. The
substrate handling of muscle acutely exposed to TZDs
in vitro resembles the metabolic response to contrac-
tions or to anoxia [125, 126] rather than the metabolic
response to insulin.

Although acute stimulation of total glycolysis in
isolated muscle is seen over a broad range of TZD
concentrations, distinction of aerobic versus anaerobic
glucose utilization suggests that different mechanisms
are involved at low versus high concentrations.
Whereas low TZD concentrations inhibit the conver-
sion of glucose into CO2 (Fig. 4A) [112, 113], con-
centrations above those prevailing in the circulation of
treated patients trigger very distinct increases in both
aerobic and anaerobic fuel catabolism (Fig. 4B) [16,
112]. A catabolic effect on glucose metabolism as in-
duced by high TZD concentrations (Fig. 4B) is like-
wise triggered by very high concentrations of other
compounds [125, 127] and therefore could represent a
rather unspecific response to stress. These consider-
ations emphasize how misleading it can be to attribute
an insulin-mimetic potential to TZDs without any evi-
dence, apart from the acute stimulation of glucose
transport.

A specific mechanism probably underlies the acute
effect of low micromolar TZD concentrations on mus-
cle glucose handling, which can be described as a
TZD-induced shift of glycolytic flux from the aerobic
towards the anaerobic pathway (Fig. 4A) [112, 113].
Under these conditions, CO2 production from both
glucose and NEFA is markedly reduced and is accom-
panied by a distinct increase in lactate production,
whereby increased glucose uptake and glycogen de-
pletion obviously compensate for the lower yield of
ATP from anaerobic than aerobic substrate utilization
(Fig. 4A) [112, 113]. Such changes in muscle glucose
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handling are in line with inhibitory action of TZDs on
mitochondrial respiration, a mechanism which is be-
lieved to contribute to the action of the antidiabetic
agent metformin [128, 129].

Evidence for direct and acute TZD action on the
mitochondrium in vivo, however, is scarce. Although
a troglitazone-induced increase of insulin-stimulated
glucose disposal within 20 min and amelioration of
hyperglycaemia within 2.5 h have been reported in 
rodents [5, 130], studies on humans point to a delayed
action on glucose homeostasis. However, such delay
in antidiabetic action does not exclude the involve-
ment of an acute mitochondrial mechanism, because
short-term stimulation of glycolysis by regular bouts
of exercise will, in the long-term, also result in insulin
sensitization.

In contrast to glycogen depletion by short-term
TZD exposure of freshly isolated muscle specimens,
long-term TZD exposure increases glycogen synthase
activity and glycogen synthesis in muscle-derived cell
cultures [114, 115, 116, 131]. In agreement with these
findings from cell cultures, the acute glycogenolytic
effect of troglitazone on isolated rat soleus muscle
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Fig. 4A–C. Troglitazone action on isolated rat soleus muscle.
Depending on the concentration and exposure period, troglita-
zone stimulates glucose transport into the isolated rat soleus
muscle in association with divergent effects on intracellular
glucose routing. A Short-term exposure to troglitazone concen-
trations in the low micromolar range inhibits glucose oxidation
and shifts glycolytic flux into lactate production which, pre-
sumably due to higher substrate demands for anaerobic ATP
production, is associated with glycogen depletion (“anoxia-
like” response); B short-term exposure to troglitazone concen-
trations in the high micromolar range triggers aerobic and an-
aerobic glycolysis, and glycogen depletion, which might be an
unspecific stress response (“contraction-like” response); and C
long-term exposure to troglitazone concentrations in the low
micromolar range increases insulin-stimulated glycogen stor-
age and glucose oxidation (“insulin-like” or “insulin-sensitiz-
ing” response). Adapted from references [111, 112, 113, 121]

turns into a glycogenic response after a prolonged ex-
posure for 72 h (Fig. 4C) [121]. Under the latter con-
ditions, an insulin-dependent increase in glycogen
synthesis is accompanied by an insulin-independent
increase in glucose oxidation [121], which is a pattern
of changes as in soleus muscle specimens prepared
from orally TZD-treated obese rodents [16, 18, 91].
Although parallel responses to prolonged TZD treat-
ment in vitro and in vivo support the idea that direct
action on muscle could be important for therapeutic
TZD action, any conclusion from long-term incuba-
tion of isolated muscle is hampered by the fact that the
regulation of glucose metabolism could change con-
siderably in muscle cells devoid of their physiologic
environment. Therefore, it is important to be cautious
when extrapolating findings from long-term incubated
or cultured muscle to the physiologic situation.

