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Abstract
Key message We find evidence of selection for local adaptation and extensive genotype-by-environment interaction 
in the potato National Chip Processing Trial (NCPT).
Abstract We present a novel method for dissecting the interplay between selection, local adaptation and environmental 
response in plant breeding schemes. Balancing local adaptation and the desire for widely adapted cultivars is challenging 
for plant breeders and makes genotype-by-environment interactions (GxE) an important target of selection. Selecting for 
GxE requires plant breeders to evaluate plants across multiple environments. One way breeders have accomplished this is to 
test advanced materials across many locations. Public potato breeders test advanced breeding material in the National Chip 
Processing Trial (NCPT), a public–private partnership where breeders from ten institutions submit advanced chip lines to 
be evaluated in up to ten locations across the country. These clones are genotyped and phenotyped for important agronomic 
traits. We used these data to interrogate the NCPT for GxE. Further, because breeders submitting clones to the NCPT select 
in a relatively small geographic range for the first 3 years of selection, we examined these data for evidence of incidental 
selection for local adaptation, and the alleles underlying it, using an environmental genome-wide association study (envG-
WAS). We found genomic regions associated with continuous environmental variables and discrete breeding programs, as 
well as regions of the genome potentially underlying GxE for yield.

Introduction

Variation in environment across a species’ geographic range 
can result in selection for local adaptation, leading to for-
eign populations having lower fitness than populations in 
their home environment. There has been extensive research 
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both into patterns of local adaptation in natural populations 
(Ågren and Schemske 2012; Alberto et al. 2013; reviewed 
in Shaw and Etterson 2012; Sork 2018), and modern crop 
species as it relates to efforts to address climate change 
(Howden et al. 2007; Takeda and Matsuoka 2008). However, 
only large-effect genes and alleles that underlie environmen-
tal adaptation on a broad scale have been mapped, such as 
StCDF1 and ZmCCT , major genes contributing to long-day 
adaptation in potato and maize, respectively (Kloosterman 
et al. 2013; Hung et al. 2012). Many commonly used selec-
tion mapping tools depend upon large differences in allele 
frequencies between populations to find statistical evidence 
for regions under selection (e.g.,Beaumont and Nichols 
1996; Beaumont and Balding 2004; Foll and Gaggiotti 
2008), generally relying on  FST (Wright 1949) or similar sta-
tistics. These tools are poorly suited to study polygenic adap-
tation because such adaptation is usually a result of many, 
small allele frequency changes dispersed across the genome 
(Berg and Coop 2014). Local adaptation is a complex trait, 
and selection mapping is unlikely to differentiate genomic 
signals of local adaptation from drift (Hancock et al. 2010; 
Uricchio et al. 2019). Identifying new tools and models to 
understand the relationship between artificial selection and 
response to environment will aid breeders in establishing 
lines adapted to certain environments.

Potato (Solanum tuberosum L.) is a useful model for 
studying the interaction between environmental adapta-
tion and artificial selection. Firstly, public potato breeders 
incorporate untested germplasm from different programs to 
make up much of their field in the 1st year of selection, 
which greatly reduces drift between populations and con-
tributes to the limited hierarchical population structure in 
the US commercial potato (Bali et al. 2018; Hirsch et al. 
2013; Pandey et al. 2021). Secondly, while major targets 
of selection for commercial application are generally the 
same among programs, environments between programs dif-
fer greatly. Lastly, potatoes are clonally propagated, which 
allows multi-environmental and multi-year observations of 
identical genotypes without inbreeding.

Potato breeding generally involves growing clonally prop-
agated, F1 individuals at a single location for 2 years and 
a second, geographically proximal location in the 3rd year 
before clones are entered in multi-location trials. Typically, 
only ~ 0.1% of the individuals tested in the first field year 
are selected to continue beyond the third field year, based 
almost entirely on recurrent phenotypic selection with lim-
ited replication; in most programs, only a single individual 
per clone is used in the first field year. There is extensive 
GxE for both yield and quality traits in potato (Affleck et al. 
2008; Yildirim and ÇaliŞkan 1985). The intense selective 
pressure in a relatively small geographic range combined 
with the strong effect of GxE on important traits may lead to 
unintentionally selecting genotypes that are locally adapted. 

