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Abstract

There is overwhelming evidence for an involvement
of reactive oxygen species (ROS) in the pathogenesis
of diabetes-associated vascular complications. How-
ever, neither the exact source of the ROS initiating
cascades leading to cell dysfunction in diabetes nor
their chemical nature is fully understood. Further-
more, despite our knowledge of the crucial role of
ROS in diabetes, little is known about the actual tar-
gets and the molecular consequences of the interac-
tion of ROS with cellular signalling pathways.
Therefore, we aim to provide an overview of ROS
(i.e. O, —,NO*, ONOO— and H,0,) and their vascu-
lar sources in diabetes and to summarise recent
knowledge on the mechanisms underlying increased
ROS production within the vascular wall. In addition,
possible targets of diabetes and ROS within the vas-

culature are discussed. These include, the effects of
ROS on small guanine nucleotide binding proteins,
the cytoskeleton, protein kinases (e.g. tyrosine kina-
ses), metalloproteinases, ion homeostasis and tran-
scriptional regulation.

Such analysis makes it clear that the generation of
ROS could affect a large number of various signalling
pathways and proteins. Thus, a better knowledge of
the functional diversity and pathological consequen-
ces of each individual pathway activated by ROS is
essential to understand the mechanisms of diabetes-
associated vascular complications. [Diabetologia
(2002) 45:476-494]
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Cardiovascular complications are the leading cause
of morbidity and mortality in patients with diabetes
mellitus. Because the onset and progression of associ-
ated complications are delayed in patients with good
glycaemic control, hyperglycaemia appears an impor-
tant regulator of vascular lesion development. Dia-
betes and hyperglycaemia are strongly associated
with endothelial dysfunction, which is an early hall-
mark in the development of atherosclerosis. The
term endothelial dysfunction has been used for sever-
al pathological conditions, including altered anticoa-
gulant and anti-inflammatory properties of the endo-
thelium, impaired modulation of vascular growth,
dysregulation of vascular remodelling and impaired
endothelium-dependent vasorelaxation caused by
the loss of nitric oxide (NO®) bioactivity in the vessel
wall.

Furthermore, alteration of platelet function con-
tributes to microthrombus formation and could play
an important role in the pathogenesis of diabetic mi-
cro and macroangiopathies. Hyperglycaemia potenti-
ates platelet aggregation, and its subsequent release
of platelet-derived growth factor, AB, inhibits pro-
tein tyrosine phosphatase (PTP) activity and increa-
ses phosphorylation of tyrosine kinases in platelets
exposed to collagen. Inhibition of the respiratory
chain or application of SOD-mimetic prevents these
effects, indicating that mitochondrial superoxide gen-
eration could play an important role in platelet dys-
function observed in patients suffering from diabetes
[1].

Recent studies indicate that higher p-glucose con-
centrations change several intracellular signal trans-
duction cascades in the vascular wall, including mod-
ulation of protein kinase C (PKC) (for review see
[2]), activation of mitogen-activated protein kinases
and the generation of reactive oxygen species
(ROS). Furthermore, hyperglycaemia-induced oxi-
dative stress might be the cause as well as the result
of the accumulation of advanced glycation end pro-
ducts (AGEs) or both [3] that have been demonstra-
ted to enhance the expression of vascular cell adhe-
sion molecule-1 and oxidative stress upon interaction
with specific receptors [4].

While the ultimate effects of diabetes and hypergly-
caemia on blood vessel function is well documented,
the underlying mechanisms leading to dysfunctions
are not clear. During the last few years, convincing evi-
dence indicates that the generation of ROS plays a
crucial role in the development and the progression
of vascular dysfunction associated with a variety of
diseases, such as hypercholesterolaemia [5, 6, 7], hy-
pertension [8, 9] and diabetes mellitus [1, 8, 10, 11].
Under these conditions an excessive endogenous for-
mation of ROS apparently overcomes cellular antiox-
idant defence mechanisms, resulting in ROS-initiated
modification of lipids, proteins, carbohydrates and
DNA [12]. This condition is commonly termed oxida-

tive stress. In addition to the oxidative modification
of target molecules affecting their function, distribu-
tion or metabolism, ROS, such as superoxide anions
(0,"7) or nitric oxide (NO®) also affect or initiate sig-
nal cascades directly. Remarkably, O, seems to
function as a messenger in signal transduction that
mediates downstream signalling (e.g. Ras and Rac)
even under physiological conditions [13]. Although in
mammalian cells there is no proof for proteins capable
of sensing O,"— or H,0,, growing evidence supports
the concept that O," and probably other oxidants
serve as physiological signal molecules at lower con-
centrations, while larger amounts of the same ROS in-
duce cell damage and dysfunction [14].

Thus, the production and action of ROS represent
crucial phenomena involved in physiological and pa-
thological mechanisms. This review aims to provide
an overview of ROS-sensitive signalling proteins and
pathways that forward a signal to alter cell function
and gene expression. This review describes proteins
and signal cascades that contribute to the develop-
ment of diabetes-associated vascular dysfunction
and blood vessel complications, but does not claim
completeness.

Chemiistry of ROS

The term ROS describes a group of small, reactive
oxygen-containing molecules that are either free ra-
dicals containing oxygen or nitrogen-based unpaired
electrons or compounds that are not free radicals
themselves, but have oxidising properties that contri-
bute to oxidant stress (Fig.1).

Among the free radicals, superoxide anions
(O,°7), hydroxyl radical (HO®), nitric oxide (NO®)
and lipid radicals (LO®, LOO®) are the most promi-
nent. Remarkably, not all of these oxygen-containing
radicals have high oxidative potential and reactivity
to interact with cellular molecules such as proteins
or lipids. Thus, the half-life of these radicals in vivo
varies from few milliseconds (e.g. HO®) up to several
seconds and even minutes (e.g. O,"—, LOO®). Non-
radical ROS, such as hydrogen peroxide (H,O,), hy-
pochloric acid (HOCI) and peroxynitrite (ONOO™),
are compounds that emerge under oxidative stress
and mediate oxidative signalling to their environ-
ment. ONOO™ is formed by the ultrafast reaction of
O, with NO®, while HOCI and H,0, are products
of the myeloperoxidase (MPO) and superoxide dis-
mutase (SOD), respectively. O,*— are probably not
the only radicals that react with NO®. Lipid radicals
(LO* and LOO®) can react with NO* to form LONO
and LOONO [15]. Recently it has been shown that
even a reaction between HO® and NO® is possible
[16].