Molecular targets of TZDs in skeletal muscle. Where-
as the undisputed mediator of a large number of TZD
effects on adipocytes is PPARγ, an involvement of this
receptor in the direct actions on skeletal muscle is not
established. In muscle, mRNA encoding for PPARγ is
much lower than in fat [25, 26, 27] but PPARγ protein
has been described to be relatively more abundant,
reaching 31 to 100% of adipose concentrations [132].
However, not a single response of skeletal muscle
could yet be clearly attributed to PPARγ activation
and the functional relevance of PPARγ-signalling is
still not clear in this tissue.

In contrast to the lack of evidence for PPARγ-
signalling there is evidence for PPARγ-independent
actions of TZDs on skeletal muscle which are obvi-
ously responsible for the acute inhibition of mitochon-
drial fuel oxidation in isolated muscle specimens
[113]. PPARγ-mediated actions depend on rather slow
processes, including gene expression and protein syn-
thesis. However, TZDs diminish muscular CO2 pro-
duction in vitro within 30 min, which can not be in-
hibited by blockers of transcription or translation
[113].



Conclusion, skeletal muscle. In addition to their 
influence on isolated adipocytes, TZDs directly and
PPARγ-independently affect glucose metabolism of
isolated skeletal muscle in vitro, which includes insu-
lin-independent stimulation of glycolysis and, at low
concentrations, inhibition of mitochondrial CO2 pro-
duction. While major progress has been made in un-
derstanding PPARγ-mediated gene expression, adi-
pose tissue remodelling, and signal output from fat,
the relevance of the direct TZD action on skeletal
muscle for the therapeutic effects of TZD administra-
tion is still not clear. To fully understand the mode of
antidiabetic TZD action, it will be essential to differ-
entiate the contribution of PPARγ-dependent versus
PPARγ-independent mechanisms, and of direct versus
indirect actions on skeletal muscle.

Liver

Direct TZD action on isolated liver. Increased glucose
disposal into skeletal muscle is very important for
TZD-induced glucose lowering but, although not con-
firmed in all studies [12, 13, 14], a contribution of re-
duced hepatic glucose output seems very likely [7, 8,
9, 10, 11, 15]. As for muscle, TZD action on the liver
might be due to direct effects as well as to indirect ac-
tions via fat-derived messengers (Fig. 3).

In perfused rat livers as well as in isolated hepa-
tocytes, TZDs were reported to acutely reduce the
rate of glucose release, which was mainly a function
of reduced gluconeogenesis from lactate in most set-
tings [133, 134, 135, 136, 137]. Like TZD-induced
glucose transport into isolated muscle, acute suppres-
sion of hepatic glucose output in vitro did not depend
on concomitant insulin stimulation, and was therefore
interpreted as “insulin-mimetic” TZD action [133,
134, 135]. At variance to what should be expected for
full insulin-mimetic action, the reduction of glucose
production by TZDs was associated with a consider-
able stimulation of the glycolytic pathway and with
an increased net lactate release [135, 136, 138]. Al-
though the rates of glycogen synthesis and glucose
oxidation were not determined in liver, acute effects
on the isolated liver seem to resemble those seen in
isolated skeletal muscle. In both tissues, TZDs shift
substrate flux into glycolysis and, hence, away from
alternative routes like glucose production and glyco-
gen synthesis.

At variance to the glycolytic effect of short-term
TZD exposure, long-term exposure increased glyco-
gen synthase activity in cultured hepatocytes [131,
139] which correlates with findings on long-term
TZD-exposed cultured muscle [115, 116]. Whether in-
creased activity of this enzyme is accompanied by in-
creased glycogen storage in TZD-treated liver cells,
however, can not be known without appropriate data
on substrate fluxes and glycogen content.

Molecular targets for TZDs in liver. The healthy liver
resembles skeletal muscle in that it hardly expresses
PPARγ [25, 26] and in that a regulatory role of PPARγ
has not yet been clearly shown. In isolated muscle,
rapid TZD stimulation of glycolysis does not seem to
depend on PPARγ signalling [113] and a comparable
glycolytic effect on isolated liver as well as data on
troglitazone-induced inhibition of phosphoenolpyru-
vate carboxykinase gene expression [140] suggest that
TZDs address hepatocytes, like muscle cells, via
PPARγ-independent pathways.