However, because programs often exchange material before 
the first field year, the underlying genetic variants giving 
rise to local adaptation are likely to be transient, i.e., no 
one variant is likely to be repeatedly selected across gen-
erations (Yeaman 2015). This might especially be the case 
as clones that perform well across multi-environment trials 
tend to be overrepresented as parents in subsequent years, 
leading to artificially inflated gene swamping, a phenomenon 
where gene flow reduces the frequency of locally adapted 
alleles (García-Ramos and Kirkpatrick 1997; Haldane 1956; 
Kirkpatrick and Barton 1997; Polechová 2018; Polechová 
and Barton 2015). Consequently, we expect only locally 
adapted alleles that are conditionally neutral, showing no 
negative effect outside of the home environment, and that 
are present in the most successful lines to persist year to 
year (Anderson et al. 2013). We further expect variants that 
meet these criteria to be exceedingly rare. Understanding the 
dynamics among these antagonistic processes, selection for 
locally adapted alleles and gene swamping from dissimilar 
environments, in potato will give us insight into the relative 
contribution of local adaptation to early variety development 
in potato breeding programs, which may influence selec-
tion strategies to maximize genetic gain within and between 
environments.

To identify loci underlying local adaptation in potato, 
we interrogated data from the US National Chip Process-
ing Trial (NCPT), where advanced chipping clones from 
public breeding programs in the US are tested across diverse 
environments. Clones are initially submitted to the NCPT 
in their fourth field year. Most clones are only included in 
the NCPT once, though promising lines may be tested in 
subsequent years. Under this selection scheme, we would 
expect clones with an advantage in their home environment 
to potentially outperform more generalist clones before 
entering the NCPT. This may lead to a relatively high fre-
quency of the genetic variants underlying local adaptation 
in the genotypes being submitted to the NCPT, even if those 
variants are maladapted in many target environments.

We scanned the genome for associations between 
allele frequency and different environmental measure-
ments. We used continuous environmental measurements 
during selection (i.e., the 3 years prior to a clone’s entry 
into the NCPT in its home site) as quantitative response 
variables and discrete programs as case-control response 
variables in what is called ‘environmental genome-wide 
association studies’ or envGWAS (Lasky et al. 2023; Li 
et al. 2019; Rowan et al. 2021; see also Lasky et al. 2015; 
Turner et al. 2010). For these analyses, we assumed that a 
clone’s presence in the NCPT is evidence of strong rela-
tive performance in its home environment, as only strongly 
performing clones are submitted to the NCPT. It is impor-
tant to note that we do not expect the genetic markers 
used in our GWAS models to affect the environment, i.e., 
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the environment is independent of allele frequency. envG-
WAS utilizes a ‘reverse regression’ technique, where the 
independent variable is used as the response variable and 
the dependent variable is used as the regressor. Reverse 
regression generally violates a key assumption of linear 
regression, that the independent variables are measured 
without error while the dependent variable is measured 
with error, but this assumption is not likely to be violated 
in envGWAS when using high-quality genetic markers. 
While this method can lend insight into what genomic 
regions may be underlying local adaptation, generally, 
envGWAS as described above does not take into account 
any phenotypic information. envGWAS, therefore, can-
not lend insight into which traits may be responding to 
selection between environments, only whether selection 
for environmental response occurred.

Another key assumption of envGWAS is that it lever-
ages hundreds (or thousands) of generations of selection in 
order to find evidence of local adaptation. For many modern 
crop breeding pipelines, this would make envGWAS inap-
propriate, as there are too few generations to establish a 
strong enough signal of selection considering the polygenic 
nature of local adaptation. However, because potato breeding 
employs such intense selection in a single environment cou-
pled with the use of clones across years, it presents a unique 
opportunity to identify alleles interacting with the environ-
ment. Unlike in natural populations, where ordinarily selec-
tion coefficients are relatively weak, in the potato breeding 
pipeline presented, only ~ 1 in 1000 genotypes tested in a 
small geographic region will be selected to move forward to 
the NCPT. Additionally, because potato is clonally propa-
gated during this selection, both the additive and non-addi-
tive genetic effects underlying local adaptation will be pre-
served (i.e., the genetic gain for local adaptation is governed 
by the broad-sense heritability rather than the narrow-sense). 
Together, this intense selection in a small geographic region 
combined with a clonal selection scheme should result in a 
similar response to selection for local adaptation compared 
to much longer timescales in wild or landrace populations.

