
Abstract

Aims/hypothesis. Insulin-producing beta cells are de-
stroyed by oxidative and nitrosative stress during the
pathogenesis of Type I (insulin-dependent) diabetes
mellitus. These cells are more sensitive than others
due to their deficiency of well known antioxidant en-
zymes like superoxide dismutase, glutathione peroxi-
dase and catalase. However the peroxiredoxins dis-
covered in the past decade form a large family of
highly conserved thioredoxin-dependent peroxide re-
ductases, which are present in most tissues. We inves-
tigated whether peroxiredoxins I and II are present in
pancreatic beta cells and if they are inducible by oxi-
dative and nitrosative stress.
Methods. To detect these enzymes in insulin-produc-
ing beta cells we used semiquantitative RT-PCR, west-
ern blots and immunohistochemistry. The expression

of peroxiredoxins I and II was analysed after treat-
ment with cytokines, hydrogen peroxide, alloxan or
streptozotocin in the rat insulinoma cells INS-1 using
RT-PCR and western blots.
Results. We show that peroxiredoxins I and II are
present in the cytoplasm of pancreatic islet cells as
well as in insulinoma cell lines βTC6-F7 and INS-1.
Peroxiredoxins I and II were up-regulated by all stress
agents used.
Conclusion/interpretation. Beta cells, undersupplied
with well characterized antioxidant enzymes, possess
an additional antioxidant system which is inducible by
oxidative as well as nitrosative stress. [Diabetologia
(2002) 45:867–876]
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cells [1, 2, 3, 4, 5]. Beta cells are very sensitive to cy-
totoxic stress because they express very little of the
well known antioxidant enzymes like superoxide dis-
mutase (SOD), glutathione peroxidase (GPX) and cat-
alase (CAT) [6, 7, 8]. Moreover these antioxidant en-
zymes are able to reduce oxygen radicals but they can
not protect against nitrosative stress [9].

Peroxiredoxins (Prxs) represent a recently discov-
ered family of antioxidant proteins without any se-
quence homology to the antioxidant enzymes men-
tioned above. Six members of the Prx family have
been identified to date (Prx I–VI). They are detected
in a wide variety of organisms ranging from prokaryo-
tes to mammals and are expressed in most cell types,
though different Prx enzymes have distinct intracellu-
lar distributions [10, 11, 12, 13, 14, 15, 16]. Pero-
xiredoxins act as homodimers or heterodimers [17, 18,

During the pathogenesis of Type I (insulin-dependent)
diabetes mellitus, oxidative and nitrosative stress con-
tribute to the destruction of insulin-producing beta



19] and catalyse reduction of both hydrogen peroxide
and alkyl peroxides to water or to the corresponding
alcohol using thioredoxin (Tx) as their physiological
hydrogen donor [20, 21, 22, 23, 24]. Additionally it
has been shown that the bacterial peroxiredoxin AhpC
(alkylhydroperoxide reductase subunit C) is able to
protect against nitrogen radicals [25]. Prx enzymes
have been identified in association with various cellu-
lar functions apparently unrelated to peroxidase activi-
ty. Several lines of evidence support the concept that
peroxiredoxins can influence cell proliferation and
differentiation, immunological defence, receptor sig-
nalling and apoptosis [10, 23, 26, 27, 28, 29]. This is
reflected by the numerous synonyms used. Thus Prx I
is further known as MSP23 (mouse macrophage stress
protein Mr 23 K) [30], OSF3 (mouse osteoblast spe-
cific factor 3) [31], HBP23 (heme-binding protein Mr
23 K) [32], PAG (proliferation-associated gene) [10]
and NKEF-A (human natural killer cell-enhancing
factor-A) [33]. Prx I is a physiological inhibitor of c-
Abl kinase activity [34]. It is induced by oxidative
stress in peritoneal macrophages exposed to heavy
metals, oxidized low-density lipoproteins or heme [30,
35, 36, 37].

