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Abstract
The standard approach to variance component estimation in linear mixed models for alpha designs is the residual maximum 
likelihood (REML) method. One drawback of the REML method in the context of incomplete block designs is that the 
block variance may be estimated as zero, which can compromise the recovery of inter-block information and hence reduce 
the accuracy of treatment effects estimation. Due to the development of statistical and computational methods, there is 
an increasing interest in adopting hierarchical approaches to analysis. In order to increase the precision of the analysis of 
individual trials laid out as alpha designs, we here make a proposal to create an objectively informed prior distribution for 
variance components for replicates, blocks and plots, based on the results of previous (historical) trials. We propose different 
modelling approaches for the prior distributions and evaluate the effectiveness of the hierarchical approach compared to the 
REML method, which is classically used for analysing individual trials in two-stage approaches for multi-environment trials.

Introduction

The yield of modern cultivars (especially for cereals), while 
having increased substantially over the past decades, often 
displays diminishing genetic variance, meaning that differ-
ences between the best and worst cultivars may be small 
(Laidig et al. 2017). Thus, in order to reliably evaluate and 
compare cultivars, it becomes ever more important to accu-
rately estimate the cultivar means and their differences. In 
many countries in Europe and in the world, such evaluation 
of cultivars is carried out in official registration or post-
registration multi-environment trials (MET), providing the 
basis for cultivar recommendations (Welham et al. 2010; van 
Eeuwijk et al. 2016).

Statistical analysis of METs by linear mixed models 
(LMM) is usually performed with the residual maximum 
likelihood (REML) method, which was, in fact, originally 

proposed for the specific purpose of recovery of inter-block 
information in the paper by Patterson and Thompson (1971). 
The REML methods are based on maximising the likelihood 
of the data for a specific set of error contrasts and are equiva-
lent to the analysis of variance method for estimating vari-
ance components (Nelder 1965a) when designs are balanced, 
and all REML estimates are positive. LMM allow flexible 
assumptions about the variance–covariance matrix for ran-
dom and residuals effects (So and Edwards 2009; Hu and 
Spilke 2011; Schielzeth et al. 2020). Analysis of MET can 
be carried out using two approaches—single-stage and two-
stage approaches. A single-stage approach involves using a 
model for the plot data from all environments of the MET 
with all experimental design and treatment effects. However, 
when MET data are extensive, using a single-stage approach 
can be computationally demanding (Buntaran et al. 2019). In 
day-to-day operations, therefore, researchers are more likely 
to use a two-stage approach, in which individual trials are 
analysed in the first stage and only in the second stage is a 
combined analysis performed based on the treatment means 
per trial obtained in the first stage. With proper weighting, 
such a stage-wise approach is essentially equivalent to a sin-
gle-stage approach (Piepho et al. 2012; Damesa et al. 2017). 
In two-stage analyses, it is important that the estimates of 
the variance components obtained in the first stage have as 
much accuracy as possible. Not only is the accurate estima-
tion of variance components from individual trials important 
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for effective evaluation in the second stage of the analysis. 
Many researchers and breeders are also interested in effec-
tive analysis of individual trials per se, because they need 
to make a reliable assessment of genotypes and varieties 
in individual experiments, e.g. to assess genotype–environ-
ment interaction, or because early into the harvest season 
only a single trial’s data is available for a selection decision. 
This is a difficult task due to the fact that modern varieties 
differ very little in terms of functional characteristics, so 
the importance of very effective estimation of differences 
between them is increasing (Welham et al. 2010).

One of the most commonly used experimental design for 
plant breeding trials is the alpha design (Patterson and Wil-
liams 1976; Hoefler et al. 2020; John and Williams 1995). 
This design is resolvable, meaning that is complete repli-
cates, and is subdivided into incomplete blocks. Apart from 
plot errors, the analysis model comprises design effects for 
replicates and incomplete blocks, the latter usually being 
modelled as random for recovery of inter-block information.

It turns out that despite many advantages of the REML 
method, such as relative simplicity of computation and ease 
of application of flexible variance patterns, there are draw-
backs. One drawback in the context of incomplete block 
designs is that the variance component for the block effect 
may be estimated as zero (Sarholz and Piepho 2008), which 
can compromise the recovery of inter-block information and 
hence reduce the accuracy of Best Linear Unbiased Predic-
tions (BLUPs) and Best linear Unbiased Estimators (BLUE) 
of treatment effects (John 1987; Piepho et al. 2008). This, in 
turn, may adversely affect the reliability of cultivar evalua-
tion and the credibility of recommendations to farmers.