Aside from exploring these data for associations between 
different aspects of the selection environment and allele fre-
quencies, we looked for loci associated with genotype-by-
environment interactions (GxE) for yield in the trial environ-
ments. To do so, we calculated reaction norms by regressing 
yield onto environmental measurements. Differences in the 
slope of the reaction norms between genotypes indicate 
GxE, and we map regions of the genome underlying GxE 
across specific environmental gradients by building GWAS 
models for the slope of these reaction norms (Tétard-Jones 
et al. 2011). Taken together, these analyses can lend insight 
into the unintended effect of selection on local adaptation 
and GxE in the NCPT, and can be used to intentionally breed 
ecotypes for specific environments.

Finally, we looked for associations between allele fre-
quency and submission year to understand how allele 
frequencies may be changing over time using Generation 
Proxy Selection Mapping (GPSM; Decker et al. 2012; 
Rowan et al. 2021; Walsh and Lynch 2018). GPSM iden-
tifies regions of the genome under directional selection by 
associating allele frequency with an individual's genera-
tion (or a proxy, thereof). Here, we use the year a clone 
was initially submitted to the NCPT as its generation. We 
use GPSM to look for regions of the genome that is both 
under directional selection and associated with aspects 
of the environment identified by envGWAS. Combining 
these results allows us to understand if variants underly-
ing local adaptation are increasing in frequency over the 
course of the trial period tested. One important caveat for 
this analysis is that the parents of a clone submitted in any 
given year are generally not from the immediately preced-
ing generation and, in fact, may not even be from the same 
generation. This type of crossing scheme complicates the 
interpretation of ‘generation’ in potato and may limit the 
power of GPSM to detect signals of directional selection.

Though climate change increases temperature gener-
ally, it also makes differences between environments more 
pronounced, e.g., prolonged drought in one region with 
simultaneous flooding in another (Trenberth 2005). As our 
growing environments become more disparate, there may 
need to be an increased focus on locally adapted cultivars. 
This is especially true in the global south, where climate 
change will be felt most strongly (Mendelsohn et al. 2006). 
Even ignoring predicted changes to the climate, breed-
ers may be leaving potential genetic gains on the table by 
focusing on broadly performing lines (Ewing et al. 2019). 
While this method might be justified for other crops, where 
the cost of regional breeding programs exceeds the benefit, 
potato breeding in the US is almost entirely carried out by 
regional, public breeders. Finding genomic regions that 
underlie local adaptation will help these breeders make 
progress in selecting for environment-specific germplasm 
under either scenario. Here, we first show that envGWAS 
can be used to find genomic variants that are potentially 
locally adapted, both along measurable environmental gra-
dients and to specific geographic ranges. We then show 
that similar methods can be used to look for regions of 
the genome that may be responsible for GxE to specific 
environmental variables. Finally, we scanned the genome 
for regions that are under directional selection to see if 
these overlap with those identified in our previous analy-
ses. These results present a starting point for generating 
hypotheses about the molecular basis of local adaptation 
and its influence on early generation variety development 
in potato and beyond.
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Materials and methods

National trial data

Yield data from 2010 to 2022 for up to ten trial locations 
per year (California, Florida, Michigan, Missouri, New 
York, North Carolina, North Dakota, Oregon, Texas, and 
Wisconsin; Table 1) were downloaded from the NCPT data-
base (https:// potat oesusa. medius. re). In California, 18 seed 
pieces were planted in two-row plots with in-row spacing of 
0.17 m and 0.8 m between rows, while all other locations 
used single-row plots of 15 seed pieces, with in-row spacing 
of 0.2 m–0.3 m and between-row spacing of 0.8 m–1.4 m. 
Trial management varied across locations, with the intent of 

mimicking local commercial growing conditions. Total yield 
was calculated from the weight of all tubers in each plot (kg) 
and varied widely between trial sites (Fig. 1A). Yield per 
area was calculated as the total yield (kilograms) divided by 
the plot size (hectares; Fig 1B). We partitioned the genotypic 
variance for yield by modeling genotype (g), genotype-by-
year (gY), genotype-by-location (gL) and genotype-by-year-
by-location (gYL) as random effects and year (Y), location 
(L) and year-by-location (YL) as fixed effects:

With mean μ and error ϵ using R/lme4 (Bates et al. 2015) 
in R (v4.1.0; R Core Team 2021).

