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Abstract
Key message  The NIAB_WW_SHW_NAM population, a large nested association mapping panel, is a useful resource 
for mapping QTL from synthetic hexaploid wheat that can improve modern elite wheat cultivars.
Abstract  The allelic richness harbored in progenitors of hexaploid bread wheat (Triticum aestivum L.) is a useful resource 
for addressing the genetic diversity bottleneck in modern cultivars. Synthetic hexaploid wheat (SHW) is created through 
resynthesis of the hybridisation events between the tetraploid (Triticum turgidum subsp. durum Desf.) and diploid (Aegilops 
tauschii Coss.) bread wheat progenitors. We developed a large and diverse winter wheat nested association mapping (NAM) 
population (termed the NIAB_WW_SHW_NAM) consisting of 3241 genotypes derived from 54 nested back-cross 1 (BC1) 
populations, each formed via back-crossing a different primary SHW into the UK winter wheat cultivar ‘Robigus’. The 
primary SHW lines were created using 15 T. durum donors and 47 Ae. tauschii accessions that spanned the lineages and 
geographical range of the species. Primary SHW parents were typically earlier flowering, taller and showed better resistance 
to yellow rust infection (Yr) than ‘Robigus’. The NIAB_WW_SHW_NAM population was genotyped using a single nucleo-
tide polymorphism (SNP) array and 27 quantitative trait loci (QTLs) were detected for flowering time, plant height and Yr 
resistance. Across multiple field trials, a QTL for Yr resistance was found on chromosome 4D that corresponded to the Yr28 
resistance gene previously reported in other SHW lines. These results demonstrate the value of the NIAB_WW_SHW_NAM 
population for genetic mapping and provide the first evidence of Yr28 working in current UK environments and genetic 
backgrounds. These examples, coupled with the evidence of commercial wheat breeders selecting promising genotypes, 
highlight the potential value of the NIAB_WW_SHW_NAM to variety improvement.

Introduction

With the human population growing and the climate chang-
ing, there is an urgent need to future-proof crops to maintain 
high yields under increasingly unpredictable growing condi-
tions. Furthermore, these problems must be addressed while 
improving the sustainability of farming practices. A prereq-
uisite for using plant breeding to address these challenges 
is genetic diversity (Swarup et al. 2021). In comparison to 
its progenitor species, genetic diversity has been narrowed 
in the modern hexaploid bread wheat (Triticum aestivum 
L.) genepool through first domestication and then selective 
breeding (Haudry et al. 2007). Bread wheat progenitor spe-
cies harbor additional genetic diversity that could provide 
a solution to improving key traits such as pest and disease 
resistance, tolerance to abiotic stress (e.g., drought or heat) 
and resource-use efficiency in modern wheat (as reviewed 
by Leigh et al. 2022). A good proportion of this diversity can 
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be recaptured from extended sources by targeted resynthesis 
of the historic inter-species hybridisations that led to the 
evolution of bread wheat.

Between 8500 and 9000 years ago, a primitive cultivated 
tetraploid wheat (genome AABB) hybridized with the 
diploid wild goatgrass Aegilops tauschii Coss. (DD) to 
form hexaploid bread wheat (AABBDD), whose cultivation 
spread globally to become a staple human food source 
(Levy and Feldman 2022). Due to the rarity of the natural 
hybridisation events that led to bread wheat speciation 
(Giles and Brown 2006), only a small portion of Ae. tauschii 
standing genetic diversity was captured in the bread wheat 
D-genome (Wang et al. 2013). This evolutionary genetic 
bottleneck highlights the potential value of accessing the 
untapped genetic reserves of the D sub-genome progenitor 
for modern wheat improvement (Singh et al. 2019). One 
route to exploiting this diversity is through the creation of 
Synthetic Hexaploid Wheat (SHW), which acts as a bridge 
for transferring beneficial genetic variation from Ae. tauschii 
to modern wheat (Li et al. 2018; Gaurav et al. 2022).