It is obvious that ROS differ considerably in terms
of the effects they mediate in intact cells. Thus, in or-
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Fig.1. Major ROS and their sources involved in diabetics pro-
cesses

der to assess the effect of ROS on the vasculature,
each individual reactive oxygen molecule needs to
be performed separately.

ROS in the vascular wall

Several sources of ROS (Fig.1) contribute to the de-
velopment of circulatory complications and vascular
dysfunction. Enzymes responsible for ROS forma-
tion in the vascular wall can be divided into three
groups: enzymes that are (i) constitutively active in
the vascular wall, (ii) that are induced in vascular
cells under pathological conditions, and (iii) ROS
producing enzymes that are imported into the vascu-
lar wall by invading cells. Members of the first group
are cyclooxygenase (COX I), lipooxygenase [17], cy-

tochrome P450 (CYP450), xanthine oxidase (XO),
NAD(P)H oxidase, superoxide dismutase (SOD),
the endothelial nitric oxide synthase (eNOS) and the
enzyme complexes contributing to the mitochondrial
respiratory chain. While the expression of these con-
stitutive enzymes is enhanced in various diseases,
the expression of inducible enzymes, such as throm-
boxane synthase (TXS), cyclooxygenase 2 (COX II)
and inducible nitric oxide synthase (iNOS) is swit-
ched on under pathological conditions. Monocyte
NADH/NADPH oxidase, monocyte and macro-
phage iNOS (iNOS) and myeloperoxidase (MPO)
[18] belong to the group of ROS-producing enzymes
that are imported by invasion of blood cells into the
vascular wall.

0O, and H,0O, can interact with each other or
with iron or copper containing molecules (Fenton-
or Haber-Weiss- reaction) to generate the highly re-
active HO®. In addition to enzymatically produced
ROS, the cellular production of one ROS can lead
to the production of several others through radical
chain reactions. The reaction between radicals and
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polyunsaturated fatty acids within cell membranes re-
sults in a fatty acid peroxyl radical (R-COQO?®) that, in
turn, attacks adjacent fatty acid side chains to pro-
duce other lipid radicals. These accumulate in the
cell membrane and can have multiple effects on cellu-
lar function, including plasma membrane leakage and
dysfunction of membrane bound receptors [§]. Final-
ly, the generation of ROS also occurs as a result of
non-enzymatic processes that involve the autoxida-
tion of p-glucose in the presence of transition ions
such as Fe** or Cu* [19, 20]. Notably, transition ions
that could serve as a source of metal-catalysed ROS
can be sequestered by glycated proteins [21, 22].
There are five enzymes or enzyme-complexes that
are frequently discussed to contribute to diabetes-as-
sociated ROS generation within the vascular wall

(Fig.1).

NAD(P)H oxidase. Several isoforms of this multien-
zyme complex have been found in the vascular wall
[9]. In general, enzyme activity is provided by the cy-
tochrome bssg, an integral membrane protein com-
posed of the gp91phox and p22phox subunits. The ac-
tivity of bssg is dependent upon its interaction with
the additional components p67phox, p47phox,
p40phox and the small G protein, ras-related Cs-bo-
tulinum toxin substrate (Rac) [14, 23]. The two iso-
forms of Rac, Racl and Rac?2 [24, 25], promote the as-
sembly of the NAD(P)H oxidase [25, 26] as well as
the stability of this multicomplex enzyme [25, 26].
While Rac2, which has a higher affinity for the
NAD(P)H oxidase than Racl [14], seems to be con-
stitutively associated with membranes, Racl translo-
cates from the cytosol to the membrane together
with the other components upon stimulation of the
respiratory burst. Subsequently, in experimental hy-
perglycaemia, the production of O,"~ by endothelial
and smooth muscle NAD(P)H oxidase has been dis-
cussed [27, 28, 29]. In line with the potential role of
NAD(P)H oxidase in the diabetic vessel, NADH-de-
pendent generation of O,* was described in endo-
thelium and vascular smooth muscle cells [30, 31, 32,
33]. In segments of human saphenous veins obtained
from patients undergoing routine coronary artery by-
pass surgery [34] and in uterine arteries from diabetic
patients increased NAD(P)H oxidase-dependent
O,"~ production occurs. In agreement with these
findings, Inoguchi and co-workers reported the
PKC-mediated formation of O," in cultured vascu-
lar cells under hyperglycaemic conditions which was
sensitive to diphenylene iodonium (DPI), an inhibi-
tor of flavoproteins (e.g. NAD(P)H oxidase, eNOS)
[29]. The involvement of PKC in diabetes-mediated
vascular dysfunction (for review see [2]) has been
shown in animal models [35, 36]. Moreover, PKC ac-
tivation is involved in the regulation of eNOS and en-
dothelin-1 expression under diabetic conditions [37,
38]. Thus, although PKC might activate NAD(P)H

oxidase in diabetes, the underlying mechanisms [24,
25, 26, 39] need further investigation.

Thromboxane synthase. The thromboxane synthase
produces prostaglandin endoperoxides in a cage radi-
cal mechanism [40]. Interestingly, in the aortas of dia-
betic rabbits impaired endothelium-dependent re-
laxation is associated with increased production of
thromboxane A, or its precursor prostanoid, prosta-
glandin endoperoxide (PGH; [41]). Further evidence
for the involvement of thromboxane synthase in dia-
betes-associated vascular complications comes from
the findings that inhibitors of the thromboxane syn-
thase prevented renal injury [42] and retinopathy
[43, 44] in diabetic animals. In humans, inhibitors of
the thromboxane synthase were described as being
beneficial against diabetic nephropathy [45]. Further-
more, in the aortae of diabetic rats the selective inhi-
bitor of thromboxane A,-prostaglandin/H, receptors,
ONO-3708, abolished acetylcholine-induced contrac-
tion and prevented the diabetes-associated impair-
ment of endothelium-dependent blood vessel relaxa-
tion ([46]). In agreement with these results endothe-
lial thromboxane A, formation was reported under
hyperglycaemic conditions [47, 48].