These analyses used three, overlapping datasets. For the 
genetic variance decomposition, we used all recorded yield 
records from 2010 to 2022, regardless of whether there was 
an associated genotype. This resulted in 22,592 non zero 
yield observations for 1479 unique clones. For the envG-
WAS, we used all clones with genotype data, excluding 
checks and named varieties, resulting in 840 unique geno-
types. For the GWAS on the regression lines of yield onto 
environmental measurements, referred to as ‘regression 
GWAS’ for simplicity, we included checks and named vari-
eties and had phenotype and genotype data for 870 unique 
genotypes and 16,881 non zero yield records. To account 
for differences in plot spacing and number of individuals 
per plot in the regression GWAS, we normalized pheno-
typic data by dividing each plot yield by the mean yield 
within each location-year pair (hereafter referred to simply 
as ‘trial’). Normalized values were then log-transformed to 
give the relative performance of each clone within each trial 
centered on zero.

� = � + Y + L + YL + g + gY + gL + gYL + �,

Table 1  Coordinates and nearest cities for trial locations in the 
National Chip Processing Trial as well as coordinates for nearest 
weather station reported by the National Weather Service. Fields 
were rotated annually, so coordinates for trial sites are approximate

State Nearest city Trial site coordinates Weather station coor-
dinates

Latitude Longitude Latitude Longitude

CA Bakersfield 35.26 − 118.88 35.43 − 119.06
FL Hastings 29.68 − 81.43 29.77 − 81.47
MI Lakeview 43.35 − 85.17 42.88 − 85.52
MO Charleston 36.93 − 89.38 37.23 − 89.58
NC Plymouth 35.87 − 76.65 35.85 − 77.03
ND Hoople 48.53 − 97.62 47.95 − 97.18
NY Ithaca 42.43 − 76.39 42.49 − 76.46
OR Hermiston 45.81 − 119.28 45.83 − 119.26
TX Dalhart 35.97 − 102.73 36.02 − 102.55
WI Hancock 44.12 − 89.54 44.12 − 89.54

Fig. 1  Box and whisker plot 
of yield (A: ton ×  hectare−1; B: 
kg ×  plot−1) for each trial loca-
tion from 2014 to 2020. Black 
lines show the median yield in 
each trial. Boxes show the 1st 
and 3rd quartiles. Whiskers 
extend up to 1.5*interquartile 
range or to the range of the data. 
Points show outlier observa-
tions outside whisker borders. 
Note that neither plot size nor 
number of plants are standard 
across trial locations

https://potatoesusa.medius.re
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All clones included in the analyses had previously been 
genotyped using the potato Infinium SNP array, which has 
evolved through four versions (Felcher et al. 2012; Vos et al. 
2015). Tetraploid genotype calls (coded 0–4) were made 
using a normal mixture model with R/fitPoly (Zych et al. 
2019), and data from earlier versions of the array were 
imputed up to the current version (V4), for a total of 15,133 
markers. Imputation was done with R/randomForest (Brei-
man 2001; Liaw and Wiener 2002) and 100 classification 
trees, using default parameters. For each imputed marker, the 
100 closest markers based on the DMv6.1 reference genome 
(Pham et al. 2020) were used as predictor variables. We fil-
tered out SNPs with minor allele frequencies less than 0.01, 
resulting in 14,838 polymorphic SNPs.

We used principal component analysis (PCA) to look 
for evidence of population structure. Principal components 
(PCs) were calculated using the prcomp function in R. The 
first two PCs were plotted using the R/ggbiplot (Figure S1; 
Vu 2011).

Environmental variables

We collected precipitation and temperature data from the 
National Weather Service (weather.gov), using the weather 
station nearest to the trial (Table 1) and selection (Table 2) 
sites. Missing data was imputed using information from the 
next proximal station. Environmental variables were col-
lected over the growing season, which varied by program 
(Table 3). Maximum daily temperature (maxTemp) and 
minimum daily temperature (minTemp) were collected as 
averages over the growing season. Precipitation was col-
lected as the sum over the growing season. These variables 

were then used in two ways: We averaged the environmental 
variables over the 3 years prior to their entry into the NCPT 
at the selection site, representing the environment during 
early selection, and we averaged the variables over the grow-
ing season within each trial. We chose the 3 years prior to a 
genotype’s entry into the NCPT as the selection environment 
as breeders generally first submit their most promising mate-
rial to the NCPT in the fourth field year (e.g. after 3 years of 
selection have occurred in the selection site).