The formation of SHW typically involves fertilizing a 
tetraploid wheat floret with pollen from diploid Ae. tauschii 
and using embryo rescue followed by chromosome doubling 
to produce a viable hexaploid wheat, called the primary 
SHW. This approach to wheat resynthesis was first practiced 
in the 1940s (Britten and Thompson 1941; McFadden and 
Sears 1946). Since the 1980s, the International Maize 
and Wheat Improvement Center (CIMMYT) has created 
large numbers of spring-type SHW lines using extensive 
collections of Ae. tauschii (Dreisigacker et  al. 2008). 
Subsequently, many SHW-derived varieties (synthetic 
derivatives), developed through crosses between primary 
SHW and elite lines, have been released across the world, 
particularly across Asia (Li et al. 2018). The increased allelic 
richness and improvements in a range of target traits have 
driven the popularity of synthetic derivatives in breeding 
and variety release. These characteristics include disease 
and pest resistance (Morgounov et  al. 2018; Shamanin 
et al. 2019), drought tolerance (Mokhtari et al. 2022), heat 
stress (Cossani and Reynolds 2015) and yield improvements 
(Jafarzadeh et al. 2016). However, their impact has been 
lower in areas that predominantly grow winter wheat under 
more intensive production systems, such as the United 
Kingdom (UK) and Northern Europe. Genetic mapping 
populations can be developed to identify quantitative trait 
loci (QTLs) in progenitor wheat backgrounds linked to novel 
diversity (e.g.,, Wright et al. 2020). Multi-parent crossing 
schemes, such as nested association mapping (NAM) panels, 
are a useful means of increasing genetic mapping resolution 
within a mapping population while also capturing increased 
genetic diversity (Scott et al. 2020). Originally developed 
in maize (Yu et al. 2008), NAM panels contain a series of 
linked nested bi-parental crosses (termed hereafter ‘nested 

populations’), in which different donors (e.g.,, varieties, 
breeding lines, or landraces) are each crossed to a single 
common parent to form a large genetic mapping resource. 
NAM populations have been developed for several crop 
species, including tetraploid (Kidane et  al. 2019) and 
hexaploid (Bajgain et al. 2016; Jordan et al. 2018; Wingen 
et al. 2017) wheat. Notably, Gorafi et al. (2018) developed 
a NAM population of 4300 genotypes (400 of which were 
genotyped), derived from back-crossing 43 SHW lines to the 
Japanese bread wheat cultivar ‘Norin 61’. Identification of 
novel QTLs within NAM resources can be used for Marker-
Assisted Selection programs in breeding or for further 
investigations such as gene discovery.

While representing rich sources of genetic variation, 
primary SHW lines themselves typically show many 
undesirable wild characteristics and are generally unadapted 
to targeted agricultural environments (Dreisigacker et al. 
2008). This can be overcome by back-crossing into adapted 
and elite wheat backgrounds. Furthermore, backcrossing 
can be targeted such that introgressions from SHW are 
transferred into specific genomic regions of elite wheat 
cultivars (Horsnell et al. 2023). Here, we report the creation 
of a large winter wheat NAM resource, called the NIAB_
WW_SHW_NAM population. The resource is composed of 
54 primary SHW lines backcrossed into a single UK winter 
wheat genetic background. Through genotyping and field 
screening, this population was used to identify QTLs for 
important agronomic traits. Representatives from UK wheat 
breeding companies have evaluated the population and made 
selections of genotypes for their own breeding programs. 
The resource and associated data are openly available to 
support further interrogation of genetic variation from SHW 
and for use in trait discovery and pre-breeding.

Materials and methods

Material and generation of the primary SHW

From 2012 to 2017, NIAB created 37 primary Synthetic 
Hexaploid Wheat (SHW) lines, capturing 34 Ae. tauschii 
and 5 Triticum turgidum subsp. durum Desf. parental 
accessions. Additionally, 10 primary SHW lines were 
obtained from the Academy of Agricultural and Forestry 
Sciences (NARDI), Fundulea, Romania and seven primary 
SHW lines were obtained from the International Maize and 
Wheat Improvement Center (CIMMYT), Ankara, Turkey. 
These 17 genotypes were developed using 13 unique Ae. 
tauschii accessions and 10 unique T. durum accessions. In 
total, 54 primary SHW lines were available for use in NAM 
population formation, originating from 15 T. durum and 47 
Ae. tauschii accessions. The sampling origins and sources of 
these materials are shown in Supplementary Table S1. The 
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methodology for the creation of the NIAB primary SHW 
lines is described in Gaurav et al. (2022).

NIAB_WW_SHW_NAM population formation

The elite UK winter wheat variety ‘Robigus’ was selected as 
the recurrent NAM parent. Released in 2000, this high-yield-
ing, soft endosperm variety was widely grown across UK 
and elsewhere in North-Western Europe between 2003 and 
2011 and is a key pedigree component in many recent and 
current UK varieties (Fradgley et al. 2019). For initial cross-
ing, ‘Robigus’ was the maternal parent and primary SHW 
lines were pollen donors throughout. ‘Robigus’ × SHW first 
filial generation (F1) plants were crossed as pollen donors 
with ‘Robigus’ to produce back-cross 1 F1 (BC1F1) seeds. 
For the construction of each ‘Robigus’ × SHW nested popu-
lation, 12 BC1F1 plants on average, were allowed to self-
fertilize to produce BC1F2 seeds (Supplementary Table S2). 
Initial balanced nested populations of 96 BC1F2 genotypes 
per cross (eight BC1F2 from each of 12 BC1F1 streams) were 
rapidly advanced in modular seed trays through vernalisa-
tion and the glasshouse by Single Seed Descent (SSD) until 
BC1F4 seeds were harvested. A single BC1F4 individual 

