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Abstract
Key message  Recent developments in understanding the distribution and distinctive features of recombination hot-
spots are reviewed and approaches are proposed to increase recombination frequency in coldspot regions.
Abstract  Recombination events during meiosis provide the foundation and premise for creating new varieties of crops. The 
frequency of recombination in different genomic regions differs across eukaryote species, with recombination generally 
occurring more frequently at the ends of chromosomes. In most crop species, recombination is rare in centromeric regions. If 
a desired gene variant is linked in repulsion with an undesired variant of a second gene in a region with a low recombination 
rate, obtaining a recombinant plant combining two favorable alleles will be challenging. Traditional crop breeding involves 
combining desirable genes from parental plants into offspring. Therefore, understanding the mechanisms of recombination 
and factors affecting the occurrence of meiotic recombination is important for crop breeding. Here, we review chromo-
some recombination types, recombination mechanisms, genes and proteins involved in the meiotic recombination process, 
recombination hotspots and their regulation systems and discuss how to increase recombination frequency in recombination 
coldspot regions.

Introduction

Meiosis is an essential part of sexual reproduction in most 
organisms. This process halves chromosome numbers by 
coupling a single round of DNA replication with two con-
secutive rounds of nuclear division (meiosis I and meiosis 
II) to produce haploid gametes (Hillers et al. 2017; Kleck-
ner 1996). During meiosis I, replicated homologous chro-
mosomes align and undergo recombination between non-
sister chromatids before separating. Then, during meiosis 
II, sister chromatids segregate, ultimately producing four 
gametes (Kleckner 1996) with each gamete containing one 
set of chromosomes. When one gamete from one sex com-
bines with a gamete of the opposite sex, the chromosome 
number of the subsequent generation returns to the parental 

level, maintaining a steady state (Hillers et al. 2017). This 
process leads to new combinations of alleles present in the 
progenies. As a result, chromosome recombination during 
meiosis is regarded as the foundation for genetic diversity 
and the evolution of species.

Recombination rates vary across different regions of 
chromosomes (Blair et al. 2018; Henderson 2012; Kauppi 
et al. 2004). In most crop species, recombination rates 
are positively correlated with the distance from the cen-
tromere and gene densities but negatively correlated with 
transposable elements (Barakate et al. 2014; Blair et al. 
2018; Henderson 2012; Kauppi et al. 2004; Phillips et al. 
2010; Shen et al. 2017). The genomic region that has a 
relatively higher recombination frequency is referred to 
as recombination hotspot, while the region with a lower 
recombinant frequency is called a coldspot. Traditional 
crop breeding relies heavily on incorporating beneficial 
gene alleles from parental chromosomes into their off-
spring. Consequently, low recombination frequency ham-
pers the selection of lines that pyramid favorable close-
linked traits within coldspots in crop breeding programs. 
Due to increased food demand and rapidly deteriorating 
climate change, it is an urgent requirement to create new 
varieties that would possess high yields and better quality 
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while being climate resilient. However, previous studies 
indicated that many genes, such as around one-third in 
barley, are located in recombination coldspot regions (Hig-
gins et al. 2014). This poses a challenge for crop breeders, 
as achieving their objectives leads to a significant increase 
in breeding costs and cycle times.

Although recombination mechanisms are not yet 
fully understood, substantial progress has been made in 
studying recombination models. This review provides 
an overview of gene recombination types and genetic 
mechanisms, the genes participating in the recombination 
process, the classification of recombination pathways, the 
distribution of recombination events and their regulatory 
systems in plants. Additionally, we explore the potential 
for enhancing recombination rates in coldspot regions.

Gene recombination and genetic 
mechanisms

Recombination types

In genetics, recombination refers to the process of rearrang-
ing genetic material from different chromosomes or regions 
to create new DNA combinations (Rice 2002; Stapley 
et al. 2017). It can occur naturally in both eukaryotes and 
prokaryotes and can also be induced in a laboratory (Baker 
et al. 1976; Camerini-Otero and Hsieh 1995; Covo et al. 
2012; Gratia 2017; Paques and Haber 1999; Schnable et al. 
1998). Recombination types are primarily classified into 
four groups: homologous recombination, non-homologous 
recombination, site-specific recombination and transposition 
(Fig. 1).