Whereas PPARγ-independent mechanisms seem to
account for the acute metabolic actions of TZD com-
pounds, the development of hepatic steatosis could
render the liver responsive for PPARγ-mediated adipo-
genic TZD action [90, 141, 142, 143]. Steatotic hepa-
tocytes resemble adipocytes not only with respect to tri-
glyceride accumulation, but also in that they abundant-
ly express PPARγ and several other genes which char-
acterize fat cells [90, 141, 142]. Increased abundance of
PPARγ in fatty livers could explain, why TZDs fail to
induce lipid accumulation in livers of healthy animals,
but exacerbate pre-existing steatosis and the expression
of adipocyte-specific genes in livers of lipoatrophic and
obese mice [90, 141, 143]. Nevertheless, worsening of
lipid accumulation, which could be indicative of hepat-
ic PPARγ-signalling, has only been described in mouse
liver, whereas TZDs were reported to ameliorate
hepatosteatosis in rats and humans [64, 72, 144, 145].

Nuclear receptors other than PPARγ could also be
hepatic targets for at least some TZDs. In vitro, the
TZDs KRP-297 and pioglitazone, as well as the iso-
xazolidinedione JTT-501 (Fig. 1) transactivate both
PPARγ and PPARα [72, 73, 146]. PPARα is mainly
expressed in the liver and is regarded as the mediator
of the antihyperlipidaemic action of fibrates [147]. As
pure PPARα agonists can elicit insulin-sensitization
[7, 148, 149, 150], this receptor could contribute 
jointly with PPARγ to the antidiabetic action of dual
agonists. Of note, activation of both subtypes might
even be preferable to pure PPARγ-agonism, because
PPARα activity could increase the antihyperlipid-
aemic efficacy of a TZD [72, 151] and could attenuate
PPARγ-induced adiposity and weight gain [150].

In vitro, the TZD troglitazone also transactivates
human pregnane X receptor (PXR) at concentrations
required for the stimulation of PPARγ [152]. The 
potential of this hepatic nuclear receptor to mediate
antidiabetic action is not clear but PXR activation by
troglitazone has been suggested to contribute to the
improvement of glucose homeostasis in dexametha-
sone-treated rats [153].

Conclusion, liver. The liver resembles skeletal muscle
in that acute TZD exposure in vitro leads to an insulin-
independent increase in glycolysis, and in that there is
a lack of any evidence for functional PPARγ signalling
(except for severely steatotic livers of specific mouse
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models). At variance to muscle, however, nuclear re-
ceptors other than PPARγ are expressed in the liver
which provide targets for at least some TZDs in vitro,
and therefore could contribute to their metabolic 
effects in vivo. Thus, TZDs are basically capable to di-
rectly modulate hepatic glucose metabolism in vitro,
but the precise contribution of direct effects on the 
liver to antidiabetic TZD action in vivo is not yet clear.

Concluding remarks

Major progress has been made in understanding the
mechanisms that causally underlie the metabolic ac-
tions of TZD compounds. Antihyperglycaemic action
of TZDs is predominantly based on the amelioration
of insulin resistance, with skeletal muscle as the quan-
titatively most important tissue for insulin-induced
glucose lowering. In vitro, TZDs activate PPARγ and
stimulate adipocyte differentiation, which provides the
mechanism for TZD-induced adipose tissue remodel-
ling in vivo and seems to be associated with the output
of adipose-derived signals that might modulate glu-
cose metabolism of other tissues.

Beyond these established findings, however, we are
still not able to fully understand the causal chain lead-
ing to metabolic TZD action. Direct and PPARγ-inde-
pendent effects on glucose metabolism of isolated skel-
etal muscle and liver suggest that the involvement of
other molecular mechanisms, in addition to PPARγ-ac-
tivation in adipose tissue, can not be excluded. To fur-
ther elucidate the mechanisms of antidiabetic TZD ac-
tion, it will be necessary to sort out, if the predominant
role presently ascribed to PPARγ activation in fat tissue
holds true, or if we are biased by the overwhelming
amount of research focusing on this receptor. There-
fore, it will be important to establish the interdepen-
dence of adipogenic and antidiabetic TZD action and to
elucidate the relative share of direct and indirect TZD
actions on skeletal muscle, liver, and adipose tissue.

Sources. This review is based on scientific literature
extracted from “Current Contents” (ISI, Thomson 
Scientific, Philadelphia, Pa., USA); January 1988–
October 2001.
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