Due to the development of statistical and computational 
methods, there is an increasing interest in adopting Bayes-
ian approaches for plant breeding and cultivar evaluation data 
analysis (Crossa et al. 2011; Jarquín et al. 2016). In particular, 
a lot of studies were done on the development of Bayesian 
approaches for the additive main effects and multiplicative 
interaction (AMMI) model (Josse et al. 2014; Bernardo Júnior 
et al. 2018; Romão et al. 2019). The AMMI model is one 
of the tools used to assess genotypic (cultivar) stability and 
adaptability patterns. Bayesian approaches have been imple-
mented for the AMMI model with both homogeneous residual 
variance (Viele and Srinivasan 2000; Teodoro et al. 2019) 
and heterogeneous residual variance (da Silva et al. 2015, 
2019). Bayesian approaches have also been adapted in other 
approaches to study genotype × environment interaction such 
as the genotype plus genotype × environment (GGE) model (de 
Oliveira et al. 2016) and for factor analytic (FA) models (de 
los Campos and Gianola 2007; Dunson 2008; Nuvunga et al. 
2019). While there is quite a lot of work on Bayesian methods 

for AMMI and GGE models, with a focus on between-trial 
effects, relatively little work has been done on simpler random-
effects models as needed for the randomisation-based analysis 
of individual trials (Theobald et al. 2002; So and Edwards 
2009; Przystalski and Lenartowicz 2020). This is surprising 
because objective prior information on within-trial compo-
nents of variance is abundantly available in plant breeding 
programmes and variety testing systems.

Various estimation methods can be used in the application 
of Bayesian approaches. One of the more popular options is 
to use algorithms for sampling from a probability distribution, 
such as the Markov Chain Monte Carlo (MCMC) method with 
Gibbs sampling to approximate the posterior distribution in 
case of conjugate priors. These methods are popular, e.g. in 
ecological research (King et al. 2009; Hooten and Hobbs 2015; 
Dorazio 2016) and animal genetics (Rasch and Mašata 2011; 
Villemereuil 2019).

One of the advantages of the Bayesian approach is the 
need to define a prior probability distribution for parameters 
of interest. This allows taking into account the knowledge 
about parameters available before a new experiment using 
a hierarchical model. A prior distribution can be based on 
information available for the cultivars, its pedigree and trial 
locations (da Silva et al. 2019). The incorporation of this 
information into the model allows improving the analysis 
of new experiments. However, quite surprisingly, the use 
of such additional information in cultivar evaluation and 
MET analysis is as yet very rare. One example is found in 
Theobald et al. (2002). Here, we focus on the within-trial var-
iance components, because databases on the past trials usu-
ally provide a solid basis to objectively inform priors. This 
great potential so far has remained largely untapped. The 
main purpose of our paper is to open a path to exploit this 
dormant information. Increasing the accuracy of the assess-
ment of variance components can be achieved by applying 
a hierarchical model making use of existing experimental 
results. Such an approach also can avoid zero estimates of 
variance components for incomplete blocks, thus potentially 
improving the recovery of inter-block information. In order 
to increase the precision of the analysis of individual trials 
laid out as alpha designs, we here make a proposal to create 
a prior distribution for variance components of replicates, 
blocks and plots, based on the results of previous (histori-
cal) individual trials. We consider different assumptions for 
the prior distributions for variance components and using 
simulation evaluate the effectiveness of two hierarchical 
modelling approaches to the REML method classically used 
with to analysis individual trials from METs. Our hierarchi-
cal models are implemented using both an Empirical Bayes 
and a fully Bayesian approach.
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Material and methods

Historical data set

The historical data set we use constitutes a collection of indi-
vidual trials with wheat from the Polish Post-Registration Vari-
ety Testing System (PVTS), an official cultivar testing system 
used for informing recommendations to farmers. We used data 
from individual trials carried out between the 2009/2010 and 
2018/2019 growing seasons. The number of trial locations var-
ied from 35 in 2017/2018 to 43 in 2011/2012. The number of 
varieties ranged from 51 in 2009/2010 to 63 in 2018/2019. The 
total number of individual trials was equal to 387. The PVTS 
experiments were laid out as alpha designs with two replicates 
(complete blocks), with the number of blocks (incomplete 
blocks) per replicate depending on the number of cultivars in 
the individual trials, ranging from 3 to 6. Figure 1 presents the 
dependence of the number of plots per block on the number 
of blocks in the studied trials, varying from 3 to 9. Routinely, 
results from individual trials are analysed using the REML 
method. The historical data set is used here to inform the priors 
of the hierarchical modelling approaches used to analyse the 
individual trials.

Models

For individual trials laid out as alpha designs, we assume the 
linear mixed model

where yijl is the yield response of the ith cultivar in the lth 
block within the jth replicate, � is the overall intercept, �i 
is the fixed effect of the ith cultivar, �j is the random effect 

(1)yijl = � + �i + �j + �l(j) + �ijl

of the jth replicate, �l(j) is the random effect of the lth block 
nested in the jth replication and εijl is the error effect.