Fig. 1   Four recombina-
tion types. a The process of 
homologous recombination 
involves the DNA double-strand 
break and rejoining the strands. 
It results in an exchange of 
genetic information between the 
homologous chromosomes. b 
The yellow and orange blocks 
represent the segments at the 
sites of nonhomologous recom-
bination. It does not require 
sequence homology between 
the DNA molecules and can 
introduce mutations at the site 
of the break. c Site-specific 
recombination catalyzed by site-
specific recombinase enzymes, 
is usually observed between 
two different DNA molecules 
among bacteriophages, bacteria, 
and unicellular eukaryotes. d 
The red block represents the 
transposable element of DNA 
which could be integrated into 
the genome
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Homologous recombination, known as general recombi-
nation, typically occurs during meiosis in eukaryotic cells 
(Camerini-Otero and Hsieh 1995). It involves the exchange 
of genetic information between the alleles of homologous 
chromosomes and generates genetic diversity in offspring. 
The occurrence of homologous recombination requires 
homologous segments that have large-scale significant 
similar sequences to line up in proximity. Non-homologous 
recombination process ligates the broken ends of DNA 
together directly with no requirement of a homologous 
sequence to serve as a template to repair DNA double-
stranded breaks (DSBs) (Pannunzio et al. 2018). It is more 
prone to mistakes and can give rise to the deletion or inser-
tion of genetic material at the break site and even chromo-
somal abnormalities. These outcomes can have significant 
consequences for gene function and regulation (Pannunzio 
et al. 2018). Site-specific recombination process is catalyzed 
by site-specific recombinases and reintegrates the DNA seg-
ments at specific sites (Grindley et al. 2006). The transposi-
tion process involves the movement of transposable elements 
within the genome. Replicative transpositions may result in 
the creation of a new copy (Fedoroff 2000). A homologous 
recombination during meiosis is the primary type of recom-
bination employed in crop breeding programs. Therefore, 
our focus will be on this specific type of recombination.

Homologous recombination process

The genetic recombination process has a variety of forms 
and presents great complexities, varying among species. In 
the meiosis of eukaryotes, the widely accepted model of 
homologous recombination is primarily based on studies of 
DSB repair in Saccharomyces cerevisiae (Aylon and Kupiec 
2004; Osman et al. 2011). This process is initiated by pro-
grammed DSB and involves rejoining of DNA sequences 
(Lake and Hawley 2016; Murakami and Keeney 2008). DSB 
repair could generate either crossover (CO) recombination or 
non-crossover (NCO) recombination through different path-
ways, including double Holliday junction (dHJ) model and 
synthesis-dependent strand annealing (SDSA) model. The 
CO recombination modifies two chromatids by exchanging 
large DNA fragments, while NCO only involves copying and 
replacing a short stretch of DNA without exchange (Fig. 2). 
Homologous chromosome pairing and recombination occur 
in the prophase phase of meiosis I (prophase I) (Azumi 
et al. 2002; Zickler and Kleckner 2015). The chromosomes 
start to condense and become thin filaments that could be 
visible under the light microscope during the Prophase I 
leptotene stage (Hartl and Ruvolo 2012). At the zygotene 
stage, homologous chromosomes align closely through the 
formation of a synaptonemal complex (SC), a unique pro-
teinaceous structure (Fraune et al. 2012; Hartl and Ruvolo 
2012; Heyting 1996; Hillers et al. 2017; Page and Hawley 

2004). The SC is completely assembled during pachytene 
stage, and is considered to promote the initiation of recom-
bination events (Fraune et al. 2012; Hartl and Ruvolo 2012; 
Hayashi et al. 2010; Hernandez-Hernandez et al. 2016; 
Hillers et al. 2017; Kouznetsova et al. 2011; Schramm et al. 
2011). The CO takes place between two non-sister chroma-
tids of the homologous chromosomes during the pachytene 
stage (Gilbert and Barresi 2016; Hartl and Ruvolo 2012). 
In the diplotene stage, homologous chromosomes start to 
separate from each other with the dissolution of SC and 
are only attached at chiasmata (Armstrong and Jones 2003; 
Hartl and Ruvolo 2012; Heyting 1996). Finally, the chromo-
somes become fully condensed during the diakinesis stage 
(Hartl and Ruvolo 2012; Taiz et al. 2015). Some studies sug-
gest that homology along the chromosome arms is the main 
determinant of the recognition and pairing of homologous 
chromosomes, with centromeres playing a negligible role in 
this process during meiosis (Corredor et al. 2007; Lefrancois 
et al. 2016).