Prx II was originally isolated from yeast. It is also
named thiol-specific antioxidant (TSA) [38, 39], pro-
tector protein (PRP) [11, 26], human natural killer
cell-enhancing factor-B (NKEF-B) [33, 41, 40], cal-
promotin [19, 42, 43] and torin [44]. Prx II is impor-
tant in erythroid cell differentiation [11, 26] and pro-
tects red blood cell membranes from peroxidation [20,
45]. It also regulates signal transduction pathways that
directly relate to apoptotic cell death [23, 27, 28, 29,
46]. Prx II is thought to protect neuronal cells against
destruction by hypoxia and ischaemia [11, 47] and tu-
mour cells against X-ray treatment and chemotherapy
[48].

We investigated the occurrence of peroxiredoxins I
and II in pancreatic beta cells and determined whether
expression of these enzymes is up-regulated by cyto-
kines, hydrogen peroxide, alloxan and streptozotocin.

Material and Methods

Materials. Female BalbC mice (6–8 weeks) were purchased
from the Department of Pathophysiology and the Department
of Zoology, NMRI mice were from the Department of Neurol-
ogy, Greifswald University. We confirm that the ‘Principles of
laboratory animal care’ (NIH publication no. 85-23, revised
1985) were followed as well as any specific national laws ap-
plicable in Germany. Collagenase type IV and antibody against
glucagon were obtained from Sigma (Deisenhofen, Germany).
Taq polymerase was from Amersham Pharmacia Biotech (Frei-
burg, Germany). Cytokines and antibody against insulin were
obtained from Roche Diagnostics (Mannheim, Germany).
Rotiblock was from Carl Roth (Karlsruhe, Germany). Strepto-
zotocin was obtained from Calbiochem Novabiochem
(Schwalbach, Germany) and alloxan was from ICN (Eschwege,
Germany). Preparation of antiserum against Prx I and II and

preimmunsera has been described in [49]. The secondary anti-
bodies anti mouse-Cy2 and anti rabbit-Cy3 were obtained from
Dianova (Hamburg, Germany). All other chemicals were from
commercially available sources.

Cell culture. Mouse insulinoma cells βTC6-F7 (passages
15–20) were propagated in DMEM medium containing
5.5 mmol/l glucose, supplemented with 10% heat-inactivated
FCS, 100 U/ml penicillin and 100 µg/ml streptomycin. Rat in-
sulinoma cells INS-1 (passages 13–20) were propagated in
RPMI-1640 medium containing 11 mmol/l glucose, supple-
mented with 10% heat-inactivated FCS, 100 U/ml penicillin,
100 µg/ml streptomycin, 10 mmol/l HEPES-buffer, 2 mmol/l
L-glutamine, 1 mmol/l sodium pyruvate, 50 µmol/l β-mercap-
toethanol. All cells were cultured at 37°C in a humidified at-
mosphere containing 95% air and 5% CO2.

Isolation of pancreatic islets. Islets were isolated from female
NMRI mice (8 weeks old). Pancreas were dissected, rinsed
with ice-cold HBSS solution, minced and digested with
1 mg/ml Typ IV collagenase for 12 min at 30°C. Digestion was
stopped by adding ice-cold HBSS solution containing 5% FCS.
Pancreatic islets were selected under a stereomicroscope, col-
lected into cell culture dishes and cultured under the same con-
ditions as INS-1 cells.

For western blot analyses islets were collected by centrifu-
gation, resuspended in 500 µl lysis buffer (480 mg/ml urea,
152 mg/ml thiourea, 40 mg/ml CHAPS, 20 mg/ml DTT and
9.6 mg/ml Tris) and sonicated. The lysate was ultracentrifugat-
ed for 1 h at 8°C and 103000×g.

Exposure of INS-1 cells and pancreatic islets to stress
agents. Monolayers of confluent INS-1 cells or isolated pan-
creatic islets were incubated for the indicated periods with or
without stress agents in culture medium. After exposure to al-
loxan or streptozotocin, cells were incubated for an additional
8 h in medium without stress agents. INS-1 cells and pancreat-
ic islets were harvested for RNA or protein isolation. Prepara-
tion of cytosolic and nuclear extracts for western blot analysis
were done as described [50].