The standard method for estimating variance compo-
nents is REML. When the number of blocks or replicates 
is small, it is quite likely that variance component estimates 
by REML are zero. Thus, using REML estimates directly 
to build a prior for variance components is problematic, as 
it would require modelling a spike at zero. To circumvent 
this problem, our hierarchical modelling approach is based 
on sums of squares of a sequential analysis of variance 
(ANOVA) for model (1) computed for the individual trials 
(Sarholz and Piepho 2008). This two-stage approach also has 
the advantage of greatly reducing the computational burden 
compared to a single-stage approach based on a model for 
the individual plot data specified for all trials simultane-
ously, which may be many. Our approach can be regarded 
as a hierarchical extension of classical ANOVA estimation 
of variance components (Searle et al. 1992).

Specifically, from an ANOVA for an individual trial with 
sequential sums of squares (Type I SS in SAS), in which treat-
ments are fitted before all design effects, we obtain the sums of 
squares for replicates, SSr, blocks, SSb, and error, SSe, as well 
as the corresponding expected mean squares, which are func-
tions of the three variance components for replicates, blocks 
and error (Table 1). We compute the sums of squares and the 
expected mean squares using the MIXED procedure in SAS. 
Classical ANOVA estimation of variance components equates 
observed mean squares to their expected values and solves 
the resulting set of equations for the variance components 
(Searle et al. 1992). This is not done here. Instead, we use the 
expected mean squares in Table 1, which are linear functions 
of the unknown variance components, to formulate a hierarchi-
cal model for the variance components that use the observed 
sums of squares as the response (Sarholz and Piepho 2008), 
as is described next.

Fig. 1   Number of plots in block 
across historical data set. The 
percentage of individual trials 
with the given number of blocks 
per replicate in study data set is 
shown in brackets
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scaled central Chi-squared distributions (see Appendix), i.e.

For the variance component vector � , we assume four dif-
ferent parameterisations, which for our hierarchical approach 
simultaneously constitutes different prior distribution specifi-
cations. The first is a trivariate log-normal (Sarholz and Piepho 
2008) distribution given by

For this variance parameterisation, considered as prior dis-
tribution in our hierarchical approach, we have two sets of 
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The exponential specification for the variances makes 
sure these are positive, whereas the use of the inverse of 
Fisher’s z transformation ensures that a correlation π obeys 
the constraint |𝜋| < 1 . The inverse of Fisher’s z transforma-
tion ensures that correlations will have values in the range 
between -1 and 1. This second variance prior distribution 
has the same set of hyper-parameters in the hierarchical 
approach described further below as the first specification 
for the trivariate log-normal distribution. The simultane-
ous use of exponential specification for the variances and 
the inverse of Fisher’s z transformation allows for such a 
formulated model that will ensure the variance component 
estimates meet the expected assumption, namely they will 
be greater than zero.

We further use the Gamma and inverse Gamma dis-
tributions as priors for the variances. To fit these, we use 
the inverse distribution function method [also known as 
inverse cumulative distribution function (c. d. f.) method] 
(Piepho and McCulloch 2004; Liu and Yu 2008), which is 
also used in multivariate simulation (Johnson 1987; p.19). 
The key idea is that a normal random variable can always 
be transformed to a standard uniform random variable, 
which, in turn, can always be transformed to any desired 
distribution using its inverse c. d. f. Thus, if Z is a stand-
ard normally distributed random variable, then U = Φ−1(Z) 
with Φ(.) , the inverse c. d. f. of the standard normal, is a 
uniform [0,1] random variable. Further, Y = F−1(U) with F 
the c. d. f. of an arbitrary distribution. The only limitation 
of this inverse c. d. f. approach is that it is focussed on the 
marginal distributions and not on a specific joint distribu-
tion. As we require a standard normal random effect as a 
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Table 1   Sequential ANOVA 
table for random design effects 
based on linear mixed model for 
an alpha design (see main text)

Treatments, not shown in the sequence, are fitted before design effects. c1, c2 and c3 are known constants 
depending on the design computed according to Goodnight and Speed (1978)

Source Degrees of freedom 
(d.f.)

Sum of squares 
(SS)

Mean square (MS) Expected mean 
squares E(MS)
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r
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starting point, we can fix the variances of our trivariate 
normal distribution at unity and the means at zero, leaving 
only the correlation as parameters to be estimated. Addi-
tional parameters are then needed to model the transforma-
tion to the desired marginal distributions for the three vari-
ances. Multiplication of the standard Gamma-distributed 
effect with scale parameter � then leads to a random effect 
with a Gamma (�, �) distribution. For inverse Gamma (IG) 
distribution, we use the fact that if X has a Gamma (�, �) 
distribution, then 1/X has an IG distribution (Hoff 2009, 
p.74). For the Gamma and inverse Gamma prior distribu-
tions, the shape parameter � , the scale parameter � and 
mean vector and variance–covariance matrix of the log-
variance components � constitute hyper-parameters.