GWA analyses

We conducted environmental genome-wide association 
studies (envGWAS) using R/GWASpoly package (Rosyara 
et al. 2016). We tested for SNPs associated with local 
adaptation to a general environment in two ways. First, 
we built an envGWAS model with each selection site as a 
case–control response variable, which we called the dis-
crete program test. To reduce the effect of sampling error, 
we only tested for associations with discrete programs if a 
program submitted at least 84 genotypes to the trial during 
this period (10% of all genotypes tested), leaving Maine 
(158 genotypes), Michigan (250 genotypes), New York (86 
genotypes), and Wisconsin (141 genotypes). We justify 
using binary traits in our association analyses by recog-
nizing the linear model as a first-order Taylor approxima-
tion to the generalized linear model and the robustness 
of linear models to misspecification (Zhou et al. 2013). 
Secondly, we build models using latitude and longitude 
of the selected site as a quantitative response variable. We 
used latitude and longitude as responses in the model as 
they are strongly correlated with other environmental vari-
ables (e.g. latitude: daylength and temperature, longitude: 

Table 2  Coordinates and nearest cities for selection locations of 
material submitted to the National Chip Processing Trial as well as 
coordinates for nearest weather station reported by the National 
Weather Service. Fields were rotated annually, so coordinates for 
selection sites are approximate

State Nearest city Selection site coor-
dinates

Weather station 
coordinates

Latitude Longitude Latitude Longitude

CO San Luis Valley 37.71 − 106.14 37.69 − 106.31
ID Aberdeen 42.95 − 112.83 43.86 − 111.28
ME Presque Isle 46.65 − 68.01 46.68 − 68.05
MI Douglass Town-

ship
43.35 − 85.18 42.88 − 85.52

NC Plymouth 35.87 − 76.65 35.85 − 77.03
ND Hoople 48.53 − 97.62 47.95 − 97.18
NY Ithaca 42.43 − 76.39 42.49 − 76.46
OR Hermiston 45.81 − 119.28 45.83 − 119.26
TX Dalhart 36.08 − 102.60 36.02 − 102.55
WI Hancock 44.12 − 89.54 44.12 − 89.54

Table 3  GWAS results from case–control phenotypes for selection 
sites. Chr: chromosome. PVE (%): percent variance explained. Effect: 
effect size estimate. Effect size refers to the change in the likelihood 
a variety came from the associated program relative to all other pro-
grams

Trait Marker Chr Position LOD Score PVE

ME PotVar0121031 4 13,501,726 6.56 3.12
MI PotVar0099575 1 87,260,565 5.20 3.01
MI solcap_snp_c1_14388 9 666,830 6.17 2.90
MI solcap_snp_c1_2187 11 3,304,705 6.77 3.68
NY ST4.03ch01_73188644 1 74,255,819 6.69 2.36
NY ST4.03ch04_25067831 4 13,780,821 6.99 0.19
NY PotVar0082693 4 20,100,066 9.32 1.96
NY PotVar0119445 6 43,717,362 8.74 1.07
NY ST4.03ch06_52872814 6 52,955,662 10.13 1.68
NY solcap_snp_c2_4393 9 13,198,011 5.11 1.62
NY ST4.03ch10_4547390 10 4,204,396 5.79 1.14
WI ST4.03ch07_42076084 7 43,790,278 5.44 2.78
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precipitation, elevation, and soil pH). Latitude and longi-
tude represent “general” environments which allow us to 
identify potential SNPs correlated with one more of these 
environmental variables, as well as their interactions.

We tested for SNPs associated with adaptation to spe-
cific environmental variables by using the environment 
during early selection as the response variable in the 
GWAS models. The 3-year average of minTemp, max-
Temp, and precipitation at the selection sites were used as 
continuous response variables. These serve as the environ-
ment during early selection. We then built linear models 
in the lme4 package and calculated the simple slope for 
each genotype, using yield as the response variable and 
the environmental variables (minTemp, maxTemp and 
precipitation) during the trial as the explanatory variable,

 where Ei is the measurement of the environmental vari-
able i. The simple slope was estimated for each genotype in 
all three environmental variables separately and used as the 
response variable in GWAS. Finally, we used the 1st year a 
clone was submitted to the NCPT as a proxy for its genera-
tion to test for associations between generation and allele 
frequency in Generation Proxy Selection Mapping (GPSM). 
This generation proxy test was used to test for directional 
selection causing changes in allele frequency over time 
while accounting for population structure. We used submis-
sion year as the response variable in a GWAS model.

Results

Partitioning phenotypic variance

Using the NCPT data, we partitioned the genetic variance 
for yield into its constituent parts (Table S1). The different 
components of GxE (genotype-by-year, genotype-by-loca-
tion, and genotype-by-year-by-location) explained a large 
proportion of the genetic variance (5.56%, 22.7%, and 
34.1%, respectively). Genotype’s main effect explained 
just 27.6% of the genetic variance, which demonstrates 
the relative importance of GxE to yield in potato.