Semiquantitative RT-PCR. RT-PCR quantitated Prx I and Prx
II mRNA in oxidant-treated cells. Total INS-1 RNA was iso-
lated from 60 mm dishes using a commercial kit (Qiagen).
cDNA was prepared by reverse transcription of 2 µg of total
RNA using 0.5 µg BamTT-primer (3′-CGC GGA TCC TTT
TTT TTT TTT TTT TTT-5′) and superscript II reverse tran-
scriptase. Prx I and Prx II were amplified with Taq DNA poly-
merase in a DNA thermal cycler (Eppendorf) using the follow-
ing gene-specific primer pairs: Prx I: 5′-GTG GAT TCT CAC
TTC TGT CAT CT-3′ and 5′-GGC TTA TCT GGA ATC ACA
CCA CG-3′ with an expected product of 470 bp; Prx II: 5′-
GAG GGA AGT ACG TGG TCC TCT-3′ and 5′-GGT AGG
TCA TTG ACT GTG ATC TG-3′ with an expected product of
339 bp. The conditions for each cycle were 30 s at 94°C, 40 s
at 63°C or 57°C and 60 s at 72°C (25 cycles). In parallel, RT-
PCR was carried out with primers specific for GAPDH (5′-
GTC GTG GAG TCT ACT GGC GTC TTC-3′ and 5′-GTT
GTC ATT GAG AGC AAT GCC AGC-3′ with an expected
product of 635 bp) as a control for equal amounts of RNA used
in the RT-reaction.

Western blot. Proteins (20 µg) were separated by 12.5% SDS-
PAGE and electroblotted onto nitrocellulose membranes using
a semi-dry blotter. The blot was blocked with “Rotiblock” for
1 h at room temperature and subsequently incubated in a
1:2000 dilution of a polyclonal rabbit anti-Prx I or anti-Prx II
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antiserum. After washing the blot with PBS-Tween 0.05%, an
alkaline phosphatase-conjugated goat anti-(rabbit) IgG
(1:10000) was used as a secondary antibody. Bound antibody
was detected with BCIP and NBT as substrate.

Cryostat slices. Pancreas from BalbC mice was incubated for 4
to 6 h at 4°C in paraformaldehyde (4% in 5× phosphate buffer)
and then 12 to 16 h in sucrose (5% in 5× phosphate buffer).
After shock-freezing in isopentane the tissue was embedded in
Tissue Tec and stored at –80°C. Cryostat sections of 8 to
10 µm were used for immunohistochemistry.

Immunohistochemistry. Slices were successively incubated for
5 min in ice-cold methanol, acetone and IF-buffer (0.2% BSA,
0.05% saponine, 0.1% sodium azide in PBS pH 7.4) followed
by an overnight incubation at 4°C with polyclonal rabbit anti-
Prx I or anti-Prx II antiserum and monoclonal mouse anti-glu-
cagon or anti-insulin antibody diluted 600-fold in IF-buffer.
After washing with IF-buffer, the immunoreacted primary anti-
bodies were visualised with red fluorescent Cy3-conjugated
goat anti-rabbit IgG (1:400) and green fluorescent Cy2-conju-
gated goat anti-mouse IgG (1:400), by incubation for 2 h at
room temperature in the dark. After washing with IF-buffer
again, slices were covered with glycerol gelatin and observed
by fluorescent microscopy (400x magnification) with an IX-70
microscope (Olympus). Control staining with preimmune sera
gave no immunoreactive signals.

Results

Detection of peroxiredoxins I and II in pancreatic beta
cells. To establish the expression of Prx I and Prx II in
pancreatic beta cells, insulinoma cells were cultured
for 24 h. The amount of mRNA of both Prx enzymes
was examined by RT-PCR using total RNA from
mouse βTC6-F7 cells (data not shown) and rat INS-1
cells (Fig. 1A). We detected Prx I as well as Prx II
mRNA in both insulinoma cell lines. Each primer set
yielded a single PCR product of the size predicted
(Fig. 1A).