In the Supplementary Information, we provide the file 
with SAS code (code_EB_FB.sas) used in our analyses. The 
applied trivariate log-normal with exponential specification, 
Gamma and inverse Gamma prior distributions guarantee 
that the estimated variance components will be positive. The 
previous studies show that Gamma and inverse Gamma dis-
tributions are the most effective in the estimation of variance 
components (Daniels 1999; Tiao and Tan 1965).

Specification of the conditional distribution 
of the sums of squares for given variances

The observed sums of squares (SSi) have a scaled Chi-
squared distribution. The Chi-squared distribution is a spe-
cial case of the Gamma distribution. We use the following 
parameterisation of the likelihood for a Gamma-distributed 
random variable:

Here W is the Gamma-distributed random variable, and 
𝛼̃ and 𝛽  are the parameters. For the Chi-squared distribu-
tion with v degrees of freedom, the first two moments are v 
and 2v (Johnson 1987 p.420). Equating moments, we find 
𝛽  = 2 and 𝛼̃ = v/2. In our case, W is equal to the scaled Chi-
squared random variable. We used the NLMIXED proce-
dure of SAS to fit these models. We cannot use the in-built 
likelihood for Gamma in the model statement; however, 
because the Gamma-distributed random variable is a scaled 
sum of squares, which depends on the variance components, 
whereas we need the likelihood for the random variable SSi, 

W ∼ gamma
(
𝛼̃, 𝛽

)

l
(
𝛼̃, 𝛽;w

)
= −𝛼̃ log (𝛼̃) − log {Γ(𝛼̃)} + (𝛼̃ − 1) log (w) − w∕𝛽

E(W) = 𝛼̃𝛽

var(W) = 𝛼̃𝛽2

which itself is not Gamma-distributed. Thus, we need to 
write out the above definition as our user-defined likelihood 
function. Setting

and observing that this is Gamma-distributed with param-
eters 𝛽  = 2 and 𝛼̃ = vi/2, we may perform a change of random 
variable in the likelihood (Atkinson 1985 p.86). Thus, if 
f(W) denotes the density of W, then the conditional density 
of SSi, given � , is equal to

Empirical Bayes

For fitting the above four prior distributions of the variance 
components, we used an Empirical Bayesian (EB) approach. 
To implement the EB approach, we used maximum likeli-
hood (ML) with adaptive Gaussian quadrature to fit our hier-
archical model. This approach was implemented using the 
NLMIXED procedure of SAS, which only allows normally 
distributed random effects. The Gamma and inverse Gamma 
distributions can be implemented using the GAMINV func-
tion, which computes the inverse cumulative distribution 
function (c. d. f.) of the standard Gamma distribution with 
shape parameter �.

Fully Bayesian estimation

The fully Bayesian (FB) approach is implemented using the 
Markov Chain Monte Carlo (MCMC) method with Gibbs 
sampling in the MCMC procedure for SAS 9.4. The fully 
conditional distributions necessary to implement a Gibbs 
sampler are presented in the Supplementary Material (file 
FCD.docx). As for the EB approaches described above, we 
used the GAMINV function for the Gamma and inverse 
Gamma distributions. We used an inverse-Wishart prior dis-
tribution, W−1(v;Ω), for the variance–covariance matrix � of 
the log-variance components, where ν is the degrees of free-
dom equal to the number of variance components, and Ω is 
a scale matrix as diagonal matrix with values 1 (Schuurman 
et al. 2016). The hyper-parameters α and β in the Gamma 
or inverse Gamma prior distributions were estimated using 
the maximum likelihood (ML) methods (Bar and Schifano 
2011). The log-likelihood function for these two param-
eters was described in Lonnstedt and Britton (2005). For 
the fixed effect of cultivars, a normal prior distribution was 
specified with zero mean and a variance equal 1010. We ran 
this estimation method for 10,000 iterations with a burn-in 
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phase of 1000 iterations and with a thinning interval of 10. 
To evaluate MCMC convergence, we used Gelman–Rubin 
test (Gelman and Rubin 1992). The summary statistics of 
posterior distributions and results of Gelman–Rubin test for 
the FB approach for different prior distributions of variance 
components are presented in the Supplementary Material 
(Table S1). In Table S2 in the Supplementary Material, the 
results of the sensitivity analysis are presented.