(per genotype) was then sown in a 1L pot and grown in an 
unheated glasshouse under natural light from December to 
August to allow natural vernalisation, with resulting BC1F5 
seed used for field planting. No phenotypic selection was 
carried out during population development. Figure 1 outlines 
the entire pipeline, from back-crossing to field testing of the 
NIAB_WW_SHW_NAM population.

Field screening

Field trials

For logistical reasons, NAM development was staggered 
over several years, with different nested populations grown 
out as BC1F5 plots, denoted Core Nurseries, across several 
trial years. Autumn-sown trials were grown each year, 
typically from a sowing date in October and a harvest date 
the following August, from 2017–18 to 2021–22. Within the 
Core Nurseries, each BC1F5 genotype was grown in a single 
plant progeny 1.2 m2 observation plot consisting of six 1.2 m 
rows spaced 20 cm apart. Sequential plots were separated 
by short inter-plot gaps, with a much longer gap between 
each set of 20 plots; each sub-set of 20 plots is denoted as 

Fig. 1   Development of the NIAB_WW_SHW_NAM population. 
a Workflow detailing how the NIAB_WW_SHW_NAM popula-
tion was created, starting from the initial backcrossing of the pri-
mary SHW to ‘Robigus’, to field assessment and selection. b Gen-
eration advancement of NAM material at the back-cross 1 fourth 

filial (BC1F4) generation in the greenhouse. c Field-grown wheat 
ears showing from left to right: recurrent parent (UK wheat cultivar 
‘Robigus’), Robigus / SHW BC1F5 progeny, and a primary SHW ear. 
d The ‘Core Nursery’ field trial from 2018



	 Theoretical and Applied Genetics (2024) 137:7373  Page 4 of 19

a ‘nursery drilling lid’. These trials were primarily used for 
initial field observations; there was no randomization or 
replication of genotypes, although ‘Robigus’ and primary 
SHW were repeated throughout each nursery. Information 
on each trial input and phenotypic assessment is shown in 
Table 1. Core Nurseries were generally grown with standard 
agrochemical inputs to control weeds, pests and diseases. 
However, the Core Nurseries planted in 2017 and 2018 
(Core17 and Core18) had reduced fungicide applications 
to screen the material for resistance to natural yellow rust 
infection (Yr, also known as stripe rust, caused by the fungus 
Puccinia striiformis Westend f. sp. tritici).

Most genotypes of the NIAB_WW_SHW_NAM popu-
lation were assessed in the Full Trial (a single large field 
trial sown in 2021, termed hereafter ‘Full21’) (Supplemen-
tary Table S3). Here, BC1F5 genotypes were sown in an 
augmented field trial consisting of 2100 1.2 m2 plots. The 
experimental design was created in R (R Core Team 2022) 
with the package blocksdesign (Edmondson 2021). The 
Full21 trial included 2978 unreplicated BC1F5 genotypes 
of the NIAB_WW_SHW_NAM population (Supplemen-
tary Table S3), three replicates of 49 primary SHW parents, 
two primary SHW parents with a single replicate (due to 
seed availability) and three elite wheat check genotypes: 
‘Robigus’, ‘KWS Santiago’ and ‘Theodore’, with 295, 285 
and 444 replicates, respectively. ‘Robigus’ was included as 
the recurrent parent of the population; ‘KWS Santiago’ is 
often used by breeders as a check due to high yield and 
good yield stability, while ‘Theodore’ is visually distinctive 
and has a high untreated grain yield performance (AHDB 
2022a). ‘Theodore’ was used to fill gaps where seed could 
not be found for a particular genotype. As a result of lim-
ited seed availability and the size of the population, each 
6-row plot in the Full21 contained two different genotypes, 
one in drill coulters 1–3 and the second in coulters 4–6. 
To avoid replicated genotypes being allocated to the same 
plot, each plot was treated as a single experimental unit and 