Genes involved in DSB formation

DSB could be caused by exogenous or endogenous fac-
tors in a variety of circumstances. Genes that function in 
DSB formation are exceptionally diverse, which makes 
the study of the mechanism extremely complex (Table 1). 
During meiosis, the conserved SPO11 protein is one of the 
primary participants involved directly in the DSB process 
(Keeney and Neale 2006; Lam and Keeney 2015). It shares 
homology with the subunit A of archaeal topoisomerase VI 
(TopVIA), a type II DNA topoisomerase (Bergerat et al. 
1997; Gadelle et al. 2003; Keeney 2008). Two hybrid active 
sites of the Spo11 contain tyrosine which reacts with the 
phosphodiester linkage of DNA to cleave DNA strands 
(Diaz et al. 2002; Nichols et al. 1999; Shingu et al. 2010). 
In addition, the homolog of archaeal topoisomerase VI subu-
nit B (TopVIB), known as the meiotic topoisomerase VI B 
subunit (MTOPVIB), forms a complex with SPO11 and is 
also required for DSB formation in the meiotic recombina-
tion process (An et al. 2011; Fu et al. 2016; Robert et al. 
2016; Tang et al. 2017; Vrielynck et al. 2016; Xue et al. 
2016). Studies in S. cerevisiae indicate that SPO11 alone is 
insufficient to generate DSB. There are at least nine other 
proteins that promote DSB formation, namely Ski8, Mei4, 
Mer2, Mre11, Rad50, Rec102, Rec104, Rec114, and Xrs2 
(Cole et al. 2010; Lam and Keeney 2015; Neale et al. 2005). 
They can form several different interacting subcomplexes, 
Spo11-Ski8, Rec102-Rec104, Rec114-Mei4-Mer2 and 
Mre11-Rad50-Xrs2 (MRX) (Lam and Keeney 2015; Li et al. 
2006; Maleki et al. 2007). It is worth noting that the MRX 
complex is not only recruited during DSB formation but also 
plays a role in the subsequent DSB repair processes (Borde 
et al. 2004; Williams et al. 2007).
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There are functional divergences and significant 
sequence evolutionary divergences among some DSB 
proteins across different species. For example, AtMRE11 
and AtRAD50 only participate in the DNA repair process 

rather than generating DSB, and Ski8 is involved in DSB 
formation in S. cerevisiae but not in Arabidopsis (Jol-
ivet et al. 2006; Osman et al. 2011). In rice, OsSPO11-1 
and OsSPO11-4 participate in DSB formation, while 

Fig. 2   CO and NCO produced from the homologous recombination. 
The homologous recombination begins with the DNA double-strand 
breaks of one of the homologous DNA duplexes, shown as blue 
strands. The 5′ end of the DSB is resected by specific nucleases to 
generate 3′ single-stranded DNA. One of the 3′ ends invades another 
homologous DNA duplexes which are shown as red strands, forming 
a displacement loop (D-loop) structure. DNA polymerase extends 

the invading 3′ end strand to generate the new DNA. For SDSA, 
the newly synthesized strand is displaced from the D-loop and then 
anneals, and typically produces NCO products. The formation of dHJ 
is derived from capturing the second end of the break after DNA syn-
thesis extends the invading strand. It is resolved by cutting the non-
crossed strands and producing NCO or by cutting the crossed strands 
and creating COs
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Table 1   List of genes involved in DSB and repair

Function Protein Species Reference

DSB formation SPO11-1 Arabidopsis Grelon et al. (2001); Hartung et al. (2007)
Rice Yu et al. (2010)

SPO11-2 Arabidopsis Hartung et al. (2007); Stacey et al. (2006)
SPO11-4 Rice An et al. (2011)
MTOPVIB Arabidopsis Vrielynck et al. (2016)

Rice Xue et al. (2016)
PRD1 Arabidopsis De Muyt et al. (2007)
PRD2 Arabidopsis De Muyt et al. (2009)
PRD3 Arabidopsis De Muyt et al. (2009)
PAIR1 Rice Nonomura et al. (2004)
DFO Arabidopsis Zhang et al. (2012)
CRC1 Rice Miao et al. (2013)
PHS1 Arabidopsis Ronceret et al. (2009)

Maize Pawlowski et al. (2004)
DSB repair MRE11 Arabidopsis Puizina et al. (2004)

Rice Ji et al. (2013)
RAD50 Arabidopsis Bleuyard et al. (2004)
NBS1 Arabidopsis Waterworth et al. (2007)
COM1 Arabidopsis Uanschou et al. (2007)

Rice Ji et al. (2012)
RAD51 Arabidopsis Da Ines et al. (2012); Su et al. (2017)

Rice Byun and Kim (2014); Kou et al. (2012); Tang et al. (2014)
Maize Li et al. (2007)

DMC1 Arabidopsis Couteau et al. (1999); Da Ines et al. (2012)
Rice Deng and Wang (2007)

RPA Arabidopsis Aklilu et al. (2014)
Rice Chang et al. (2009b); Li et al. (2013); Shultz et al. (2007)

BRCA2 Arabidopsis Siaud et al. (2004)
MND1 Arabidopsis Panoli et al. (2006); Vignard et al. (2007)
HOP2 Arabidopsis Uanschou et al. (2013)
XRCC2 Arabidopsis Wang et al. (2014)
XRCC3 Arabidopsis Bleuyard and White (2004); Su et al. (2017)
RFC1 Arabidopsis Liu et al. (2013)
SDS Arabidopsis Azumi et al. (2002)

Rice Chang et al. (2009a)
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OsSPO11-2 and OsSPO11-3 are not involved in DSB 
formation (An et al. 2011; Yu et al. 2010). Arabidopsis 
is widely accepted as a model system in plant scientific 
research, containing three SPO11 homologs, AtSPO11-
1, AtSPO11-2, and AtSPO11-3 (Hartung and Puchta 
2000; Stacey et  al. 2006). However, only AtSPO11-1 
and AtSPO11-2 are essential for DSB formation, likely 
acting as heterodimers in meiotic recombination (Gre-
lon et al. 2001; Hartung et al. 2007; Stacey et al. 2006). 
Numerous proteins, such as AtPRD1, AtPRD2, AtPRD3 
and AtDFO, participate in DSB formation in Arabidopsis 
(Muyt et al. 2009, 2007; Zhang et al. 2012). The protein 
AtPRD1 shows interactions with AtSPO11-1, AtSPO11-2, 
MTOPVIB, AtPRD3 and AtDFO, although there is cur-
rently no evidence of its interaction with AtPRD2 (Muyt 
et al. 2007; Tang et al. 2017).