To sum up, we presented a hierarchical model for esti-
mating variance components from individual trials, which 
consists of the following stages. In the first stage of estima-
tion, we used a linear mixed model for the plot data, deriv-
ing the expected ANOVA sums of squares for an individual 
trial. The conditional distributions of the sums of squares are 
scaled Chi-squared distributions. Four different models were 
used for the distribution of variance components over trials. 
In order to summarise the performed analyses and their suc-
cession, Fig. 2 shows the main stages of the analyses.

Simulations

The motivation for this study was to assess if strength can 
be borrowed across trials in estimating within-trial variance 
components. This is expected to be particularly worthwhile 
for the block variance in case of a limited number of blocks 
and small block size, in which case REML estimates fre-
quently converge to zero (Verdooren 1982), thus effectively 

reducing the model by dropping the block effect and forego-
ing any within-replicate adjustments. Our rationale here is 
that incomplete blocks are always expected to capture some 
of the within-replicate heterogeneity, and hence, an estimate 
of exactly zero is not usually plausible. A similar reasoning 
applies to the variance for replicates, even though there is not 
usually any inter-replicate information to be recovered. This 
reasoning leads to our expectation that a Bayesian approach 
can improve the mixed model analysis of individual trials. 
Our suggested approach is to simply plug in the variance 
component estimates coming out of our hierarchical models 
into the mixed model package, which is then used to solve 
the mixed model equations. The purpose of the simulation 
is to test our hypothesis that the Bayesian approaches can 
improve the recovery of inter-block information and hence 
lead to more accurate estimates of treatment means and their 
differences. The simulation study is based on the histori-
cal data set from the Polish Post-Registration Variety Test-
ing System. On this basis, we simulated individual trials 
(n = 1000). We used two types of simulated data sets, one 
with a small number of blocks (2) and small size of blocks 
(3 plots per block), and one with a relatively large number 
(10 blocks) and size of blocks (10 plots per block). In total, 
we had six varieties for the first simulated set of individual 
trials and 100 varieties for the second type. Both types of 
simulated individual trials had two repetitions. Randomisa-
tions in simulated individual trials were carried out using 

Fig. 2   Diagram showing the main stages carried out during these studies
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the optimisation built into the OPTEX procedure in the SAS 
package (Piepho 2015). We are aware that the scenario with 
six cultivars is rarely encountered in practice. Our main rea-
son for including this scenario is that it presents a significant 
likelihood for the problem of zero variance components to 
occur, thereby allowing for rigorous testing of the proposed 
methods as well as the standard practices.

Our approach to simulation is based on estimating vari-
ance components using sums of squares based on a historical 
data set. Grain yield values were simulated using variance 
components generated from the fitted hierarchical model on 
the basis of sum of squares (from Table 1). Using these sim-
ulated variance components, the individual random effects 
in model (1) were simulated using a pseudo-random number 
generator based on the fitted Bayesian hierarchical model. 
For each simulated individual trial, we determined the mean 
squared error of estimated treatment (cultivar) differences 
(MSED) for all possible treatment means (cultivar means) 
pairwise comparisons. This was averaged for all simulated 
trials separately for each model. The lower the value of the 
MSED, the more efficient the recovery inter-block infor-
mation (Möhring et al. 2015). Additionally, for actual vari-
ances for new individual trials, Bayesian estimates based 
on the “known” prior were used to evaluate the prediction 
of estimated variance components using the mean squared 
error (MSE).

Results

Historical data set

Figure 3 shows the distribution of REML estimates of the 
variance components for the replicate, block and error 
effects across all studies. Especially for the replicate and 
block effect, we observed a relatively large proportion of 
zero values for the estimated variance components. For the 
replicate variance, zero values were observed in 24.45% of 
the individual trials, and for the block variance, zero values 
were observed in 27.5% of the individual trials.

Simulation

Table 2 presents the values of the Akaike Information Crite-
rion (AIC), which measures the goodness of model fit. The 
highest AIC values were observed for the REML estimation 
method. Lower values of this model fitting criterion were 
observed for FB models compared to EB models. However, 
among the FB models, the type of data influenced whether 
the models had Gamma or inverse Gamma parameterisation.

The mean squared error of estimated treatment differ-
ences (MSED) are presented in Table 3. In general, we 
observe a smaller variation in the value of this statistic for 
the scenario with a large number of cultivars in trials (10 
plots per block), the differences between the REML method 
and any of Bayesian approaches are really small. In contrast, 
the scheme with a relatively small number of cultivars (three 

Fig. 3   Values of variance components for replicate effects (a) and block effects (b) across individual trials from historical data set estimated by 
REML model
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plots per block), the difference in MSED values between 
the REML method and any Bayesian approaches was higher 
than for 10 plots per block. For the simulation scheme with 
three plots per block and application of the EB approach, the 
lowest MSED value was observed for the model with inverse 
Gamma distribution of estimated variance components, 
while for the FB approaches, the lowest MSED value was 
observed for the model with Gamma distribution. On the 
other hand, for 10 plots per block, we observed the reverse 
reaction for MSED values. For the EB approach, the lowest 
MSED value was observed for the Gamma model, and for 
the Bayesian approaches, the lowest MSED was found for 
the inverse Gamma model.