Superoxide dismutase (SOD). SOD represents one of
the major ROS-defending enzymes. However, it is
noteworthy that during the SOD-mediated conver-
sion of the O,*~ to H,0, a further ROS is produced.
These two ROS differ greatly in terms of their physi-
cal properties and biological action. O," cannot
freely penetrate the cell membrane and would need
to pass through certain ion channels (Cl" channels)
[49, 50], while H,O, can easily enter through the cell
membrane. Thus, the extracellular conversion of
0O,"~ to H,0, by extracellular SOD, that is bound on
endothelial surface matrix by heparansulfate resi-
dues, might generate a membrane penetrating mole-
cule that transduces extracellular oxidative stress
into the cells. While this aspect has been rarely dis-
cussed, SOD was widely used to prevent hyperglycae-
mic/diabetic vascular dysfunction [11, 51, 52, 53, 54,
55]. Importantly, most of these studies were focussed
on acute hyperglycaemia, endothelial reactivity or
apoptosis [53], whereas the effect of SOD on vascular
adaptation and changes in response to diabetic condi-
tions has not been investigated so far. Because SOD
and catalase are able to restore completely the dila-
tory response to acetylcholine in diabetic animals, it
is tempting to speculate on an involvement of O,"—
and H,0O, in the impairment of endothelium depen-
dent dilation in diabetes [55, 56].

While hyperglycaemia changes endothelial SOD
expression [57], the expression of SOD in diabetic ar-
teries was found to be either unchanged, increased or
decreased depending on disease duration [58, 59, 60].
Nevertheless, the importance of SOD as a defence
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protein against diabetes-associated reduction of
blood vessel relaxation is apparent from the exciting
finding that gene transfer of CuZnSOD and MnSOD
reversed endothelial dysfunction aortae of diabetic
rabbits [61]. Thus, considering the possible altera-
tions in SOD expression, its possible beneficial ef-
fects on diabetic endothelial dysfunction and the dif-
ferent effects of its substrate O,*— and the resulting
product H,O,, the role of SOD in vascular oxidative
defence and in the development of vascular dysfunc-
tion needs to be explored in more detail.

Endothelial nitric oxide synthase (eNOS). Despite at-
tenuation of NO*® production [62] and its bioactivity
[11, 63] by high glucose concentrations, the expres-
sion of endothelial nitric oxide synthase (eNOS,
NOS III) has been found to be upregulated in endo-
thelial cells under such conditions [64]. In line with
these findings, increased eNOS expression was found
in the aortae of streptozotocin diabetic rats [10],
while in the same model a reduced eNOS protein con-
tent was found in the skeletal muscle [65] and in the
heart [66]. No change in eNOS expression was seen
in diabetic rats (BB/W) [67]. There is evidence that
the reduced NO* production by eNOS in diabetes
[68] might be due to its substrate L-arginine [53, 69],
a posttranslational modification of the eNOS on the
Akt phosphorylation site [71] and the lack of its coen-
zyme tetrahydrobiopterin [53, 70]. The latter results
from decreased expression and, activity of GTP-cy-
clohydrolase I, the first and rate limiting enzyme in
the de novo biosynthesis of BH,, in diabetic cells
[72]. In studies on the purified enzyme the lack of ei-
ther tetrahydrobiopterin or L-arginine or both results
in eNOS uncoupling [73, 74] which is indicated by a
Ca’*-dependent formation of O," [75]. It has been
suggested that ONOO~ oxidises BH,, which can un-
couple eNOS in vivo [76] and thereby contributes in
the endothelium to oxidative stress and endothelial
dysfunction through at least 3 mechanisms. First, the
enzymatic production of NO® is diminished, thus the
system lacks NO*® as an essential mediator molecule.
Second, the enzyme produces O,* and thus, contri-
butes to oxidative stress. Finally, it is likely that
eNOS becomes partly uncoupled, so that both O,"—
and NO°* are produced simultaneously. Under these
circumstances, eNOS could become a ONOO— gen-
erator, leading to a dramatic increase in oxidative
stress. Recently, the production of O, by eNOS
has been demonstrated in streptozotocin-diabetic
rats [10]. According to this report eNOS-mediated
O,"— production in diabetes critically depends on
PKC activation which supports the findings of PKC
activation as a crucial step in the development of dia-
betic vascular complications [35, 77-79].

A decline in NO* bioavailability could be caused
by reduced expression of eNOS [80], a lack of sub-
strate or cofactors of eNOS [73], increased NO*

scavenging by O,*[81, 82] and alterations of cellular
signalling so that eNOS is not appropriately active
(55, 83].

Mitochondria. Pathological changes caused by dia-
betes are consequences of hyperglycaemia-induced
mitochondrial superoxide overproduction [78, 79].
Under hyperglycaemic conditions, mitochondrial
O,"~ has been shown to activate sorbitol accumula-
tion by the aldose-reductase pathway [84] resulting
in the activation of PKC [77, 78] which, in turn, is re-
sponsible for the generation of AGEs and endothelial
dysfunction. The metabolism of p-glucose through
the sorbitol pathway has been reported to affect the
oxidative potential of endothelial cells [85, 86]. This
hypothesis suggests that an enhanced catabolism of
D-glucose through the sorbitol pathway yields a status
of pseudohypoxia (increased NADH concentra-
tions), activates PKC [84] and subsequent down-
stream signalling. In addition, mitochondrial super-
oxide overproduction inhibits glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) activity and ac-
tivates the hexosamine pathway, presumably by di-
verting the upstream metabolite fructose-6-phos-
phate from glycolysis to glucosamine formation [87].
In heart failure it has been shown that mitochondria
complex I is the predominant source of the primary
radical O,"— [88] which, in turn, is converted to
H,0, and the potent reactive species HO® [89].

In addition to the role of mitochondria as a source
of ROS, the mitochondria themselves can be da-
maged by oxidants. ROS mediate mitochondrial
DNA damage, alterations in gene expression and mi-
tochondrial dysfunction in cultured vascular ECs and
SMC:s [90].

Targets of ROS

Small guanine nucleotide binding proteins. Small gua-
nine nucleotide binding proteins (G-proteins) exert
GTPase activity and are proposed to serve as media-
tors of ROS (Fig.2). The Rho GTPase family is a
member of the Ras superfamily [91] and consists of
at least 14 distinct proteins ranging from 20 to 24
kDa, which can be additionally subdivided. Small G-
proteins of the Rho subfamily, such as Rho, Rac and
CDC42 are involved in many cellular processes, in-
cluding proliferation, differentiation [92], migration,
cytoskeletal organisation and signal transduction
[93, 94] and might play a crucial role in the develop-
ment of cardiovascular complications. In certain cell
types, Rho, which probably mediates ROS produc-
tion, triggers the activation of the proinflammatory
nuclear transcription factor (NF-xB) in response to
hyperglycaemia and AGEs [95]. While Rac has been
shown to constitute a mediator of the oxidant-initi-
ated signalling [96, 97], it is also a target for H,O,,
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NO* and O,* [13]. In addition, ROS could directly
activate Ras that, in turn, initiates activation of the
mitogen-activated protein kinase (MAPK) pathway
[13]. The sites of oxidative attack of H-Ras are the cy-
steine residues contributing to membrane binding
and Cys-118. Modification of the latter affects the
binding of GTP and GDP on H-Ras [98, 99]. The
Rho family member Racl is a regulatory component
of the NAD(P)H oxidase (see above) in many cell
types, including neutrophils and cells of the vascular
wall. Rac triggers the clustering of the subunits of
NAD(P)H oxidase to form the functional multien-
zyme complex [14].