DSB end processing and a single strand DNA 
invasion

After DSB, SPO11 remains covalently linked to the 5′ ter-
minal of each broken DNA strand (Keeney et al. 1997; Lam 
and Keeney 2015; Neale et al. 2005). The MRX complex 
(composed of MRE11, RAD50, Xrs2) works with Com1/
Sae2 (Table 1) to resect the 5′ end on each side of the DSB 
and remove SPO11 (Aylon and Kupiec 2004; Cannavo and 
Cejka 2014). Further resections of the 5′ termini are con-
ducted by exonuclease 1 (EXO1), resulting in the generation 
of 3′ ssDNA tails (Garcia et al. 2011). With the assistance 
of recombinases, these ssDNA tails invade the homolo-
gous duplex DNA to form a recombination intermediate 
known as D-loop (Hunter 2015; Hunter and Kleckner 2001; 
Lichten 2001; Martinez-Perez and Colaiacovo 2009; Wang 
and Copenhaver 2018). A replication protein A (RPA) binds 

Table 1   (continued)

Function Protein Species Reference

CO and NCO formation MER3/RCK Arabidopsis Chen et al. (2005); Mercier et al. (2005)

Rice Chang et al. (2009a)

MUS81 Arabidopsis Hartung et al. (2006); Higgins et al. (2008a)

MSH4 Arabidopsis Higgins et al. (2004)

MSH5 Arabidopsis Higgins et al. (2008b)

Rice Luo et al. (2013)

ZIP4 Arabidopsis Kuromori et al. (2008)

Rice Shen et al. (2012)

PSS1 Arabidopsis Duroc et al. (2014)

Rice Zhou et al. (2011)

Ph1 Wheat Griffiths et al. (2006)

HEI10 Arabidopsis Chelysheva et al. (2012)

Rice Wang et al. (2012)

MLH1 Arabidopsis Dion et al. (2007)

MLH3 Arabidopsis Jackson et al. (2006)

ZYP1 Arabidopsis Higgins et al. (2005)

Barley Barakate et al. (2014)

FANCM Arabidopsis Crismani et al. (2012); Knoll et al. (2012)

Brassica Blary et al. (2020)

RTEL1 Barley Barakate et al. (2021)

RECQ4 Arabidopsis Seguela-Arnaud et al. (2015)

Tomato De Maagd et al. (2020)

Top3 α Arabidopsis Seguela-Arnaud et al. (2017); Seguela-Arnaud et al. (2015)

FIGL1 Arabidopsis Fernandes et al. (2018a)
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the 3′ terminus to prevent degradation and remove second-
ary structures, facilitating the recruitment of recombinases 
(Soustelle et al. 2002; Wold 1997). RPA is a heterotrim-
eric complex that consists of three subunits: RPA1, RPA2 
and RPA3 (Ribeiro et al. 2016) (Table 1). RPA also act on 
DNA annealing which is promoted by Rad52 protein dur-
ing second-end capture (Nimonkar et al. 2009; Sugiyama 
et al. 2006; Wang and Haber 2004). Once the 3′ ssDNA tails 
are protected, recombinase A (RecA)-like related recom-
binases are loaded to form presynaptic nucleoprotein fila-
ments. These filaments facilitate the invasion of free 3′ end 
ssDNA into the duplex DNA of the paired homologous chro-
mosome, forming the D-Loop in yeast (Brown and Bishop 
2015; Shinohara et al. 1992). Two homologs of the bacte-
rial RecA, Rad51 and Dmc1, have been discovered in most 
eukaryotic organisms (Table 1) (Bishop et al. 1992; Brown 
and Bishop 2015; Shinohara et al. 1992). Both recombinases 
play crucial roles in efficient meiotic recombination. Rad51 
not only directly facilitates recombination during mitosis but 
also participates in meiotic recombination, whereas Dmc1 
is merely required for meiotic recombination (Bishop 2012; 
Bishop et al. 1992; Shinohara et al. 1992).