To determine the subcellular distribution of both
peroxiredoxins, nuclear and cytosolic fractions of
INS-1 cells were subjected to immunoblot analysis us-
ing polyclonal antisera. Prx I and II were detected, at
different expressions, almost exclusively in the cyto-
solic fraction of INS-1 cells. The western blot showed
a major band at Mr 23 K, representing the monomer,
and a fainter band at Mr 46 K, representing the dimer.
There were only weak multiple protein bands in the
nuclear fraction (Fig. 1B).

Furthermore we stained cryostat slices of pancreas
from BalbC mice to analyse the presence of pero-
xiredoxins in endocrine and exocrine tissue. Figure 2
shows the green fluorescent, centrally situated insulin-
producing beta cells (a, g) and the surrounding gluca-
gon-producing alpha cells (d, j). The red fluorescent
signals represent Prx I (b, e) or Prx II (h, k). Immuno-
staining signals were not visible when the correspond-
ing preimmune sera were used. The colocalisation of
Prx I (c, f) or Prx II (i, l) with insulin or glucagon re-
sults in yellow immunostaining. Peroxiredoxins are

predominantly expressed in pancreatic islets, only low
signals are observed in exocrine cells of the pancreas.
The micrographs confirmed cytosolic localisation of
both peroxiredoxins shown (Fig. 1B).

Up-regulation of Prx I and II expression by cyto-
kines. To mimic the conditions during autoimmune
destruction in the pancreas, insulinoma cells INS-1
were exposed to IL-1β, IFN-γ and TNF-α for 48 h.
The effects on mRNA and protein level were exam-
ined by semiquantitative RT-PCR and western blot
analysis. Treating with IL-1β (50 U/ml) increased the
Prx I mRNA amount. The combination of IL1β
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Fig. 1A, B. Expression of Prx I and Prx II in pancreatic beta
cells. A RT-PCR. Total RNA from INS-1 cells was analysed. A
negative control (–) without RNA was carried out. The major
bands of the marker (M) represent DNA size of 0.6; 1.5 and
2 kb, respectively. B Western blot analysis. 20 µg nuclear (n)
or cytosolic (c) proteins were separated on SDS-12.5% poly-
acrylamide gels. Molecular size standards (in K) are indicated
on the left



(50 U/ml), IFN-γ (100 U/ml) and TNF-α (10 ng/ml)
had an additive effect on the content of Prx I mRNA.
However, mRNA amount of the Prx II gene was not
altered (Fig. 3A). The western blot (Fig. 3B) showed a
low basal expression of Prx I and II markedly en-
hanced by cytokines. The amount of the monomers as
well as the dimers was increased. These results were
confirmed with pancreatic islets isolated from NMRI
mice and treated with cytokines (Fig. 3C).

Up-regulation of Prx I and II expression by hydrogen
peroxide. To analyse the effect of oxidative stress,

INS-1 cells were treated for 2 h with hydrogen perox-
ide at a concentration of 150 µmol/l or 450 µmol/l.
Semiquantitative RT-PCR (Fig. 4A) showed a dose-
dependent up-regulation of Prx I mRNA. The amount
of Prx II mRNA however, was not changed. Protein
contents were examined by immunoblotting. The syn-
thesis of the monomers of Prx I as well as Prx II was
increased (Fig. 4B).

Up-regulation of Prx I and II expression by allox-
an. The beta cell toxin alloxan is used to generate ani-
mal models of Type I diabetes mellitus. The substance
is able to destroy insulin-producing beta cells by gen-
erating oxygen radicals [51]. We investigated the ef-
fect of alloxan on Prxs expression in INS-1 cells using
semiquantitative RT-PCR and western blot analysis.
After exposing cells to different concentrations of al-
loxan for 30 min followed by an 8-h recovery period,
the amount of Prx I mRNA, but not Prx II mRNA, in-
creased (Fig. 5A). The immunoblot (Fig. 5B) shows a
dose-dependent enhancement of both, Prx I and Prx II,
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Fig. 2a–l. Expression of Prx I and Prx II in pancreatic beta
cells. Immunohistochemistry. Cryostat slices of BalbC mouse
pancreas were stained with antisera against Prx I (b, c, e, f) or
Prx II (h, i, k, l) in parallel with antibodies against insulin (a, c,
g, i) or glucagon (d, f, j, l). Immunopositive staining is indicat-
ed by green fluorescence for insulin or glucagon and by red
fluorescence for Prx I or Prx II. Colocalisation results in a yel-
low fluorescence. (magnification ×400)