blocksdesign (Edmondson 2021) was used to distribute the 
checks and replicated genotypes randomly across incom-
plete blocks (following Müller et al. 2010). This approach 
was implemented using the ‘design’ function of blocks-
design (Edmondson 2021), with three levels of blocking: 
block (consisting of 144 to 156 plots), trial rows and trial 
columns. Then, with each plot treated as two independent 
experimental units (half-plots), the non-replicated genotypes 
were randomized across the remaining units of the design. 
For the analysis, the intersection of each row or column 
within each block was treated as a nested sub-block. Across 
the complete trial, 24% of the entries were check varieties 
to adjust for field spatial variability. Genotypes from 51 of 
the 54 developed nested populations and their corresponding 
SHW parent were included in the trial with the remaining 
three populations (that were derived from the primary SHW: 
NIAB.SHW.008, NIAB.SHW.012 and NIAB.SHW.018), 
excluded due to limited seed availability; 58 genotypes per 
nested population were included on average (Supplementary 
Table S3).

Phenotypic assessment

Across the Core Nurseries and the Full Trial, three agro-
nomically important traits were assessed: flowering time 
(Ft), yellow rust infection (Yr) and plant height (Ph). Ft was 
measured in days and counted from the drilling date to when 
50% of the plot or half-plot (in the Full21 trial) had reached 
Zadoks growth stage 65 (Zadoks et al. 1974), namely half of 
the tillers in the plot were in anthesis. Ph was measured by a 
ruler and taken as the tallest point excluding awns of a sin-
gle representative mature plant from each plot or half-plot. 
Natural infections of yellow rust in the trials were assessed 
using the standard methodology for scoring foliar disease in 
wheat variety trials (AHDB 2022b). The percentage of leaf 
area covered by yellow rust lesions was estimated for the top 
four leaves in the canopy, averaged across the whole plot (or 

Table 1   Trials used for field assessment of the NIAB_WW_SHW_NAM population

Phenotypic assessment was completed each harvest year for the agronomically important traits: flowering time (Ft), plant height (Ph) and 
yellow rust infection (Yr). The trials consisted of an annual series of Core Nursery experiments planted from 2017 to 2021 that each contained a 
proportion of the NAM population, as well as an experiment planted in 2021 which contained the majority of the NAM population (Full Trial)
*Non-standard refers to a reduced fungicide application to screen for resistance to infection

Planting year Type of trial Trial name Fungicide application* Nested 
populations in 
trial

NAM genotypes 
in trial

Traits assessed

2017 Core Nursery Core17 Non-Standard 5 325 Ft, Ph, Yr
2018 Core Nursery Core18 Non-Standard 19 1053 Ft, Ph, Yr
2019 Core Nursery Core19 Standard 12 722 Ft, Ph
2020 Core Nursery Core20 Standard 8 514 Ft, Ph
2021 Core Nursery Core21 Standard 7 442 Ft, Ph
2021 Full Trial Full21 Standard 51 2978 Ft, Ph, Yr
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half-plot). Scores were taken on June 1, 2018 (Core 17) and 
June 6, 2019 (Core 18), when plots typically ranged from 
GS55 to GS69. No assessments were made for the Core19, 
Core20 and Core21 trials as standard fungicide treatments 
gave good disease control. However, early yellow rust infec-
tion was observed in the Full21 trial and a score was made 
on April 25, 2022 (typically GS32) just prior to the first 
fungicide application.

Breeders’ selections

The Core17 to Core21 trials were visited by several 
commercial plant breeders, typically during July and early 
August. The purpose of these visits was to critically evaluate 
the previously unselected material and make selections 
of superior BC1F5 genotypes from a potential breeding 
value perspective, for further use in commercial breeding. 
Although details (which breeder selected which genotype) 
remained private, an overall summary was shared. To 
determine if it was possible to detect patterns in breeder 
selections, data on selections were summarized using plots 
created with the R packages waffle (Rudis and Gandy 2019) 
and ggplot2 (Wickham 2016).

Data analysis

Statistical analysis was conducted using R (R Core 
Team 2022) and RStudio (RStudio Team 2022). For 
computationally intensive jobs, analyzes were run on the 
‘Crop Diversity High Performance Computing’ cluster 
(www.​cropd​ivers​ity.​ac.​uk). For the traits (Ft, Ph and Yr) 
measured in the Full21 trial, Best Linear Unbiased Estimates 
(BLUEs) were estimated for each genotype using the 
following mixed linear model:

where y is the response of the i th genotype, in the j th block, 
in the k th row, the l th column, in the n th nursery drilling 
lid (subset of 20 plots) and measured by the m th scorer (the 
person who took the measurements). Furthermore, � was 
the overall experimental mean, g was the fixed genotypic 
effect of the i th genotype, b was the random block effect 
of the j th block, r and c were the random row and column 
effect of the k th and l th row and column, respectively, nested 
within the j th block. Where appropriate, scorer effect was 
included via the random effect d of the m th scorer. There was 
some physical separation of plots in the field based on which 
nursery lid they were drilled in, therefore, t was included as 
the random effect of the n th nursery drilling lid. Lastly, e 
was the residual error of each half-plot. For each trait, full 
models were fitted using the R package lme4 (Bates et al. 
2015) and then reduced through backward elimination of the 

yijklmn = � + gi + bj + rjk + cjl + dm + tn + eijklmn

random terms implemented via the ‘step’ function of the R 
package lmerTest (Kuznetsova et al. 2017).