DSB repair

The current meiotic DSB repair model is broadly divided 
into two categories: the dHJ model and the SDSA model. 
Both of these models have been observed in yeast system 
(Mitchel et al. 2010). In the dHJ model, the invading 3′ end 
function as a primer to initiate the DNA synthesis using 
invaded DNA as the template (Szostak et al. 1983). Con-
sequently, the newly synthesized DNA contains a specified 
sequence which is the same as the invaded DNA. The strand 
invasion and second end capture lead to the formation of 
dHJ, which are resolved to form CO or NCO products (Szos-
tak et al. 1983; Wyatt and West 2014). The characteristic of 
the SDSA model is strand displacement, where the invad-
ing strand can anneal with the other 3′ single-stranded end 

(Szostak et al. 1983). In the SDSA model, only one DNA 
terminal participates in the invasion process, while another 
one utilizes newly synthesized DNA as a template for syn-
thesis. This process results in the formation of NCO prod-
ucts (Szostak et al. 1983).

In general, the majority of CO products are formed 
through the dHJ intermediate, while most NCO is primarily 
produced via the SDSA (Allers and Lichten 2001; McMahill 
et al. 2007). These intermediates can either undergo a repair, 
resulting in gene conversions, or they can segregate during 
the next round of replication. In addition, the dissolution 
of dHJs could also give rise to some NCO products (Wyatt 
and West 2014). Usually, only a small proportion of meiotic 
DSBs are repaired into COs in plants. Meiotic DSBs are 
generated in excess with more than 90% of plant DSBs being 
repaired using the sister chromatid as a template or being 
resolved as NCO (Mercier et al. 2015).

DSB and CO events are associated 
with chromosome number and size

The identification of recombination distribution provides 
valuable insights into genome evolution and plant breed-
ing. Distribution patterns of DSB and CO, along with their 
hotspots, have been reported in various species (Table 2).

DSB varies considerably across different species. About 
200 DSB events in Arabidopsis (Sanchez-Moran et al. 2007) 
and ~ 500 DSBs in maize (Pawlowski et al. 2003) have been 
detected. More DSB events (2100) have been identified in 
bread wheat as wheat has a larger genome size and a greater 
number of chromosomes (Gardiner et al. 2019). This sug-
gests a correlation between the number of chromosomes and 
the genome size with the frequency of DSB events.

Only a small amount of DSBs are repaired into CO, 
for example, about 4% in maize (Sidhu et al. 2015). In 
Arabidopsis (2n = 10), the number of COs ranged from 7 
to 13 across different studies, with six NCOs reported. In 

Table 2   Recombination profile 
in different species

Species DSB NCO CO Chr. pairs Genome size Reference

Arabidopsis – – 8–13 5 0.135 Gb Lian et al. (2022)
Arabidopsis  ~ 200 – 7–11 5 0.135 Gb Sanchez-Moran et al. (2002)
Arabidopsis – 6 9 5 0.135 Gb Lu et al. (2012)
Maize – – 16–19 10 2.4 Gb Sidhu et al. (2015)
Maize  ~ 500 – 20 10 2.4 Gb Anderson et al. (2003); 

Pawlowski et al. (2003)
Maize 218–608 – 11.2–19.4 10 2.4 Gb Sidhu et al. (2015)
wheat  ~ 2100 – 55 21 17 Gb Gardiner et al. (2019)
Barley – – 19–24 7 5.1 Gb Phillips et al. (2015)
Soybean – 25 49–59 20 1.1 Gb Ma et al. (2023)
Cucumber – – 12.9–13.8 7 0.367 Gb Wang et al. (2023)
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soybean (2n = 40), the average number of COs per recom-
binant line is 49–59, while NCOs are about 25, about half 
of the CO events. In cucumber (2n = 14), a dicot species, 
the average number of COs per individual ranges from 
12.9 to 13.8, approximately one for each chromosome. In 
maize (2n = 20), a monocot species, approximately 500 
DSBs were identified per cell, while only 20 COs were 
formed. In bread wheat, 55 COs were identified, while 
in barley (2n = 14), 19–24 COs were estimated across 45 
genetic mapping populations (Table 2). The total number 
of COs is associated with the number of chromosomes. 
Soybean and bread wheat contain similar pairs of chromo-
some numbers, 20 and 21, respectively, and their COs are 
both around 55 (Table 2). For the species with a smaller 
number of chromosomes (5—10 pairs), e.g. Arabidopsis, 
cucumber, maize and barley, their corresponding COs 
are less than 25, confirming that the number of COs is 
positively correlated with the number of chromosomes. 
Besides, chromosome size also shows influence on CO 
events. For example, both cucumber and barley have seven 
pairs of chromosomes, but the genome size in barley is 
13.5 times greater than that of cucumber. The considerably 
longer chromosomes in barley compared to cucumber lead 
to nearly twice as many.

In plants, typically one to two COs are distributed 
across most individual chromosomes (Jones and Franklin 
2006; Sidhu et al. 2015), with the majority of DSBs being 
repaired as NCOs through DNA synthesis, utilizing the 
homologous chromosome as a template or the sister chro-
matid (Allers and Lichten 2001). Nevertheless, regardless 
of the mechanisms, as indicated by the studies listed in 
Table 2, the majority of genetic variation generated by 
meiotic recombination in plants originates from COs.