The second parameter used for evaluating the proposed 
models was the mean squared error (MSE) for the individ-
ual variance components, whose averaged values are pre-
sented in Table 4. In general, regardless of the effect type, 

we observed slightly higher average MSE for the simula-
tion scheme with a small number of cultivars and small 
blocks size than with a large number of cultivars and a large 
block size. The highest values of this parameter, regardless 
of the type of the variance component, were observed for 
the model where the parameters were estimated using the 
REML method. On the other hand, among the models using 
both approaches, the smallest differences in MSE values 
were observed for variance components for error. Regard-
ing the variance components for replication and block, the 
lowest values of MSE in both simulation schemes were 
observed for the inverse Gamma distribution with both 
schemes of simulated data with the ML approach and in 
the FB approaches. For these two types of variance compo-
nents, slightly lower mean MSE values were observed for 
the Bayesian approaches than for the ML approach.

Discussion

Our simulation approach assumes that spatial trend in a 
field trial can be captured by positive variance compo-
nents for both replicates and blocks. Furthermore, our 
hierarchical models impose the constraint that all variance 
component estimates must be positive. Two issues may 
potentially be raised in this context. (i) Instead of using a 
randomisation-based model for simulating the data, which 
ensures that the underlying block variances are truly posi-
tive, one could consider alternative models and methods 
that simulate more realistic irregular field trends and spa-
tial correlations. Moreover, uniformity trial data could be 
used, superimposing treatment effects to simulate realistic 
variety trial data. A substantial number of uniformity tri-
als would be needed to obtain a solid basis for simulation. 
These simulation options could replicate the presence of 
negative covariance among observations within the same 
block. Such patterns may have a real basis, as pointed out, 

Table 2   The Akaike 
Information Criterion (AIC) 
for study models in historical 
data set and in two simulated 
data sets

Estimation methods Averaged of AIC for study data sets

Historical data set 3 plots per block 10 plots per block

REML 681.38 331.77 578.28
3-variate normal 610.42 231.13 494.74
3-variate normal with EB 

exponential specification
612.87 235.71 494.65

Gamma 603.84 224.12 487.32
Inverse Gamma 602.33 222.81 486.93
3-variate normal 604.68 214.27 486.84
3-variate normal with FB 

exponential specification
604.11 213.93 486.13

Gamma 597.92 202.73 473.28
Inverse Gamma 597.86 203.45 472.11

Table 3   The mean squared error of estimated treatment differences 
(MSED) for study models in two simulated data sets

EB Empirical Bayes approach, FB fully Bayesian approach

Estimation methods Averaged of MSED for study data sets

3 plots per block 10 plots per block

REML 2.6126 2.0755
3-variate normal 1.9195 1.9965
3-variate normal with 

EB exponential speci-
fication

1.9181 1.9443

Gamma 1.9099 1.9221
Inverse Gamma 1.8919 1.9081
3-variate normal 1.8543 1.9906
3-variate normal with 

FB exponential speci-
fication

1.8291 1.8996

Gamma 1.8011 1.9034
Inverse Gamma 1.8102 1.8855
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e.g. by Nelder (1954, 1977), Hocking (1985) and Welham 
et al. (2014). While our simulation-based approach pre-
cludes such negative correlations in the data-generating 
mechanism, it does allow for realisations of plot values 
that do have this feature. Furthermore, our randomisa-
tion-based simulation approach favours neither of our 
approaches considered for analysis, because all assume 
the same trial-level linear mixed model for analysis. (ii) 
When treatments and block factors are orthogonal, such 
as in a randomised complete block design or a split plot 
design, the exact F-test for treatment effects of interest is 
a ratio of mean squares based on ordinary least squares. 
If a mixed model package is used, these F-statistics will 
be reproduced when allowing REML to produce negative 
variance components. This may lead to the conclusion that 
the non-negativity constraint usually imposed by mixed 
model packages should generally be lifted. While this 
usually reproduces exact F-statistics in the simple bal-
anced cases alluded to above, it does have the problem 
of occasionally causing convergence problems (Frey et al. 
2024). When the design involves incomplete blocks, ordi-
nary least square is no longer a preferable option. Instead, 
generalised least squares are used using estimates of the 
variance components for blocks. Furthermore, lifting the 
non-negativity constraint in this case would exacerbate 
convergence problems with REML. It may be added that 
in the case of variety trials, significance tests are of less 
relevance than point estimates of treatment effects. The 
problem with the default setting of REML packages is that 
terms whose variance converges to zero are dropped from 
the model. However, randomisation theory dictates that 

the experimental design of field trials should be included 
in the statistical model for valid standard errors to be esti-
mated for genotype (treatment) effects (Nelder 1965a, b; 
Bailey 2008). Our approach to impose positivity of all 
variance components ensures that no strata are inadvert-
ently dropped from the model, which would compromise 
standard errors for some treatment comparisons. All of 
these considerations enforce our approach to require posi-
tive variance components for resolvable incomplete block 
design.