In the Full21 trial, broad-sense heritability (H2) was 
estimated as H2 = Vg∕Vp , where Vg was the variance 
associated with genotype treated as a random factor in the 
final model for each trait. Phenotypic variance ( Vp ) was the 
sum of Vg + Ve , where Ve was the residual error variance 
from each model. Implemented by the R functions ‘cor’ 
and ‘cor.test’ (R Core Team 2022), a Pearson’s correlation 
test was used to test the correlation of Ft, Ph and Yr across 
trials for all the genotypes included in the study. For the 
three traits, two sample t-tests were completed using the R 
function ‘t.test’ to test for significant differences between 
the means of the genotypes selected by ≥ 50% of breeders 
in each Core Nursery compared to genotypes not selected. 
Using the same approach, t-tests were used to test for 
significant differences between genotypes with different 
homozygous alleles at a QTL linked to Yr found in each 
of the trials. Phenotype distributions and correlations were 
plotted using the R packages ggplot2 (Wickham 2016) and 
ggcorrplot (Kassambara 2022).

Genotype analysis

DNA extraction and genotyping

DNA was extracted from seedling leaf tissue of the NIAB_
WW_SHW_NAM population and parental lines (recurrent 
parent ‘Robigus’ and primary SHW), following an adapted 
protocol from Fulton et al. (1995). The extracted DNA was 
genotyped using the Axiom® 35K Wheat Breeders’ single 
nucleotide polymorphism (SNP) array (ThermoFisher 
Scientific) at Bristol University (Allen et al. 2017). The 
initial genotyping included 3282 genotypes from either 
BC1F4 or BC1F5 nested populations, 161 replicates of 
primary SHW and 32 ‘Robigus’ replicates (used as ‘batch’ 
controls between genotyping events).

Genetic marker calling was completed using the Axiom 
Analysis Suite (AAS) software (version 5.1, www.​therm​
ofish​er.​com). Within the software, thresholds for the quality 
control (QC) of the genotype samples included an inbred 
penalty of 4, a dish quality control of 0.82 and a QC call rate 
of 96%. There were six replicates of primary SHW parents 
that exhibited slightly below threshold QC call rates, these 
were still advanced to the next stage of the analysis as they 
were parental lines. SNP genotyping was completed with 
an inbred penalty of 4 and an initial call rate cut-off of 96%, 
although all genetic markers above a call rate cut-off of 94% 
were manually inspected and markers were curated and kept 
where clustering was still appropriate (i.e., clear separation 
between at least two genotype classes: AA, AB and BB). 
After the initial filtering, 14,425 SNP markers and 2961 
genotypes progressed to the next stages of QC. Of these 

http://www.cropdiversity.ac.uk
http://www.thermofisher.com
http://www.thermofisher.com
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markers, 7690 were initially classified as ‘NoMinorHom’ 
(no minor homozygote alleles observed) in AAS; these were 
all manually inspected and were recalled if: three distinct 
clusters were visible (AA, AB, BB) or if there was still clear 
separation between two clusters, the heterozygous clusters 
were assumed to represent the missing homozygous class.

Genotype data QC, imputation, and genetic marker 
positioning

The downstream analysis was conducted using R Core Team 
(2022) and RStudio Team (2022). Genetic markers which 
exceeded one or more of the following QC criteria were 
removed: over 10% heterozygote calls, over 10% missing 
data, and if fewer than 15 genotypes were homozygous for 
the minor allele. Genotypes with over 10% heterozygous 
marker calls were also removed. Missing data per genotype 
was low (typically < 6%) and no genotypes were excluded 
due to missing data. Principal Coordinate Analysis 
(PCoA), implemented by the R package ape (Paradis and 
Schliep 2019), was used to identify genotypes within each 
nested population that were outliers. Pearson’s correlation 
coefficients were calculated between all pairs of genotypes 
and plotted. Outliers that suggested a genotype pair were 
too similar, compared to the overall distribution of all pairs, 
were investigated and erroneous genotypes were removed. 
Within nested populations, monomorphic markers (between 
‘Robigus’ and each primary SHW) were used to find further 
outlying genotypes and these were removed from the 
analysis. Implemented through the R package missForest 
(Stekhoven 2022), missing genotypic data was imputed 
using Random Forest with 200 trees grown in each forest. 
Replicates of parental genotypes were removed and after 
these stages of QC there were 11,227 genetic markers and 
2726 genotypes remaining in the dataset.