The factors determining whether COs or NCOs form 
from DSB are poorly understood. Studies conducted in 
mouse, C. elegans, and budding yeast have indicated that 
CO numbers are not impacted by DSB numbers, even 
when the number of DSB varies significantly (Cole et al. 
2012; Martini et al. 2006; Rosu et al. 2011; Yokoo et al. 
2012). In contrast, a strong correlation between the num-
ber of meiotic DSBs and COs has been found in maize 
(Sidhu et al. 2015) with 25.8% of bivalents having single 
chiasma, 72.6% forming two chiasmata and only 1.7% dis-
playing three chiasma (Sidhu et al. 2015).

Furthermore, variations in recombination frequency 
exist between genders within the same species (Lenor-
mand and Dutheil 2005; Martinez-Perez and Colaiacovo 
2009). For example, in Arabidopsis, the recombination 
rate is higher males than in females, particularly in the 
sub-telomeric region (Giraut et al. 2011). A similar differ-
ence has been found in barley, with male gametes showing 
more COs than female gametes (Phillips et al. 2015).

CO hotspot distribution 
across chromosomes

A prerequisite for the formation of recombination is the 
occurrence of DSB. In the search of DSB hotspots, research-
ers have found a close relationship between the number of 
hotspots and chromosome length, with the average hotspot 
length being 1 ~ 2 kb (He et al. 2017; Paul et al. 2016). In 
maize, there is a low frequency of CO hotspots occur in 
the centromeric and pericentromeric chromosome regions, 
while these regions exhibit a high frequency of the DSB 
hotspots (He et al. 2017). In S. cerevisiae, hypomorphic 
mutants of spo11 show a decrease in DSB number but not 
CO numbers (Martini et al. 2006). As the repair of DSB can 
proceed via either the CO pathway or the NCO pathway, an 
increase in CO may occur at the cost of NCOs, maintaining 
homeostasis (Martini et al. 2006). Consequently, there isn’t 
an absolute correlation between the spo11 alleles and COs. 
Therefore, it is impossible to solely identify the recombina-
tion spots based on DSB spots.

Meiotic recombination events are unevenly distributed 
and are restricted to certain regions, particularly at the dis-
tal ends of chromosome arms (He et al. 2017; Lukaszewski 
1992; Paigen and Petkov 2010; Petes 2001). The prefer-
ential distribution of CO hotspots is in gene-rich regions 
where the chromatin is easily accessible by DSB complex. 
Furthermore, structure variations, such as large inversions, 
have been reported to influence the recombination rate in 
barley. For example, no recombination event can be iden-
tified within a large 141 Mb inversion region on chro-
mosome 7H from the DH population of RGT Planet and 
Hindmarsh (Jayakodi et al. 2020).

Some studies show that recombination hotspot tends to 
present near gene promoters (Choi et al. 2013; Mancera 
et al. 2008; Pan et al. 2011; Petes 2001; Wu and Lichten 
1994). Research on the hexaploid wheat genome has shown 
that recombination hotspots typically occur near the coding 
regions of the chromosomes (Darrier et al. 2017) with about 
95% of the recombination being distributed in 18 major and 
30 minor gene-rich regions (Erayman et al. 2004). Similarly, 
studies in maize have suggested that approximately 90% hot-
spots are distributed in gene-rich regions (Fu et al. 2001; 
Gore et al. 2009; Kianian et al. 2018; Li et al. 2015; Rodg-
ers-Melnick et al. 2015; Sidhu et al. 2015). A recent com-
prehensive study in cucumber revealed that over 93% of the 
COs are either in genes or their 10 kb regions. Among these, 
about 45% of COs occurred in distal intergenic regions, 25% 
in the promoter regions (2 kb upstream), 13% in introns, 10% 
in coding sequences, and 7% in untranslated regions (Wang 
et al. 2023).

McConaughy et al. (2023) identified 451 CO hotspots 
from two soybean mapping populations. These hotspots 
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are distributed across the entire soybean genome with 
around 27% of them located in the pericentromeric 
regions. In barley, recombination is severely suppressed 
in some regions (Kunzel et al. 2000). Repetitive sequences 
are associated with distinct chromatin modifications, and 
their expansion suppresses the recombination rate (Hen-
derson 2012). Hotspots account for less than 5% of the 
genome region. Distal CO occurrence is 25 times greater 
than interstitial chiasmata (Higgins et al. 2012).

Hotspots DNA motifs

Recombination events are correlated with the presence of 
specific DNA sequences (Zelkowski et al. 2019). DNA 
and chromatin features are associated with DSB hotspots. 
The popular motifs with the hotspots include CCN repeat 
motif, poly-A motif, and min-inverted-repeat transposable 
elements.