Our results show that the use of a Bayesian framework 
with empirically informed priors increases the prediction 
accuracy of variation component estimates for replications, 
blocks and error, and makes the recovery of inter-block 
information more effective in individual trials carried out 
according to an alpha design. This contributes to an increase 
in the effectiveness of the cultivar assessment and thereby 
allows plant breeders to make better selections and farmers 
to make a more reliable choices of cultivars. The Bayesian 
paradigm is gaining popularity in many areas of research, 
including crop improvement. It appears to us that the main 
reason for this gained popularity is the availability of com-
putational resources and powerful software (McCarthy 
2007; Green et al. 2020). With complex models that are 
difficult to implement with frequentist methods, Bayesian 
methods may offer the additional advantage of computa-
tional convenience. Most applications use non-informative 
priors, however, and where informative priors are used, there 
is often only a limited objective basis for their choice (Hobbs 
and Hooten 2015; Lemoine 2019).

Table 4   The mean squared error (MSE) of variance components for study models in two simulated data sets

EB Empirical Bayesian approach, FB fully Bayesian approach

Estimations Averaged of MSE for study data sets

Variance components for replication Variance components for block Variance components for error

3 plots per block 10 plots per block 3 plots per block 10 plots per block 3 plots per block 10 plots per block

REML 0.4726 0.2545 0.3953 0.1229 0.0369 0.0131
3-variate normal 0.3696 0.2298 0.3133 0.1109 0.0321 0.0123
3-variate normal 

with EB 
exponential 
specification

0.3687 0.2292 0.3128 0.1099 0.0321 0.0121

Gamma 0.3483 0.2291 0.3051 0.1091 0.0320 0.0119
Inverse Gamma 0.3466 0.2284 0.3048 0.1084 0.0320 0.0121
3-variate normal 0.3511 0.2265 0.3088 0.1017 0.0317 0.0109
3-variate normal 

with FB 
exponential 
specification

0.3502 0.2261 0.3081 0.1012 0.0323 0.0111

Gamma 0.3398 0.226 0.3029 0.1019 0.0321 0.0109
Inverse Gamma 0.3387 0.2244 0.3022 0.1006 0.0318 0.0103
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This paper has demonstrated that the use of such methods 
promises non-negligible gains in precision compared to the 
REML method, gains that come essentially for free once the 
approach is implemented. The differences in accuracy and 
efficiency in the recovery inter-block information between 
the evaluated estimation methods and used informative prior 
distribution specifications were slight. However, a small 
advantage in efficiency was observed for the FB approach 
with Gamma or inverse Gamma prior distributions. Con-
sequently, it can be concluded that the use of informative 
priors improved the efficiency in the recovery inter-block 
information and prediction accuracy of Bayesian methods in 
individual trial analyses for a two-stage approach. However, 
research by Polson and Scott (2012) and by Gelman (2006) 
indicates that the half-Cauchy distribution for variance com-
ponents may be a viable alternative. Our focus here has been 
on alpha designs, mainly because of their great popularity, 
but our approach is readily applicable with other blocked 
experimental designs, such as non-resolvable or resolvable 
row–column designs (John and Williams 1995).

Plant breeding programmes and official variety testing 
systems typically have substantial amounts of historical data 
on past trials at their disposal (Smith et al. 2006; Laidig et al. 
2017). The results of previously conducted analyses, along 
with the mean values and variability of the variance com-
ponents of errors or variance components for other effects 
specific to a given experimental design, can help determine a 
priori distributions and increase the efficiency of individual 
trial analyses. For each of the considered response variables 
(yield or grain quality traits), separate prior distribution 
specifications should be determined.

In this paper, to build a prior distribution, we used a his-
torical data set from a relatively long period of ten growing 
seasons. De Silva et al. (2013) and Azevedo et al. (2022) 
suggest that the period for which the informative priori is 
built should be as short as possible, they even recommend 
that it relates to the last period of field trials and does not 
recommend building priors based on research results from 
many years. However, their research relates to the estimation 
and evaluation of prediction accuracy for various types of 
genetic parameters. The limitation of the number of grow-
ing seasons used to determine the prior distribution may 
be justified by the fact that there is a fairly large rotation of 
genotypes in trials from year to year, and thus the occurrence 
of genetic and breeding progress. In our case, the parameters 
we use, i.e. the variance components for replicates, blocks 
and error, are strongly related to specific trial location and 
year. Thus, it is important to have a large number of trials 
from historical sources to build priors.