� = � + g + Ei,

Association with discrete program during selection

In total, twelve significant markers were identified across 
four selection sites (Maine, Michigan, New York, and Wis-
consin) in the discrete program test (Table 3). All significant 
SNPs identified were unique within selection site (i.e., no 
overlapping markers were identified), though Maine and 
New York both had peaks on chromosome 4 within 2 Mb 
of one another. Linkage disequilibrium estimates in the US 
cultivated potato between 1 and 5 Mb are generally high 
(Pearson’s correlation =  ~ 0.1) depending on the popula-
tion and chromosome of interest, and long-range linkage 
disequilibrium tends to decay more slowly than in diploid 
plants (Vos et al. 2017; Sharma et al. 2018). PCA on the 
genotypes showed little evidence for population structure 
(Figure S1), indicating that these associations were not likely 
due to population stratification between breeding programs. 
We calculated percent variance explained for significantly 
associated markers by backward elimination. The cumula-
tive SNPs associated with Maine, Michigan, New York and 
Wisconsin explained 3.1%, 9.6%, 10.0%, and 2.8% of the 
variance, respectively. It is important to note that the per-
cent variance explained may be inflated from the artificially 
reduced sample size when using a binary trait due to the 
Beavis effect (Beavis 1998).

We identified two SNPs associated with latitude and a 
single SNP associated with longitude (Table 4). Estimated 
effect sizes for latitude were 0.78 and 1.88 degrees latitude 
and explained 5.0% of the variance. The SNP associated 
with longitude had an estimated effect size of − 2.41 degrees 
longitude, explaining 2.6% of the variance. Estimated effect 
size refers to a change in the estimated latitude or longitude 
e.g., an estimated effect size of 2 degrees in the latitude 
model would mean a copy of the alternative SNP is associ-
ated with a selection site that is 222 km farther north than 
genotypes without a copy of the alternative SNP.

Association with continuous environmental 
variables during selection

We identified six SNPs associated with two of the three 
environmental variables tested (minTemp and precipitation) 
(Table 5). For the minTemp model, we found three signifi-
cant markers with effects ranging from –0.91 to 0.47 degrees 

Table 4  GWAS results from latitude and longitude models. Chr: chromosome. Effect: effect size estimate. PVE: percent variance explained (%). 
Effect sizes are in degrees latitude/longitude

Trait Marker Chr Position LOD Score Effect PVE

Latitude PotVar0044336 7 53,313,090 5.29 1.87 2.44
Latitude solcap_snp_c1_8390 9 59,763,922 5.33 0.78 2.55
Longitude ST4.03ch08_1934839 8 2,563,277 5.40 − 2.41 2.57
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C which explain 8.9% of the variance. In the precipitation 
model, we find three significant markers with estimated 
effect sizes of − 3.66 and 2.55 cm explaining 10.8% of the 
variance (Fig. 2C). There was a relatively strong positive 
Pearson’s correlation (r) between minTemp and maxTemp 
(0.70), a relatively weak negative r between maxTemp and 
precipitation (− 0.14), and a relatively strong positive r 
between minTemp and precipitation (0.49, Fig. 2D).

Association with regression of yield 
and environmental variables during the trial

To find SNPs that may be underlying GxE for yield across 
specific environmental gradients during the trial, we looked 
for associations between SNP frequencies and the slope of 
the regression line of yield onto three environmental vari-
ables in our regression GWAS models. We found two unique 
SNPs significantly associated in our regression GWAS for 
maxTemp, while no SNPs were identified in the precipita-
tion or minTemp regression GWAS (Fig. 3 and Table 6). 
The markers identified in the maxTemp regression GWAS 
model explain 1.2% and 2.5% of the variance. There was 
a relatively strong positive r between minTemp and max-
Temp (0.58), a moderate negative r between maxTemp and 

precipitation (− 0.38), and a moderate positive r between 
minTemp and precipitation (0.32, Fig. 3D).

Generation proxy selection mapping

We tested for changes in allele frequency over time by Gen-
eration Proxy Selection Mapping (GPSM) to see if SNPs 
identified in our previous tests changed in frequency over 
the period investigated. We identified ten SNPs significantly 
associated with the year a clone was originally submitted 
to the NCPT (Fig. 4 and Table S2). No significant markers 
identified in the GPSM model were within 2 Mb of those 
identified in either the envGWAS models or regression 
GWAS, and only three markers were identified within 5 Mb 
(Table S2).