These cytosolic GTP-binding proteins are isopre-
nylated and some are additionally palmitoylated on
cysteine residues [100], allowing translocation to the
cell membrane as the initial step in their activation.
The beneficial effects of 3-hydroxy-3-methylglutaryl-
CoA reductase inhibitors (statins) which block gera-
nylgeraniol synthesis in hypertension and heart fail-

ure, could be because of the inhibition of Rho pro-
teins in the heart. Indeed, inhibition of Racl isopre-
nylation by statins inhibits the release of reactive oxy-
gen species in endothelial cells [101]. In vascular
smooth muscle cells, Rho promotes cell-cycle pro-
gression and proliferation, which are central events
in the pathogenesis of vascular lesions, including
postangioplasty restenosis, transplant arteriosclerosis
and vein craft occlusion. The molecular mechanism is
attributable, in part, to Rho-induced destabilisation
of the cyclin-dependent kinase inhibitor p27%iP!
[102]. Recent studies also suggest that statins exert
additional anti-inflammatory and antioxidant effects
on the vascular wall [101, 102].

Furthermore, Rho plays an important role in the
regulation of endothelial function and gene expres-
sion [103]. Besides upregulating preproendothelin-1
expression, RhoA negatively regulates the produc-
tion of endothelium-derived NO® by Rho-induced
changes in the endothelial actin cytoskeleton [104].

Small guanine nucleotide binding proteins and the cy-
toskeleton. Small G-proteins like RhoA, Rac and
CDC42 represent key regulators of the actin cytoske-
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leton [105] and induce assembly of stress fibres and
focal adhesions (RhoA), membrane ruffling, redistri-
bution of actin fibres and an increase in the total
amount of f-actin (Rac) and filopodia formation
(CDC42). O, induced changes in the actin cytoske-
leton (Fig.2), such as the polymerisation of f-actin to
stress fibres with a concomitant increase in f-actin,
are associated with reinforced tyrosine phosphoryla-
tion. The actin reorganisation in response to O, " is
thought to be mediated by changes in the redox state
of actin or its regulatory (sequestering or capping)
proteins [14, 102]. Alternatively, O,* might be in-
volved in cytoskeletal changes by the activation of
Rac[14, 106]. In line with this hypothesis, overexpres-
sion of Rac in human and mouse aortic ECs induces
an increase in f-actin content and actin reorganisation
which is accompanied by the O,* production [102].

Increasing evidence points to a central role of Rho
in the regulation of the actin cytoskeleton by mediat-
ing changes in cell shape, contractility and motility.
The functional linkage between Rho and the cytoske-
leton was further supported by the findings that a di-
rect inhibition of Rho by Clostridium botulinum C3
transferase and the disruption of the endothelial actin
cytoskeleton by cytochalasin D increase expression
and activity of aortic eNOS [107].

Clinical trials on statins point to a beneficial poten-
tial of these drugs in cardiovascular diseases that ex-
ceeds their effect on cholesterol-lowering [102]. Be-
cause statins also inhibit isoprenoid synthesis [102]
which is required for the posttranslational modifica-
tion of Rho it is tempting to speculate that at least
parts of their action are due to direct effects on Rho
which is required for basal expression of preproendo-
thelin-1 in vascular endothelial cells. In addition sta-
tins inhibit preproendothelin-1 expression by block-
ing Rho geranylgeranylation [103]. Hence, inhibition
of Rho is an important effect of the statins indepen-
dently to their cholesterol-lowering properties.
Therefore, small G proteins like Rac and Rho are
likely to be involved in the development of diabetes
and ROS-associated vascular complications.

Protein kinases. ROS activate several proteins of im-
portant signalling cascades that individually change
cell function and gene expression.

The activation of PKC represents a hallmark in the
development of vascular complications in diabetes
mellitus (for review see Idris et al. [2]). Among the
PKC family, several isoenzymes have been shown to
contribute to insulin signalling (e.g. PKC-6 and
PKC-¢) and insulin-stimulated bD-glucose uptake
(PKC-¢g and PKC-1), while others (most prominently
PKC-f) are involved in the development of dia-
betes-linked complications. This review consequently
focuses on other potential signalling kinases (Fig.2;
Table 1) that might constitute additional targets in
the pathology of diabetes.

Among the growing number of ROS-sensitive sig-
nalling cascades, the activation of serine/threonine
protein kinases such as mitogen-activated protein ki-
nases (MAPKs) or Akt kinase (PKB) have been de-
scribed. A member of the MAPK family, the extracel-
lular signal-regulated kinase (ERK1/2) was found to
be activated by exogenous H,0O, and endogenously
generated ROS [108] by PKC, Raf-1 and MEK1
[109]. Based on these findings, it was hypothesised
that reactive oxygen species might activate MAPK
in vascular smooth muscle cells as O,*~ but not
H,O, stimulated activation of MAP kinase, which if
due to O, was PKC dependent [13]. On the contra-
ry, Guyton et al. [110] demonstrated ERK activation
as well as a moderate stimulation of c-Jun N-terminal
kinase (JNK) and p38 MAPK by H,0, in several cell
types. In line with these findings, an inhibition of p38
MAPK was found to ameliorate diabetes-associated
vascular dysfunction in the rat mesenteric microcircu-
lation [111]. Another MAPK, BMK1, a downstream
target of c-src, seems to be specifically redox-sensi-
tive. In smooth muscle cells it has been observed
that in response to several different agonists BMK1
was stimulated to the greatest extent by H,O, with a
relative  potency of H,0,>> >PDGF > P-
MA = TNF-a [112].