Fig. 3A–C. Up-regulation of Prx I and Prx II expression in
INS-1 cells and islets by cytokines. INS-1 cells and isolated is-
lets were exposed for 48 h to 50 U/ml IL-1β or a combination
of 50 U/ml IL-1β, 100 U/ml IFN-γ and 10 ng/ml TNF-α. 
A RT-PCR. Total RNA from INS-1 cells was analysed. As
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control, cDNA was amplified with GAPDH-specific primers,
confirming similar loading in all lanes. Western blot analysis.
20 µg cytosolic proteins from INS-1 cells (B) and isolated is-
lets (C) were separated on SDS-12.5% polyacrylamide gels.
Molecular size standards are indicated on the left in K

protein amount. In contrast to hydrogen peroxide,
treatment with alloxan led to an increased synthesis of
only the dimers.

Up-regulation of Prx I and II expression by streptozo-
tocin. In contrast to alloxan, the diabetogenic sub-
stance streptozotocin induces nitrosative stress in pan-

Fig. 4A, B. Up-regulation of Prx I and Prx II expression in
INS-1 cells by hydrogen peroxide. A RT-PCR. RNA was iso-
lated from INS-1 cells treated for 2 h in the absence (0) or the
presence of 150 µM or 450 µM of hydrogen peroxide. As con-
trol, cDNA was amplified with GAPDH-specific primers. 
B Western blot analysis. 20 µg cytoplasmic proteins of INS-1
cells exposed for 2 h to 0, 150 or 450 µmol/l hydrogen perox-
ide were separated by SDS-PAGE (12.5%). Molecular size
standards are indicated on the left in K



creatic beta cells by inducing overproduction of free
radical nitric oxide [52]. INS-1 cells were cultured for
30 min in the absence or the presence of increasing
concentrations of streptozotocin. RNA and cytosolic
proteins were isolated for semiquantitative RT-PCR
and western blot analysis. The mRNA contents of Prx
I were up-regulated. However, mRNA amount of the
Prx II gene was not altered (Fig. 6A). Exposure of
INS-1 cells to streptozotocin increased Prx I and Prx
II protein content dose-dependently (Fig. 6B).

Discussion

In aerobic organisms, many metabolic processes gen-
erate reactive oxygen species, which cause cellular
damage by oxidising lipids, proteins, and nucleic ac-
ids. These processes have been implicated in apopto-
sis, ageing and in the aetiology of various diseases, in-

cluding diabetes. As protection against these cytotoxic
oxygen species, all aerobic organisms have evolved a
number of antioxidant proteins that can scavenge re-
active oxygen intermediates as well as repair or re-
move the damaged cellular components.

Peroxiredoxins, a large antioxidant gene family,
have a wide tissue distribution but the highest expres-
sion of Prx I and Prx II occur in bone marrow, liver,
testis, ovary and heart, followed by spleen and brain
[13, 15]. Using immunohistochemical staining of
mouse pancreas we show that Prx I and Prx II expres-
sion is mainly localized to pancreatic islets, with al-
most no signals in exocrine pancreas. Islets represent
only 2 to 3% of the pancreatic tissue. This could be
the reason why Prx I as well as Prx II have not been
detected in the total pancreas by northern blot analysis
[15]. A similar expression pattern within the pancreas
was found for Prx VI, but in contrast to our findings
for Prx I and Prx II immunohistochemical analyses
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Fig. 5A, B. Up-regulation of Prx I and II expression by allox-
an. After overnight culture cells were incubated for 30 min
with alloxan for the indicated concentrations (mmol/l), fol-
lowed by an 8 h recovery period. A RT-PCR. Total RNA was
analysed. As control, cDNA was amplified with GAPDH-spe-
cific primers, confirming similar loading in all lanes. B West-
ern blot analysis. 20 µg cytosolic proteins were separated on
SDS-12.5% polyacrylamide gels. Molecular size standards are
indicated on the left in K