Discussion

Local adaptation is transient in the NCPT

We did not find evidence of directional selection for local 
adaptation in our GPSM model. There were no markers iden-
tified in our GPSM model within 1 Mb of either the markers 
identified by envGWAS or those identified by regression 

Table 5  GWAS results 
from selection environment 
(continuous environmental 
variable) models. Chr: 
chromosome. Effect: effect size 
estimate. PVE (%): percent 
variance explained. Effect 
sizes are degrees Celsius 
(maxTemp, minTemp) and cm 
(precipitation)

Trait Marker Chr Position LOD Score Effect PVE

minTemp ST4.03ch06_57692614 6 57,440,194 6.38 − 0.92 2.71
minTemp ST4.03ch09_411487 9 435,297 5.64 − 0.41 2.60
minTemp solcap_snp_c1_11105 11 2,567,216 7.09 0.47 3.60
Precipitation ST4.03ch02_14148961 2 13,661,372 6.39 2.55 2.82
Precipitation ST4.03ch06_57244824 6 57,004,580 5.87 − 3.66 3.56
Precipitation ST4.03ch08_1934839 8 2,563,277 8.58 − 2.85 4.43

Fig. 2  (A–C) Manhattan plots 
of envGWAS results for the dif-
ferent environmental variables 
during selection: A minimum 
daily temperature, B maximum 
daily temperature and C precipi-
tation. Dashed lines represent 
the 5% significance threshold 
adjusted for the number of 
effective markers. D Pearson's 
correlations (r) between the dif-
ferent environmental variables 
at the selection locations
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GWAS models. This result confirmed the expectation that 
local adaptation is transient in the NCPT. In other words, 
while GxE plays an important role in driving selection in 
early field years leading to local adaptation, only condition-
ally neutral alleles perform well across the trials and clones 
with broad application are overrepresented as parents. The 
selection of broadly adapted clones and the exchange of 

material between breeding programs means gene swamp-
ing is likely to prevent locally adapted alleles from rising 
in frequency. This is especially true in potato, where there 
is a very limited population structure and released lines are 
required to perform well widely. In other contexts, gene 
swamping may not suppress directional selection for local 
adaptation within a breeding program if a stronger within-
program population structure exists and lines are expected 
to be grown over smaller geographic ranges.

Breeding for ecotypes within potato

Presently, potato breeders in the US focus on releasing lines 
that perform well across broad geographic ranges in multiple 
production systems. One reason for this is chip processing 
plants accept only specific varieties in an attempt to reduce 
the phenotypic variation and waste from automation, with 
only coarse scale stratification (northern versus southern). 
The relative sparsity of associations with latitude and lon-
gitude we uncovered is consistent with the findings of   pre-
vious studies (Schmitz Carley et al. 2019), which suggest 
that latitude is not sufficient to explain variance in potato-
growing environments. Moreover, as the climate continues 
to change, growing a single variety across a large geographic 
range may lead to more phenotypic variation because of the 
large GxE component contributing to genetic variance in 
agronomically important traits.

Fig. 3  (A–C) Manhattan plots 
of regression GWAS for (A) 
minimum daily temperature, B 
maximum daily temperature and 
C precipitation at the trial loca-
tions. Dashed lines represent 
the 5% significance threshold 
adjusted for the number of 
effective markers. D Pearson's 
correlations (r) between the dif-
ferent environmental variables 
at the trial locations

Table 6  GWAS results from regression models. Chr: chromosome. Effect: effect size estimate. PVE (%): percent variance explained. Effect sizes 
refer to changes in estimated slope from the regression models used

Trait Marker Chr Position LOD Score Effect PVE

maxTemp slope solcap_snp_c2_32802 8 38,420,172 5.18 0.012 1.40
maxTemp slope ST4.03ch10_1779334 10 1,693,606 5.15 − 0.022 2.49

Fig. 4  Manhattan plot of Generation Proxy Selection Mapping 
(GPSM) model. We use the year a clone was first entered into the 
national trial as a proxy for its generation. The dashed line represents 
the 5% significance threshold adjusted for the number of effective 
markers. Points above the dashed line represent SNPs that changed in 
frequency throughout the years tested
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Phenotypic variation could potentially be reduced by 
using ecotypes, lines selected for specific environments. 
Schmitz Carley et al. (2019) lay out the groundwork to breed 
for regionally adapted varieties by quantifying the genetic 
covariance of environments in the NCPT, i.e., quantifying 
the genetic response to environment between regions. This 
method highlights the similar effect of regions on genotypes 
without requiring the identification of the environmental fac-
tor responsible for that effect (climate, geography, soil type, 
production system, etc.). Knowing the genetic covariance 
of environments allows breeders to appropriately weigh the 
importance of phenotypes in each trial location to breed for 
a specific region. This work expands on that by identifying 
specific genomic regions and potential variants that may be 
important during ecotype establishment.