Our comparative assessment of the Bayesian (empirical 
and fully) framework and the REML method was conducted 
for two specific numbers of blocks per replicate and numbers 
of plots per block. In real data sets, the number of blocks and 

plots in blocks is often differentiated between trials, and our 
historical one can be considered a representative sample. It 
should be stressed, however, that the numbers of blocks and 
plots in blocks were not strongly differentiated in our case, 
so this simplification does not affect the assessment and con-
clusion about the usefulness of the Bayesian methods.

Given that the Bayesian framework is ideally suited to 
exploit the empirically available information to inform 
priors for variance components needed in the analysis of 
individual trials, it is quite surprising that approaches such 
as the one suggested here do not seem to be in common 
usage. There may be several reasons for this. One is that 
there is a lack of comparative research on the effectiveness 
of this approach in the analysis of individual trials. More 
research would contribute to the dissemination of these 
methods. Another reason is that Bayesian methods may 
be considered complicated and difficult to apply by plant 
breeders and other researchers involved in the evaluation 
of varieties.

The use of the Bayesian approaches allowed the indi-
vidual trial analysis to be more efficient than by the REML 
method used in the first stage of the two-stage approach to 
MET analysis. The Bayesian framework suggested here can 
also be considered for the variance components pertaining 
to random effects for genotypes, environments and geno-
type–environment interaction in the second stage, and this 
opportunity also deserves consideration in future work. The 
main challenge here will be the assembly of large histori-
cal data bases, allowing accurate estimation of priors. The 
challenge is increased when environments are partitioned by 
years and locations, giving rise to a three-way linear model 
with factors years, locations and genotypes. Part of the chal-
lenge is to delineate subsets of years in a long-term data set 
from which to estimate all variance components or obtain all 
required sums of squares. Perhaps, the most natural partition 
in registration trials is according to series of trials testing 
the same set of genotypes. In official variety testing, each 
year a new set of genotypes enters the tests, and this set is 
then tested for 2 or 3 years. Analysing the MET for these 
sets separately should provide a good basis for informing 
the priors.

Potentially, in the analysis of METs, a single-stage 
Bayesian hierarchical modelling approach could be used to 
improve the recovery of inter-block information, which may 
be an alternative to the two-stage analysis used so far. How-
ever, we see practical challenges in applying this approach 
to the MET analysis. We have lots of trials, and the sets 
of genotypes in these historical data are very variable and 
partly even disconnected. So there is little if any inter-trial 
information on the comparisons of interest in a new trial. 
The prior information on the between-trial variance com-
ponents (environmental main effects and genotype–environ-
ment interaction) is usually scant. In fact, any long-term data 
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available from a single variety testing programme would 
yield only a single variance component estimate for any such 
between-trial variance component (Hu and Spilke 2011). 
This provides only a weak basis for objectively informing a 
prior on between-trial variance components. To make pro-
gress, it would be useful to have multiple MET data sets that 
allow building an objectively informed prior for between-
trial variance components.

Appendix

Alpha designs have the property of orthogonal block struc-
ture and general balance (Nelder 1965a, b; Houtman and 
Speed 1983)). The conditional independence of sums of 
squares SSr, SSb and SSe can be established using this 
property.

(a) An analysis of variance can be computed under the 
usual null model of no treatment effects, assuming joint 
normality of all the observations (Nelder 1965a). Denote 
the sums of squares for replicates, blocks and plots under 
the null model as SS(Reps), SS(Blocks) and SS(Plots), 
respectively. Due to the general balance property of alpha 
designs, leading to orthogonality of the variance–covari-
ance structure, these sums of squares are conditionally 
independent. Note that due to the orthogonality of repli-
cates and treatments under the full model, SS(Reps) coin-
cides with SSr in our analysis.

(b) Under the full model including treatment effects, 
the block and plot strata contain information on treatment 
contrasts. Thus, in the general analysis of variance (Nelder 
1965b), SS(Blocks) is decomposed as.

SS(Blocks) = SS(Treat)b + SS(Residual)b,
where the subscript b indicates the block stratum, and 

the two components SS(Treat)b and SS(Residual)b are 
independent. Observe here that SS(Residual)b is identical 
to SSb in our analysis. The sum of squares SS(Plots) can 
be similarly decomposed as.

SS(Plots) = SS(Treat)p + SS(Residual)p,
where the subscript p indicates the plot stratum, and the 

two components SS(Treat)p and SS(Residual)p are inde-
pendent. Observe here that SS(Residual)p is identical to 
SSe in our analysis.

It follows from all of this that SSr, SSb and SSe are 
indeed conditionally independent.
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