Stress-Activated Protein Kinases (SAPK), includ-
ing JNKs and p38 MAPK, are regulated by members
of the Rho-family and are also sensitive to redox
modulation [113]. INKs and their downstream target
c-Jun are stimulated by H,O, during ROS -induced
apoptosis of endothelial cells. The Akt kinase, a
downstream effector of phosphoinositide 3-kinase
(PI3-kinase), is involved in antiapoptotic signalling
[114] and regulated by ROS in Angll-stimulated
SMCs [115]. In endothelial cells, activation of Akt
has been proposed to facilitate a protective effect
against shear stress and apoptosis [108] and to reduce
eNOS activity by posttranslational modification [71].
Interestingly, Racl is a further downstream target of
PI3-kinase [108] and, thus, a stimulation of PI3-ki-
nase might initiate Racl-mediated NAD(P)H oxi-
dase activation resulting in a simultaneous formation
of ROS and Akt stimulation.

A growing body of evidence also suggests that
ROS affect various protein tyrosine kinases (PTKs).
Fyn, a member of the src-family, has been shown to
be responsible for H,O,-mediated activation of Ras
and 90kDa of ribosomal S6 kinases (p90RSK), in ad-
dition, Fyn might regulate Ras and, in turn, p90RSK,
in a redox-sensitive manner [116]. Hence, H,O,-
mediated BMK1 activation requires c-Src (p60Src)
[13, 116, 117] indicating that the c-Src / BMK1 signal-
ling pathway is redox-sensitive. In addition to p60Src,
pS6Lck, p59Fyn, Syk, ZAP-70 [13] and the Ca®*-sen-
sitive proline-rich tyrosine kinase Pyk2 [118] are also
affected by ROS. In ROS-treated endothelial cells
tyrosine phosphorylation of the Pyk2 downstream
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Table 1. Redox-sensitive Protein kinases / phosphatases. Effects due to H,O,; taken from Allen and Tresini [222]

Kinase/Phosphatase Cell type Effect
ERK pathway Bovine tracheal monocytes Phosphorylation of ERK-1/2
(MAP-kinase) Human neutrophils Increased phosphorylation of ERK-1/2
Jurkat T cells Activated ERK-1/2
NIH3T3 Activated ERK-2

Rat alveolar macrophages

Rat arterial smooth muscle cells

Rat cardiac myocytes

Rat smooth muscle (A7r5)
Rat vascular smooth muscle
Rat ventricular myocytes

ERK-1/2 phosphorylation

ERK-1/2 phosphorylation
Activated ERK-2

ERK-1/2 phosphorylation

ERK-1/2 phosphorylation; No effect
Activated ERK-1/2

BMK-1/ERK-5 Mouse fibroblasts Activated
Rat vascular smooth muscle Activated
Human vascular smooth muscle Activated
Human umbilical vein endothelial cells Activated
Fibroblasts Activated
JNK1/SAPK Chicken beta cells Activated
(MAP kinase) Human fibroblasts Activated

Human vascular smooth muscle

Increased activity

NIH3T3 Increased phosphorylation
Rat arterial smooth muscle cells Increased phosphorylation
Rat ventricular myocytes Activated
p38 (MAP kinase) Human umbilical vein endothelial cells Activated
Mouse NIH 3T3 Increased phosphorylation
Rat alveolar macrophages Increased phosphorylation
Rat arterial smooth muscle cells Increased phosphorylation
Rat vascular smooth muscle Increased phosphorylation
MEK Bovine tracheal monocytes Increased activity of MEK1
Raf-1 Bovine tracheal myocytes Increased activity
PKC Human Jurkat T cells Increased activity
p56'k Human Jurkat T cells Phosphorylation Tyr-394, Tyr505
Rat 208F fibroblasts Stimulated activity
Increased phosphotyrosine
pp60*© Pig vascular endothelium Increased phosphotyrosine
Lyn Chicken beta cells (DT 40) Stimulated activity
SYK Chicken beta cells Activated
ZAP-70 T lymphocytes Activated
Jurkat T cells Activated
Phosphatase Ser/Thr Human erythrocytes Increased activity of membrane bound form
Sheep erythrocytes Increased activity of membrane bound form
Phosphatase Tyr Human fibroblasts (EK4) Increased mRNA

target p130cas, of a focal adhesion kinase (p125FAK)
and of paxillin is increased [119]. The cytosolic tyro-
sine kinase pl125FAK, a non-receptor protein-tyro-
sine kinase, plays a central role in the regulation of
the actin cytoskeletal organisation by phosphorylat-
ing components of focal adhesion, such as tensin, pax-
illin and talin. Furthermore, p125FAK regulates in-
teractions of integrins with the cytoskeleton and
with the extracellular matrix or both. Thus, stimula-
tion of p125FAK by ROS mediates reversible chan-
ges in cell shape and morphology, reorganisation of
the cytoskeleton and redistribution of cell-surface ad-
hesion proteins [119]. The involvement of high glu-
cose concentration in ROS and tyrosine kinase acti-
vation hyperglycaemia is further supported by find-
ings that genistein, an antioxidant and non-selective
inhibitor of tyrosine kinases, prevented glucose-

mediated atherogenic modification of low density li-
poprotein [120].

Besides a direct activation of PTKs by ROS,
protein tyrosine phosphatases (PTPs) seem to be
prime candidates for ROS signalling. Most PTPs
contain conserved cysteine residues within their ac-
tive domains [108]. Their oxidation might affect
the biological activity of the phosphatase. Attenu-
ated PTP activity shifts the balance of protein tyro-
sine phosphorylation and dephosphorylation to-
wards a status of enhanced protein tyrosine phos-
phorylation of cellular targets of PTKs, such as
ERKs and SAPKs.

From the above it is apparent that a variety of
ROS-sensitive protein kinases, such as PKC and
PTKs, is involved in vascular cell dysfunction. Even
isoforms of these enzymes could constitute promising
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selective targets for therapeutic intervention against
diabetes-associated vessel complications.

Matrix metalloproteinases (MMPs). MMPs, also
termed matrixins, are members of a family of Zn**-
and Ca?*-dependent endopeptidases, which are es-
sential for cellular migration and tissue remodelling
[121]. They have been shown to play an important
role in atherosclerosis and angiogenesis, whereas lit-
tle is known about the effects of hyperglycaemia on
MMP regulation in vascular cells [4]. The expression
and activity of 92-kDa (MMP-9) gelatinase are in-
creased in vascular tissue and plasma of diabetic
models [4] and in cultured bovine aortic ECs (but
not in SMCs or macrophages) after long-term expo-
sure to high p-glucose [4]. The rise in enzyme activity
is markedly reduced by treatment with antioxidants
such as polyethylene glycol-SOD, superoxide dismu-
tase and N-acetyl-L-cysteine, but not by inhibitors of
PKC [4], although PMA, an PKC activator, increases
MMP-9 expression in various cell types, including
vascular endothelial cells [122]. The MMP-9 promo-
ter region contains binding sites for the redox-sensi-
tive transcription factors NF-xB and AP-1 [123] indi-
cating their involvement in ROS-induced MMP-9
transcription and activity [124].