Physical map positions for 10,128 of these SNPs, based 
on the wheat reference genome assembly of cv. ‘Chinese 
Spring’ (IWGSC 2018, RefSeq v1.0), were downloaded 
from ‘CerealsDB’ (Wilkinson et  al. 2012). To obtain 
physical positions for more of the remaining unmapped 
genetic markers, the SNP probe sequences of the 35 K 
Wheat Breeders’ array were downloaded from ‘CerealsDB’. 
With default parameters, these DNA sequences were 
queried through BLAST + (version 2.12.0, Camacho et al. 
2009) against the IWGSC RefSeq v1.0 wheat assembly. 
For each BLAST hit, the SNP position was taken as the 
median base pair between the start and stop of the alignment. 
Physical positions for a further 946 markers were identified 
by comparing correlation (R2) with markers that had 
known positions and taking the nearest BLAST hit of the 
unmapped marker on the same chromosome to the already 
positioned marker (if present). As an additional step to 
improve marker positioning, each marker was placed in a 

bin with markers that were in high linkage disequilibrium 
(LD) with each other (R2 > 0.5). If the marker was located 
on a different chromosome to the majority of markers 
in the bin and that marker had a BLAST hit on the most 
represented chromosome in the bin, it was repositioned 
using that BLAST hit. If no consensus chromosome could 
be identified, the chromosome of the marker in highest LD 
was used as the guide. This approach was run twice, and a 
total of 2852 markers were repositioned. Heatmaps showing 
LD on each chromosome were inspected to visualize the 
improvement of the map reordering and the plots are shown 
in Supplementary Figure S1. All heatmaps were plotted 
using the R package LDheatmap (Shin et al. 2006).

One nested population (derived from NIAB.SHW.091) 
in the final dataset was excluded due to possible cross 
contamination identified in the QC process. The final 
dataset contained 11,051 mapped markers for 2637 NAM 
genotypes, 54 primary SHW parents and the recurrent parent 
‘Robigus’.

Population structure

To understand the relationship between the NIAB_WW_
SHW_NAM population and parents, a PCoA was performed 
on SNP data that was ‘skimmed’ to remove a marker in 
each pair of markers with an absolute Pearson’s correlation 
(r) ≥ 0.8. The PCoA was also completed using ‘skimmed’ 
D sub-genome genetic markers of the primary SHW donors 
and ‘Robigus’. Distinct clusters identified by plotting the first 
two principal coordinates were assigned to known lineages 
of Ae. tauschii using overlapping genotypes between the 
present study and Gaurav et al. (2022). The latitudes and 
longitudes of the passport data location of the Ae. tauschii 
accessions used to make the primary synthetics were plotted 
on a map to show geographical distribution, conducted using 
the R packages rnaturalearth (Massicotte and South 2017) 
and sf (Pebesma 2018). Plots showing population structure 
and geographical distribution were created using the R 
package ggplot2 (Wickham 2016).

Association mapping

Of the NIAB_WW_SHW_NAM 2637 genotypes with genetic 
marker data, there were phenotypic data available for 2445 
genotypes from 51 nested populations; three of the nested 
populations were not phenotyped. Association mapping used 
an additive Q + K model implemented using the R package 
GWASpoly (Rosyara et al. 2016), where population structure 
(Q) was the nested population number included as a covariate 
and kinship (K) was a marker estimated relationship matrix 
calculated using the GWASpoly function ‘set.K’ with 
leave-one-chromosome-out set to false. Genotype number 
varied across experiment (Table 1), so for each trial, genetic 
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markers that had less than 15 genotypes homozygous for 
the minor allele were removed and the remaining markers 
were ‘skimmed’ to remove non-unique markers, i.e., where a 
marker pair had an absolute r = 1. For each trial, marker sets 
for kinship estimation were formed using an additional skim 
of r = 0.80, to reduce areas of high genetic marker LD biasing 
the estimates of kinship. The final model thresholds were 
determined by testing different levels of marker skimming 
and types of population covariates using the Full21 trial that 
contained data from most of the population (an example for 
the trait Ft is shown in Supplementary Figures S2 and S3). 
To ensure that appropriate corrections for relatedness between 
genotypes had been made, histograms of observed P-value 
distribution and quantile–quantile plots were inspected, and 
genomic inflation factors were estimated (Devlin and Roeder 
1999).