In Arabidopsis, DSB hotspots are correlated to CO 
hotspots. Three DNA motifs (A‐rich, CCN and CTT) 
have been found to be enriched in CO regions (Shilo 
et al. 2015). In maize, an associated 20‐bp‐long, GC‐rich 
sequence motif is similar to the CCN motif identified 
in Arabidopsis (Shilo et al. 2015). The recombination hot-
spot in maize is located in the bronze and Stc1 locus (Fu 
et al. 2001; He and Dooner 2009) and the recombination 
event is significantly enriched in GC-rich regions, which 
is similar to the CCN motif identified in Arabidopsis and 
yeast (Gerton et al. 2000; Liu et al. 2009; Sidhu et al. 
2015). In cucumber, numerous hotpot motifs are identified 
for DSB, including the TATA repeat (Wang et al. 2023).

The regulation of recombination

The precise control of the frequency and distribution of 
meiotic recombination events remains challenging. Previ-
ous studies indicated that homologous chromosome pair-
ing typically results in generated at least one CO event 
per chromosome (Bishop and Zickler 2004; Hillers 2004; 
Kleckner et al. 2004; Martini et al. 2006; Shinohara et al. 
2008). However, a recent report showed that the absence of 
COs in some chromosomes in a few F2 lines in cucumber 
(Wang et al. 2023). Meiotic recombination distribution 
is uneven along chromosomes, and its regulation can be 
classified into chromosome-level regulation, genome-level 
regulation and other mechanisms (Kauppi et al. 2004; 
Lichten and Goldman 1995; Petes 2001; Sidhu et al. 2015).

Chromosome level regulation

The frequency of COs increases from centromeres to telom-
eres, with notably low frequency observed in the telomeric 
region (Chen et al. 2008; Higgins et al. 2012; Liu et al. 2009; 
Saintenac et al. 2009, 2011; Salome et al. 2012; Sidhu et al. 
2015). In most organisms, each chromosome pair usually 
every undergoes one or two COs (Martini et al. 2006). When 
more than two COs present on the homologous recombina-
tion, one CO tends to suppress the occurrence of others in 
nearby regions, a phenomenon known as CO interference 
(Hillers 2004; Jones 1984; Kleckner et al. 2004; Muller 1916). 
This phenomenon also appears during the DSB period. For 
example, the occurrence of a DSB on one chromosome of S. 
cerevisiae suppresses the frequency of DSB generation on its 
homolog at the same and nearby positions (Fukuda et al. 2008; 
Xu and Kleckner 1995).

In cucumber, however, Wang et al. (2023) observed the 
absence of COs on chromosomes 3,4 and 5 in the individual 
line Y-154, no CO on chromosome 3 and 4 in the line X-69, 
no CO on chromosome 7 in line Y-231, and no CO on 1,5,6 
in Y-284 (Wang et al. 2023), suggesting that this regulation 
system may not work in cucumber.

Genome level regulation

Recombination events tend to cluster in short specific genome 
regions of the genome (Marand et al. 2017). Studies in the 
mammalian species revealed the correlation between hotspot 
location and certain sequence motifs (Buard and de Massy 
2007; Myers et al. 2005; Parvanov et al. 2010; Shifman et al. 
2006; Smagulova et al. 2011). In humans and mice, the meiotic 
recombination hotspots are closely linked to the specific rec-
ognition DNA sequence of PRDM9 zinc finger protein (Borde 
and de Massy 2013; De Massy 2013). However, PRDM sub-
families are absent in plants (Zhang and Ma 2012). In plants, 
meiotic recombination hotspots tend to occur in regions close 
to gene promoters and terminators associated with active chro-
matin modifications (Choi et al. 2013; Drouaud et al. 2013; Fu 
et al. 2002; He et al. 2017; Wang and Copenhaver 2018). Pre-
vious studies in Arabidopsis indicated a consistency between 
recombination hotspots and DSB hotspot regions (Choi et al. 
2013; Horton et al. 2012). However, recombination events in 
maize are only associated with the DSBs close to the genes 
(He and Dooner 2009; Yao et al. 2002).

Other regulation factors

Recombination events can be influenced by extrinsic condi-
tions, such as biotic stress, extreme temperature, chemical 
substances, nutrients, and UV radiation (Boyko et al. 2007; 
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Higgins et al. 2012; Lucht et al. 2002; Mickelbart et al. 2015; 
Molinier et al. 2006; Phillips et al. 2015). The formation of 
COs relies on the ZMM protein or the endonuclease Mus81 
(Berchowitz et al. 2007; Bishop and Zickler 2004; Borner 
et al. 2004; Santos et al. 2003; Mercier et al. 2005; Shino-
hara et al. 2008). Posttranslational modification could influ-
ence the activity and stability of proteins related to meiotic 
recombination, thereby regulating recombination events 
(Wang and Copenhaver 2018). DNA methylation has also 
implicated in regulating the formation of meiotic recombina-
tion (Buard and de Massy 2007).