MMP-2 and MMP-9, which are regulated by oxi-
dative stress [125], are actively synthesised in athero-
matous plaques [126] and appear to contribute to
monocyte invasion and vascular SMC migration.
Therefore, any derangement of MMP regulation is
considered a critical factor in the development of vas-
cular complications [127] including acute myocardial
infarction and unstable angina [128]. It has also been
established that MMP-9 activity is required for angio-
genesis and neovascularisation, which constitute im-
portant elements in the mechanisms of plaque pro-
gression in atherosclerosis [129].

So far no causal link has been provided between
the disruption of the cytoskeleton and the expression
of MMPs. A recent study showed disruption of the
actin cytoskeleton induced with an antibody against
asf; integrin increased expression of MMP-1 in rab-
bit synovial fibroblasts [130]. Possibly Rac becomes
activated during cytoskeletal reorganisation resulting
in increased NAD(P)H oxidase activity and recruit-
ment of NF-xB [131]. Thereby IL-1a, an autocrine in-
ducer of MMP-1 expression, is induced. Alternative-
ly, in endothelial cells the disruption of the cytoskele-
tal network has been shown to affect subcellular Ca?*
signalling [132, 133] subsequently regulating a variety
of signal transduction pathways and transcription fac-
tors [134, 135, 136, 137] (Fig.3). Thus, a contribution
of altered spatial Ca®* signalling in MMP expression
in response to cytoskeleton disruption appears possi-
ble.

Any such enhanced MMP activity could be critical
for diabetic microvascular complications. Although
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Fig.3. Possible effects of ROS on intracellular Ca** handling
and subcellular Ca?* distribution and its consequences for
Ca’ modulated gene expression. The production of ROS due
to diabetic-associated risk factors initiates changes in inter-
and intra-organelle Ca®* handling and disturbances in the sub-
cellular Ca?* distribution. Due to the lack of the formation of
locally insulated Ca?* gradients for specific activation of Ca**-
sensitive gene regulation, the whole Ca®*-sensitive transcrip-
tion machinery is ubiquitous activated, resulting in uncontrol-
led activation of Ca**-sensitive gene expression

p- Gene expression

the exact mechanisms that link diabetes and ROS
with MMP expression are not fully understood, addi-
tional studies are necessary to further define MMPs
as potential therapeutic targets in diabetic blood ves-
sel dysfunction.

lon homeostasis. lon channels play a crucial role in
vascular homeostasis. K*-current that hyperpolarises
the cell reduces Ca?* L-type channel activity and re-
laxes smooth muscle cells (SMCs), whereas the inhi-
bition of K* channels facilitates the activation of the
Ca?* L-type channels and therefore SMCs contraction
[138]. In endothelial cells (ECs) the impact of K*
channels on Ca’*-entry is opposite to that found in
SMCs, because K* channel-mediated membrane hy-
perpolarisation facilitates Ca?* entry through so
called store-operated Ca®* channels (i.e. non-voltage
gated Ca®* channels). However, an increase in endo-
thelial Ca®* concentration primarily activates eNOS,
prostacyclin synthesis and formation of endothe-
lium-derived hyperpolarising factor(s) (EDHF(s)),
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leading to blood vessel relaxation [139]. Recently, en-
dothelial K* outward currents were shown to consti-
tute a EDHF-like mechanism due to locally raised
K* concentrations in the direct vicinity of smooth
muscle K* channels [140]. Thus, while the effect of
K* channel activation to cellular Ca** concentration
differs in ECs and SMCs, the impact of K* channels
for global vascular response (i.e. relaxation, contrac-
tion) is identical. The potentially diminishing effect
of diabetes mellitus on K* channel activity or activa-
tion involved in EDHF-mediated blood vessel relaxa-
tion has been shown in streptozotocin-induced dia-
betic rats [141, 142]. Furthermore, reduced activation
of ATP-sensitive K* channels leading to membrane
depolarisation and vasoconstriction has also been de-
scribed in diabetic rats [143, 144] indicating that be-
sides NO* the formation and the effect of EDHF can
also be impaired in diabetes.

In ECs the effect of ROS on ion channels (Fig.2)
and subsequent ion signalling considerably relies on
the oxygen species and can be varied depending on
acute as opposed to chronic actions. Peroxides such
as H,0, or tertiary-butylhydroperoxide (t-BuOOH)
appear to reduce the Ca?' influx [145]. Possibly
linked to the duration of treatment and usage of med-
ia supplements, hyperglycaemia was found to en-
hance [146] or to impair [147] intracellular Ca?* con-
centrations upon agonist stimulation due to the accu-
mulation of O," . In line with the latter findings, en-
dothelial Ca?* signalling was found to be impaired in
diabetic mice [148, 149]. Remarkably, in myocytes hy-
perglycaemia was found to increase cytosolic free
Ca?* [150], while chronic diabetes impaired L-type
Ca?* channel activity [151].

Hence, in ECs t-BuOOH has been shown to in-
crease the opening probability of non-selective cation
channels of 30 pS [152] and of Trp3 [153], resulting in
membrane depolarisation. In ventricular myocytes,
extracellularly produced ROS activate Ca**-depen-
dent nonselective cation channels without any change
in cytosolic Ca?* concentration [154]. Furthermore,
membrane depolarisation can be due to an inhibition
by H,O, of the intermediate conductance K., chan-
nel [155]. In human umbilical vein endothelial cells
an enhanced O, production by Rac-dependent
NAD(P)H oxidase activation occurs as a result of
membrane depolarisation [156]. As pointed out
above, the formation of O,*~ is of particular impact
in endothelial cells regarding the local NO* formation
because these radicals can react to form ONOO—
which, in turn, inhibits Ca?* influx [157] and the activ-
ity of BK, channels [158]. Thus, it is reasonable that
during certain forms of oxidative stress (peroxides,
ONOO™) membranes become depolarised resulting
in an attenuated driving force for Ca** and in reduced
Ca*-entry. In view of the importance of Ca**-entry
for eNOS activation [159, 160], one could assume
that t-BuOOH-mediated membrane depolarisation

reduces eNOS activation in response to Ca>* elevat-
ing agonists.