However, we suggest envGWAS and regression GWAS 
be used cautiously, as these methods cannot replace fine-
scale mapping techniques to identify causal loci underpin-
ning environmental adaptation. Further, it is important to 
note that the regression GWAS ignores the error in the slope 
estimate, which was considerable: 95% confidence inter-
vals were large relative to the range of slope estimates, and 
many confidence intervals crossed zero (e.g., the confidence 
interval contained both positive and negative estimates for 
a genotype’s slope). We also assume a linear relationship 
between yield and environmental measurements, which is 
often not the case. We justify the use of regression GWAS by 
treating these errors as measurement error and expect such 
error to be randomly distributed between genotypes, which, 
while reducing power considerably, should not result in an 
excess of spurious correlations.

Local adaptation influences early field year 
selection

We found several SNPs associated with both specific breed-
ing programs and environmental variables during selection. 
Identified SNPs associated with the selection environment 
explain as much as 10.8% of the variance in environmen-
tal measurements, implying that selection is leading to an 
overabundance of these SNPs. This suggests that while local 
adaptation may provide a benefit within certain environ-
ments, it may hinder performance outside of that context. 
So, while there may be SNPs that are repeatedly selected 
within certain environments, they fail to rise in frequency 
in the greater population as a product of gene swamping 
during the national trial, as discussed above. The antagonis-
tic process of selection within environment and subsequent 
gene swamping acts to slow breeding progress as the genetic 
gains within selection environment are not realized in the 
broader context. This further emphasizes the potential ben-
efit of regional varieties. With regional variety development, 
producers and processors can take advantage of the genetic 

gains for beneficial environmental responses realized during 
selection.

Environment is not the only difference in selective pres-
sure across breeding programs. Breeders focusing on one 
trait over another may also lead to associations that would 
not necessarily correlate with the environment, and, while 
breeder preference would still act to increase fitness of those 
genotypes with the more optimal trait value, this does not fit 
the traditional definition of local adaptation. Furthermore, 
while we found very little population structure among the 
NCPT genotypes, it is still possible that what structure is 
there is leading to spurious associations. Breeder preference 
and population structure are confounded with environment 
within the program specific GWAS models. However, there 
is no reason to believe that either of these would be cor-
related with environmental variables. We found no overlap 
between the significant markers identified in the program 
specific models and those identified by other envGWAS 
models. This suggests that the significant SNPs we find in 
the models for environmental variables are due to environ-
mental response and not due to the idiosyncrasies that cause 
spurious associations in the case-control program specific 
models.

Conclusions

While breeding efforts in potato often focus on identify-
ing cultivars that perform well across a wide range of envi-
ronments, early selection takes place in a relatively small 
region. Given the high proportion of phenotypic variance 
explained by GxE, this early breeding strategy should 
result in lines that perform best where they were selected 
i.e., locally adapted lines. To understand how this selec-
tion scheme impacts the frequency of SNPs associated with 
continuous environmental variables during early field year 
selection, we employed envGWAS to search for markers 
associated with both specific environmental variables and 
general environments during the first 3 years of selection. 
These tests resulted in the identification of many SNPs 
across the genome which may represent parts of the genome 
under selection for local adaptation. We also found SNPs 
associated with the regression between environmental vari-
ables at each growing location and yield. These SNPs may 
be indicative of QTL underlying a yield advantage across 
different environmental gradients. We did not find evidence 
of directional selection for SNPs underlying local adapta-
tion, implying that local adaptation is transient under the 
current potato breeding strategy. This method can be applied 
to other species that collect phenotypic and genotypic data 
on individuals that were selected in different conditions 
and grown in common environments. These results can be 
used to generate hypotheses about the molecular basis of 
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local adaptation/response to environment and to breed crops 
for specific environments by identifying markers and their 
effects across those environments. As the climate continues 
to change, moving breeding targets from varieties with broad 
application to ecotypes will become more important. Our 
results suggest that existing data can be used to jumpstart the 
process of identifying causal loci underlying environmental 
response for rapid ecotype development through marker-
assisted selection and/or genomic selection.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00122- 024- 04610-3.
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