The effect of temperature on miotic recombination has 
been reported in several species. In Allium ursinum, expo-
sure to 35 °C for 30 h resulted in a detrimental effect on 
chromosome synapsis (Loidl 1989), whereas in barley, 
synapsis failed to occur at 35 °C (Higgins et al. 2012). In 
addition, the distribution and frequency of Chiasmata were 
altered when exposed to temperatures of 30 °C and 22 °C. 
At 30 °C, there was an increase in interstitial/proximal chias-
mata, but the average number of chiasmata and COs per cell 
were significantly decreased (Higgins et al. 2012).

Phillips et al. (2015) found that the recombination rate 
during male meiosis consistently suppressed that of females. 
Moreover, in barley, as the temperature increased from 15 °C 
to 25 °C and 30 °C, the recombination rate increased dur-
ing male meiosis but decreased during female meiosis. 
Similarly, in Arabidopsis, Giraut et al. (2011) demonstrated 
higher CO frequencies during male meiosis.

How to increase CO frequency

CRISPR‑Cas9

The main limitation of targeted homologous recombination 
is DSB formation. The homologous recombination frequency 
can be enhanced dramatically when the DSB occurs at the 
target locus (Hayut et al. 2017; Puchta and Fauser 2013). 
Therefore, it is essential to find effective methods for inducing 
greater DSB formation. Sequence-specific nucleases (SSNs) 
are recognized for their capability to generate DSB at a spe-
cific site (Belhaj et al. 2015). The development of sequence-
specific nuclease, including zinc finger nucleases (ZFNs) and 
transcription activator-like effector nucleases (TALENs), has 
already proven successful in targeted gene editing in plants 
(Mao et al. 2019; Podevin et al. 2013; Voytas and Gao 2014; 
Wang et al. 2019). However, challenges associated with the 
design and construction of large modular proteins have hin-
dered their widespread adoption (Doudna and Charpentier 
2014). In addition, ZFNs have shown a high fault rate during 
DNA sequence recognition and cleavage (Voytas 2013). In 
contrast, the CRISPR-Cas method has emerged as a versatile 
solution. In recent years, the CRISPR-Cas system, a relatively 

easy and powerful gene-editing tool, has achieved rapid devel-
opment. Most studies have used CRISPR-Cas9 technology to 
edit genes in homozygous tissues, potentially increasing the 
occurrence of DSB. Recently, the CRISPR-Cas9 system has 
been used in targeted recombination in tomatoes (Hayut et al. 
2017). In this study, the F1 hybrid seed was used for targeted 
DNA editing, resulting in homologous CO events. Applying 
the allele specific recombination analysis suggests that the 
homologous recombination rate can be increased by generat-
ing DSB (Hayut et al. 2017).

Mutation

Mutating genes involved in COs is a powerful tool to 
increase CO frequency. FANCM and RECQ4 are key play-
ers in the CO pathway, and the impact of mutations in these 
genes on CO rate has been extensively studied in Arabidop-
sis (Crismani et al. 2012; Seguela-Arnaud et al. 2015). For 
instance, fancm (Crismani et al. 2012) and recq4a/b (Seg-
uela-Arnaud et al. 2015) mutants exhibit a nearly 3–5.9 folds 
increase in recombination rate (Fernandes et al. 2018b).

The AAA‐ATPase FIDGETIN‐like 1 (FIGL1) negatively 
regulates CO formation at the early stages (Girard et al. 
2015). The figl1 mutation enhances the CO rate by 1.5 times 
(Girard et al. 2015) and when combined with arecq4a/b dou-
ble mutation, the CO rate is significantly increased (7.8‐fold) 
(Fernandes et al. 2018b). Remarkably, this mutant exhibits 
60.7 COs per meiosis, compared to only 7.8 COs in the wild 
type (Fernandes et al. 2018b).

Other approaches

Higher temperatures increase recombination rates in male 
meiosis in barley (Phillips et  al. 2015) with CO events 
increasing by 40% when the temperature rose from 15 °C 
to 30 °C (Phillips et al. 2015). This approach can be tried in 
other crops to increase the recombination rate. Furthermore, 
DNA methylation occurs across the plant genome, regulating 
gene expression (Jeddeloh et al. 1998) and silencing trans-
posable element activity (Slotkin and Martienssen 2007). 
Changing DNA methylation patterns has been shown to alter 
CO distribution in mutant plants. For instance, loss of CG 
methylation in Arabidopsis leads to changes in CO distri-
bution (Melamed-Bessudo and Levy 2012; Mirouze et al. 
2012). These studies suggest that modifying methylation 
patterns can remodel CO distribution in plants.

Conclusion

While there are slight variations in CO distribution patterns, 
most recombination events occur toward the ends of chromo-
somes. In plant breeding programs, changing temperatures, 
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creating mutations, reducing methylation patterns, and tar-
geting CRISPR-Cas9 system can be used to regulate the 
recombination frequency within coldspots. With the devel-
opment of whole genome sequencing, the identification of 
recombination spots becomes more precise. High-density 
genetic maps and resequencing data can be used to identify 
the precise location of the CO events and their associated 
motifs. A better understanding of CO and targeting hotspots 
will facilitate CO regulation in crop breeding programs.
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