Fig. 6A, B. Up-regulation of Prx I and Prx II expression by
streptozotocin. A RT-PCR. Total RNA was isolated from INS-
1 cells exposed to 0–1.5 mmol/l streptozotocin for 30 min. As
control, cDNA was amplified with GAPDH-specific primers.
B Western blot analysis. 20 µg cytosolic proteins were separat-
ed on SDS-12.5% polyacrylamide gels. Molecular size stan-
dards are indicated on the left in K



showed an extensive staining of nuclei in islet cells
[53]. Using semiquantitative RT-PCR and western blot
analyses we were able to detect Prx I and Prx II
mRNA and protein of both peroxiredoxins in rat insu-
linoma cells INS1 and mouse insulinoma cells βTC6-
F7.

Peroxiredoxins are in different subcellular compart-
ments. While Prx III is localized to mitochondria [12,
22, 54, 55], Prx I and Prx II are found in the cyto-
plasm [15, 23, 32, 43]. Furthermore Prx I is thought to
be translocated into the nucleus by association with
other proteins such as tyrosine kinase c-Abl, though
given its small size it could enter passively [34]. Our
findings support that Prx I and Prx II are localized to
the cytoplasm (Fig. 1B, Fig. 2).

With monomer masses of about Mr 23 K pero-
xiredoxins are small peroxide reductases. Pero-
xiredoxins form both homodimers and heterodimers,
which are linked through head-to-tail disulfide bonds
between the conserved amino-terminal and carboxy-
terminal cysteines. Although both cysteines are re-
quired to form dimers, only the amino-terminal cys-
teine is absolutely required for the antioxidation func-
tion. By coupling with the redox cycle of thioredoxin,
peroxiredoxins can transfer the reducing equivalents
to scavenge reactive oxygen species. In western blot
analyses we found both monomers and dimers. How-
ever, formation of heterodimers was difficult to distin-
guish from homodimers based on electrophoretic mi-
gration in polyacrylamide gel electrophoresis, because
peroxiredoxins have very similar molecular sizes. Fur-
thermore we detected an additional dimer signal of
Prx II after exposure of INS-1 cells to a combination
of three cytokines, probably caused by the interaction
with cytoplasmic proteins. Several lines of evidence
support the view that cyclophilins with molecular
masses around 20 K are able to bind to peroxiredoxins
and could enhance their antioxidant activity [56, 57].

Up-regulation of peroxidoredoxins in pancreatic beta
cells by cellular stress. Although several functions
and activities of peroxiredoxins have already been de-
scribed in a variety of cells and tissues, the role of
these peroxide reductases in the pancreas, especially
in islet cells, is not known. We investigated Prxs ex-
pression on the level of mRNA and protein in mouse
pancreatic islets and rat insulin-producing cells INS-1
after exposure to stress.

Our study shows that expression of peroxiredoxins
I and II is enhanced in cultured INS-1 cells exposed to
various stress agents, including the diabetogenic sub-
stances alloxan and streptozotocin. Furthermore we
indicate that Prx I and II are differentially regulated at
the transcriptional and translational level during stress
conditions. Semiquantitative RT-PCR showed up-reg-
ulation of Prx I but not Prx II mRNA. In contrast,
western blot analyses showed enhanced protein con-
tents of both Prx I and Prx II (Figs. 3, 4, 5, 6). The dif-

ferent regulation of peroxiredoxins on mRNA and
protein level is thought to be dependent on the stress
agent and cell type [29, 58].