There is increasing evidence that, in addition to
channels in the plasma membrane, Ca** channels in
organelles (i. e. endoplasmic reticulum and mitochon-
dria) are common targets of several forms of ROS.
The mechanisms by which ROS affect Ca?* unloading
of the endoplasmic reticulum are not clear but could
be related to changes in the activity of sarcoplasmic/
endoplasmic reticulum Ca** ATP-ases (SERCAs)
[161], IP; receptors [162] and ryanodine receptors
(RyR) [163]. The latter is stimulated in skeletal mus-
cle by H,0, [164] and in cardiac muscle by HO*
[165]. Furthermore, oxidants (e.g. t-BuOOH) seem
to reversibly increase the permeability of the inner
mitochondrial membrane by pore formation, leading
to Ca®* release from the mitochondria [166, 167].
Most of these studies have relied essentially upon
the use of isolated mitochondria loaded with Ca?*,
and then exposed to oxidants. On the contrary, the
work of Jornot et al. [168] in intact cells demonstra-
ted higher Ca?* concentration in the mitochondria,
which was preceded by a rise in cytosolic free Ca>*
concentration. This ROS (H,0,, or O," ) initiated
increase in mitochondrial Ca®* concentration resul-
ted from a transfer of Ca?* by the electrogenic unipor-
ter, and a decrease in the rate of Ca?* efflux from the
mitochondria via the Ca**/Na* exchanger.

In view of the importance of ion channels for vas-
cular cell function, their contribution to diabetes-as-
sociated complications needs more attention in order
to understand whether ion channels are attacked by
ROS directly or by one of their downstream targets.
Increased ROS production and subsequent altera-
tions in intracellular Ca** concentration in endothe-
lial cells, smooth muscle cells and platelets [169] are
the cause of many cardiovascular diseases. While
most studies are focussed on global Ca®* signalling
[170, 171,172, 173], we could describe changes in sub-
cellular (perinuclear and subplasmalemmal) Ca* dis-
tribution in smooth muscle cells from diabetic pa-
tients [174] (Fig.3). This study is in line with findings
in the rat tail artery, where hyperglycaemia was found
to initiate alterations of cytosolic Ca?* signalling
[175]. This was accompanied by ROS-triggered re-
structuring of the cytoskeleton and the endoplasmic
reticulum. Thus, under pathological conditions ac-
companied by increased ROS production, changes in
subcellular Ca?* signalling could represent an early
target for altered endothelial function that results in
changes in cell function (e.g. eNOS, [51, 53, 70, 176])
and gene expression [37, 177].

Transcriptional regulation. In diabetic patients activa-
tion by hyperglycaemia, AGEs, oxidised LDL and
ROS of the inducible transcription activator NF-xB
could promote atherosclerosis and its rapid progres-
sion [28, 84, 178, 179]. NF-xB that has been shown to
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Table 2. Redox-sensitive Regulatory factors. Effects due to H,0,; taken from Allen and Tresini [222]

Gene or protein Cell type Effect

NF-»xB Human endothelial cells (ECV304) Activated
Human Jurkat T-cells Activated
Human microvascular endothelial cells Increased DNA binding
Human T cells (peripheral) Decreased DNA binding
Jurkat T cells Activated
Mouse fibroblasts (3T3) Activated
Mouse macrophages (J774A.1) Activated
Pig vascular endothelium Increased DNA binding
Rat heart endothelial cells Activated

1xB Human endothelial cells (ECV304)

NF-AT (protein) Jurkat T cells
Human T cells (peripheral)
AP-1
Human T cell (peripheral)
Big vascular endothelium
Rat embryo glial cells
Rat heart endothelial cells

Human fibroblasts (DET-551)
Human fibroblasts (IMR-90)
Human fibroblasts (WI-38)
Jurkat T cells

Rat vascular smooth muscle

c-jun

Jun protein Rat vascular smooth muscle

c-fos Rat vascular smooth muscle
Fos protein Rat vascular smooth muscle
CREB

c-myc

Rat embryo glial cells
Rat vascular smooth muscle

Human microvascular endothelial cells

Stimulated degradation of IxBa

Decreased transcriptional activation by NF-AT
Decreased DNA binding
Increased DNA binding
Decreased DNA binding
Increased DNA binding
Increased binding to TRE
Activated

No effect

No effect

No effect

Increased mRNA
Increased mRNA
Increased protein
Increased mRNA
Increased protein
Increased binding to CRE

Increased mRNA

be activated by ROS by Racl-transmitted NAD(P)H
oxidase activation, is linked to endothelial dysfunc-
tion and vascular inflammation [108] as well as prolif-
eration in vascular smooth muscle cells, a mechanism
critically involved in neo-intima formation. From this
it appears that NF-»B is crucially involved in the pa-
thogenesis of atherosclerotic lesions by switching on
specific target genes, such as vascular cell adhesion
molecules, intercellular adhesion molecules and E-
selectin [179]. In bovine endothelial cells hypergly-
caemia yielded such activation of NF-xB via a PKC-
dependent mechanism [180]. In the same cell type,
AGE products that can initiate oxidative stress [181,
182] activated NF-xB by a mechanism sensitive to al-
pha-lipoic acid [183]. Increased NF-xB activity seems
to be essential for the augmented leucocyte-endothe-
lial interaction during hyperglycaemia [184]. Glyca-
ted serum albumin and hyperglycaemia were also
found to stimulate NF-x¥B in smooth muscle cells
[185, 186] and mesangial cells (high p-glucose) [187]
by the generation of ROS. Furthermore, the involve-
ment of poly(ADP-ribose) polymerase has been re-
ported in the activation of NF-xB by hyperglycaemia
[188]. These studies are further supported by the re-
port that insufficient glycaemic control increases
NF-xB binding activity in peripheral blood mononuc-
lear cells isolated from patients with Type I (insulin-
dependent) diabetes mellitus [189].

Notably, incubation of HUVECs with high p-glu-
cose increases rapidly the generation of ROS accom-
panied by NF-»B activation, which can be prevented
by antioxidants (tocopherol, SOD-mimetic) (Table 3).
The formation of ROS was additionally inhibited by
the specific eNOS inhibitor L-nitroarginine (L-NNA)
[10] and DPI [33], whereas inhibitors of cyclooxygen-
ase and lipoxygenase had no influence [28]. This indi-
cates that high p-glucoseleadsto anincrease in genera-
tion of ROS (mainly O,*~and NO* [28]) and activates
NF-xB by a p-glucose specific and eNOS- and PKC-
dependent mechanism. Hence, Du et al. [178] sugges-
ted ONOO™ as the mediator of the effects caused by
high p-glucose on endothelial cells. Furthermore,
ONOO  has been shown to activate NF-xB [178].