Using the GWASpoly function ‘set.threshold’, significance 
thresholds were calculated at a corrected P = 0.05, by 
estimating effective markers through accounting for LD 
between SNPs and then using a Bonferroni-type correction.
With the genetic data used in mapping for the Full21 trial and 
the GWASpoly function ‘LD.plot’, pairwise LD between SNPs 
were plotted against physical distance to examine LD decay 
to a critical value of R2 = 0.2. Initially, candidate QTLs were 
taken as the peak marker within the determined window (Mb) 
of LD decay (R2 = 0.2). Using a criterion of marker −log10(P) 
score, allele effect direction (using ‘Robigus’ as the reference) 
and physical marker location, candidate QTLs were visually 
inspected within and between trials, and QTLs were named 
and neighboring QTL merged where appropriate. QTL 
intervals were visually defined as the first and last significant 
flanking genetic markers surrounding each peak. For each 
trial, the GWASpoly function ‘fit.QTL’ was used to combine 
the final set of candidate QTLs for each trait into a multiple 
QTL model to estimate phenotypic variance explained by each 
QTL.

Material and data availability

Information about the availability of seed for the genotypes 
of the NIAB_WW_SHW_NAM population is accessible 
from: www.​niab.​com/​resea​rch/​agric​ultur​al-​crop-​resea​rch/​
resou​rces/​niab-​wheat-​nested-​assoc​iation-​mappi​ng-​nam-​
panels. The population genetic marker and field phenotype 
data is available from: https://​niab.​github.​io/​niab-​dfw-​wp3/.

Results

The NIAB_WW_SHW_NAM population

The NIAB_WW_SHW_NAM resource had 3241 
genotypes from 54 BC1F5 nested populations (average 

population size = 60), based on the greatest number of 
lines either genotyped or phenotyped per nested population 
(Supplementary Table  S2). The full parentage of the 
primary SHW genotypes and information on the origin of 
the parents is shown in Supplementary Table S1. Across the 
field experiments, 3056 genotypes were phenotyped from 
51 nested populations. The quality-controlled genotype data 
comprises of 2637 genotypes from 54 nested-populations. 
Both genetic marker and phenotype data were available for 
2445 NIAB_WW_SHW_NAM genotypes, from 51 nested 
populations. Supplementary Table S2 details the numbers 
of genotypes phenotyped and genotyped in each nested 
population.

The population structure of the NIAB_WW_SHW_NAM 
population and parental genotypes is shown in Fig. 2. The 
first PCoA shows the genotypes of the population (green) 
clustered between their parents ‘Robigus’ (recurrent par-
ent, dark blue) and the primary SHW (donor parent, pink) 
(Fig. 2a). Genotypes clustered closer to ‘Robigus’, as would 
be expected for BC1 derivatives. For the NIAB_WW_
SHW_NAM genotypes and parental lines, the first two 
principal coordinates accounted for 7.88% of the variation 
(PCoA1 = 5.12%, PCoA2 = 2.76%, Fig. 2a). A second PCoA, 
using just the D sub-genome genetic markers of the popula-
tion parents (primary SHW and ‘Robigus’), shows distinct 
clusters (Fig. 2b). Using overlapping Ae. tauschii donors 
between the present study and Gaurav et al. (2022), these 
were assigned to lineages 1, 2 and 3 (L1, L2 and L3), the 
three previously categorized lineages of Ae. tauschii. The 
genotypes covered all three lineages, with ‘Robigus’ clus-
tering within L2 (Fig. 2b). Only one primary SHW (NIAB.
SHW.092) was found within the putative L3.

The geographic collection site locations (based on 
passport data) of the Ae. tauschii donors captured in the 
primary SHW parental lines are shown in Fig. 2c, colored by 
lineage (Fig. 2b). This shows that L1 accessions are spread 
out across the geographical distribution of Ae. tauschii 
and separated by the Caspian Sea. The majority of the L2 
accessions are grouped south of the Caspian Sea in Iran. The 
single L3 accession was sampled from Georgia (Fig. 2c).