Cytokines like IL-1β, IFN-γ and TNF-α have been
implicated in the pathogenesis of Type I diabetes and
could be a major source of free radical insult in pan-
creatic islet cells [5, 59, 60]. An effect of cytokines
(IFN-γ) on expression of peroxiredoxins has been
shown only in rat Kupffer cells [37]. We show that
cytokines up-regulate Prxs in INS-1 cells as well as in
isolated pancreatic islets. The highest induction was
observed with a combination of three cytokines. The
cytokine-induced increase of peroxiredoxin expres-
sion could correlate with the control of reactive oxy-
gen radical and nitrogen oxide, which are generated
by IL1-β, IFN-γ and TNF-α in beta cells.

We found that treatment of INS-1 cells with hydro-
gen peroxide did have an effect on the accumulation
of Prx I mRNA and protein, but that the Prx II protein
content was more dramatically increased than that of
Prx I. An up-regulation of peroxiredoxins in response
to hydrogen peroxide has been observed in the mouse
macrophage cell line RAW [58], and in mouse perito-
neal macrophages [30], but not in endothelial cell
lines ECV304 [61] and HUVEC [62]. This strongly
suggests that induction of peroxiredoxins by stress in-
ducing agents is dependent on cell type.

Alloxan and streptozotocin cause a selective de-
struction of insulin-producing cells by overproduction
of reactive oxygen and nitrogen intermediates [51, 52,
63]. Up to now there are no data on their influence on
peroxiredoxin expression. We show the induction of
both Prx I and Prx II expression in INS-1 cells by both
substances. Up-regulation of peroxiredoxins by strep-
tozotocin was more effective than by alloxan. An in-
fluence of substances, which directly release nitric ox-
ide on peroxiredoxin expression has already been re-
ported. A dose-dependent increase of peroxiredoxin I
mRNA amount in rat Kupffer cells were found after
exposure to both the nitric oxide (NO)-donor SNAP
and the peroxynitrite donor SIN-1 [37].

Since there are only low concentrations of SOD,
CAT and GPX in pancreatic beta cells [6, 7, 8, 9], pe-
roxiredoxins could play an important role as an anti-
oxidant system particularly because, in contrast to
these well characterized antioxidant enzymes [8, 9,
64], gene expression of peroxiredoxins is adjustable
by oxidative and nitrosative stress agents. The induc-
tion of cellular stress by high glucose, high oxygen,
and heat shock treatment has been shown not to affect
CAT, SOD or GPX expression in rat pancreatic islets
or in RINm5F cells [8]. Insulin-producing cells could
not adapt the low antioxidant basal enzyme activity to
typical situations of cellular stress by an up-regulation
of mRNA and protein content [8].

In addition, inactivation of glutathione peroxidase
by nitric oxide has been observed [65]. The bacterial
peroxiredoxin AhpC (alkylhydroperoxide reductase

A. Bast et al.: Oxidative and nitrosative stress induces peroxiredoxins in pancreatic beta cells 873



subunit C) has been shown to protect cells against re-
active nitrogen intermediates, such as nitric oxide
[25]. There is evidence that detoxification of peroxy-
nitrite by peroxiredoxin AhpC is seven times faster
than by glutathione peroxidase. The reduction of per-
oxynitrite was shown to be fast enough to forestall the
oxidation of bystander molecules such as DNA [66].
Peroxiredoxins are at least twice as effective as cata-
lase in protecting glutamine synthetase from inactiva-
tion [33, 41]. The overexpression of both Prx I and
Prx II protected fibroblasts and lymphoma cells
against oxidant-induced apoptosis [27, 67]. Further-
more, targeted overexpression of thioredoxin, the
physiological reducing agent of peroxiredoxins, in
pancreatic beta cells of NOD mice remarkably re-
duced the incidence of diabetes in untreated and in
streptozotocin-treated animals. Thus a thioredoxin-
dependent antioxidant system is able to prevent beta
cell destruction [68].

Our data suggest that the induction of Prx expres-
sion is part of the cellular response to oxidative and
nitrosative stress as well. For this reason pero-
xiredoxins are important antioxidant proteins provid-
ing protection against toxic agents. However, the
mechanisms that control the content of intracellular
Prxs are still not known. Therefore, a better under-
standing of both function and regulation of pero-
xiredoxins could be of clinical interest and important
for the prevention of diabetes.
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