ROS-mediated changes in the architectural orga-
nisation of the cytoskeleton and Ca®* containing or-
ganelles yields marked alterations in cellular Ca?*
homeostasis (see above). This redistribution might
largely contribute to the changes in cell function un-
der pathological conditions that accompany in-
creased ROS production. Moreover, changes in sub-
cellular Ca** distribution (Fig.3) could reorganise
the architecture of the cytoskeleton, modulate Ca**-
sensitive/-activated transcription factors and signal
cascade enzymes resulting in altered gene expression
[136, 190, 191, 192] (for review see [135]). In line
with these data in beta cells, in endothelial cells the
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Table 3. Redox-sensitive Regulatory factors. Effects due to Antioxidants; taken from Allen and Tresini [222]

Antioxidant Gene or protein Cell type Effect
NAC NF-xB Human endothelial cells (ECV304) Blocked activation by H,O,
IxB Human Jurkat T cells Prevented H,0, activation
AP-1 Jurkat T cells Decreased activation by TNF-a
Jun protein Mouse fibroblasts (3T3) Blocked activation by TNF
c-fos Jurkat T cells Blocked phosphorylation and degradation
of IxBa after TNF-a stimulation
Fos protein Rat vascular smooth muscles Blocked activation by serum
Rat vascular smooth muscle Blocked increase stimulated by serum
Human fibroblasts (WI-38) Increased transcription
Rat vascular smooth muscle Blocked increase stimulated by serum
Tocopherol NF-xB Human T lymphocytes (J. Jhan) Blocked PMA and TNF activation
Human monocytes (937) Blocked PMA and TNF activation
NGA NF-xB Human T lymphocytes (J. Jhan) Blocked PMA and TNF activation

Jun protein

c-fos Rat vascular smooth muscle

Human fibroblasts (WI-31)
Rat vascular smooth muscle
Rat vascular smooth muscle

Human endothelial cells (ECV304)
Human T lymphocytes (J. Jhan)
Human monocytes (937)

Fos protein

Phenolic antioxidant NF-xB

BHA

Human monocytes (937)

Blocked PMA and TNF activation
Blocked H,0O,, AA effects

Increased transcription
Blocked H,0,, AA
Blocked H,0,, AA

Blocked TNF-a effects
Blocked PMA and TNF activation
Blocked PMA and TNF activation

same effects could be observed under diabetic condi-
tions [28, 54,193, 194, 195, 196, 197]. Thereby, the im-
pact of Ca®* on gene expression exceeded its role in
the nuclear envelope, where Ca?* is essential for
modulating immediate early genes by modulating
the DNA-binding of transcription factors (e.g.
cAMP-responsive element binding protein CREB
[191, 192, 198, 199, 200]).

Ca®* triggers the activation of transcription factors
such as the nuclear factor of activated T cells (NFAT)
[201, 202, 203, 204, 205, 206] and the serum response
factor-related proteins (RSRF or the myocyte enhan-
cer factor 2 (MEF2) [207]) by calcineurin [208] or
Ca**-sensitive kinases (e.g. Cam-kinase IV [207]). In
the case of NFAT, the Ca®*/calmodulin-activated pro-
tein phosphatase-2B (calcineurin) dephosphorylates
NFAT resulting in its translocation into the nucleus
[208] to form a heteromeric transcriptional activator
complex with activator-protein-1 (AP-1) and initiates
gene expression [202]. In vascular smooth muscle
cells NFAT activation by increasing cytosolic free
Ca’* concentration depends on the patterns of the
Ca?* signalling observed in response to the compound
tested. Angiotensin II and thrombin, which rapidly
but transiently increase Ca?" concentration, activate
NFAT-mediated transcription rather weakly [206].
In contrast, the platelet-derived growth factor BB
(PDGF-BB) yields a higher activity in NFAT-medi-
ated transcription despite the smaller, slower but
longer lasting Ca** elevation. Thus, depending on
the kinetics of bulk Ca?* increases and that of loca-
lised Ca?* increases, Ca®* modulates NFAT-mediated

gene expression. In endothelial cells, regulation by
oscillation frequency of agonist-stimulated NF-xB
transcriptional activity has been demonstrated [137].
Remarkably, NF-kB transcriptional activity was atte-
nuated by a reduction of the frequency of Ca** oscil-
lation at constant amplitude of Ca®* increases.

Hence, cytosolic Ca** stimulates mitogenic signal
cascades that induce gene expression (e.g. erk-1/2
[199]; src [116]) and the rearrangement of cytoskele-
tal proteins ([209], e. g. beta catenin [210, 211], or zyx-
in [212]). Cytosolic signal cascades might be modula-
ted by the patterns of the cytosolic Ca** signalling
(e.g. transient or long lasting Ca®" increases com-
pared to spiking) that, in turn, is controlled by spatial
Ca?* distribution (e.g. subplasmalemmal Ca** [213,
214, 215, 216, 217]).

Many ROS-sensitive protein kinases (Table 1
Fig.2) mentioned above further activate or modulate
transcription factors as important downstream tar-
gets (Table 2; Table 3).

P90RSK that is regulated by its upstream regula-
tor ERK1/2 [218] as well as via Fyn and Ras [116],
phosphorylates c-Fos [13], Nur77 [219] and Ik-B, the
latter resulting in NF-kB activation [13, 220]. Recent-
ly, p9ORSK and the closely-related rsk genes have
been shown to affect the activity of CREBs [221],
while the regulation of AP-1 by ROS involves
ERK1/2 and JNK in a cell and stimulus specific man-
ner [13].
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Conclusion

The generation of ROS in diabetes mellitus repre-
sents a crucial phenomenon that links high p-glucose,
AGE:s and glycated (lipo-) proteins with particular
changes in cell structure and function. In this review
we presented some targets of ROS that are rarely dis-
cussed and considered in the evaluation of vascular
dysfunction in diabetes. That does in no way weaken
the importance of other cellular targets of ROS (e.g.
PKC, lipids), but might add some new perspectives
and targets worthy to be assessed in more detail in
diabetes-associated vascular complications. Al-
though there is strong evidence for an activation of
NF-kB and AP-1, additional studies will be indispen-
sable to assess the whole range of ROS-activated
transcription factors.

Sources. This review is based on the selected litera-
ture published in the English language during the
last decade. The authors own sources were integrated
with sources that resulted from PubMed searches
using a search profile containing the words “radicals,
peroxide, superoxide anions, oxidative stress” either
alone or in conjunction with “diabetes, hyperglycae-
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