Phenotypic characterization

Across five successive Core Nurseries (Core17 to Core21) 
and the Full Trial (Full21), the NIAB_WW_SHW_NAM 
population was assessed for three traits: flowering time (Ft), 
plant height (Ph) and yellow rust infection (Yr). Results and 
statistics from the trials are summarized in Fig. 3. As the 
Full21 trial was replicated and randomized, Best Linear 
Unbiased Estimates (BLUEs) and broad-sense heritability 
(H2) were calculated. High H2 was observed for all traits 
(Ft = 0.84, Ph = 0.87 and Yr = 0.75). For the Full21 trial, the 
BLUEs for all the population genotypes were averaged and 

http://www.niab.com/research/agricultural-crop-research/resources/niab-wheat-nested-association-mapping-nam-panels
http://www.niab.com/research/agricultural-crop-research/resources/niab-wheat-nested-association-mapping-nam-panels
http://www.niab.com/research/agricultural-crop-research/resources/niab-wheat-nested-association-mapping-nam-panels
https://niab.github.io/niab-dfw-wp3/
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compared to the average of all the SHW donors and the 
BLUE of ‘Robigus’ (Fig. 3a–c). For all traits in this trial, 
the means of the population genotypes were inside the range 
of the BLUE for ‘Robigus’ and the means of the BLUEs for 
the SHW donors. However, there were individual popula-
tion genotypes outside of the parental ranges; transgressive 
segregation was observed for all traits in the Full21 trial 
(Fig. 3a–c). In the Full21 trial, the SHW parents were early 
flowering (Ft), with a mean of 211.5 days from sowing to 
GS65, compared to ‘Robigus’ (215.9 days). In contrast, the 
SHW parents were taller with a mean Ph of 91.5 cm com-
pared to the recurrent parent ‘Robigus’ (71.8 cm). The SHW 
parents showed lower yellow rust infection in the Full21 trial 
(Yr = 1.1%) compared to ‘Robigus’ (Yr = 2.0%). For all three 
traits the means of the genotypes were closer to the BLUE 
of the recurrent parent ‘Robigus’ (Fig. 3a–c).

The trait distributions changed across both year and trial 
(Fig. 3a–c). Across years, for example, Ft in the Core17 
trial was later than in all other trials (Fig. 3a), while Ph was 

generally higher in the Full21 trial (Fig. 3b). In those trials 
that had reduced fungicide treatment (Core17 and Core18), 
disease pressure was higher than the Full21 trial which had 
a standard fungicide application (Fig. 3c). As shown in 
Fig. 3d, regardless of the differences in distribution, Yr in the 
Full21 trial was weakly positively correlated with Yr in the 
Core17 (r = 0.29, P < 0.001) and Core18 nurseries (r = 0.31, 
P < 0.001). The same trend was observed for Ph and Ft, 
although the correlations were higher. For Ph the correlation 
of the nurseries with the Full21 trial ranged from r = 0.59 
to 0.74, while for Ft the correlation ranged from r = 0.54 to 
0.69. Across trials, the Core21 nursery and Full21 trial were 
grown in the same year and had the highest correlation for 
Ft (r = 0.69, P < 0.001) and Ph (r = 0.74, P < 0.001). Across 
traits, there were weaker correlations observed between the 
Full21 trial and the Core Nurseries. For example, Ft in the 
Full21 trial was weakly negatively correlated with Ph in 
Core Nurseries, with correlations ranging from r =  − 0.11 
to − 0.21 (Fig. 3d).

Fig. 2   The NIAB_WW_SHW_NAM population is based on geneti-
cally diverse founders originating from a wide geographical area. 
Principal coordinate analysis (PCoA) of the first two principal coor-
dinates for the NIAB_WW_SHW_NAM population genotypes and 
their parents (a) and the D sub-genome genetic markers for the pri-
mary synthetic hexaploid wheat donors and ‘Robigus’ (b), split 

into the three Ae. tauschii lineages (L1, L2, L3). The lineages of 
Ae. tauschii were assigned to the distinct clusters using overlapping 
genotypes between the present study and Gaurav et  al. (2022). c A 
map showing the passport data location of 43 Ae. tauschii (diploid, D 
genome) accessions captured in the primary SHW (hexaploid, ABD 
genome)
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Breeders’ selections

Across the five Core Nurseries, a relatively high percentage 
of lines per trial were selected by breeders for inclusion into 
their breeding pipelines (≥ 21% per year; Supplementary 

Table  S4). The numbers of breeders visiting increased 
from the Core17 to Core21 trial, with eight breeders 
making selections on the material in the Core21 trial. In 
parallel, a higher proportion of genotypes were selected in 
the later Core Nurseries (Supplementary Table S4). The 

Fig. 3   Histograms of phenotype distributions for the three traits 
assessed in the NIAB_WW_SHW_NAM population: flowering time 
(Ft;  a), plant height (Ph;  b), yellow rust infection (Yr;  c), from the 
Core17 to Core21 and Full21 trials. From the Full21 trial, the mean 
of all the Best Linear Unbiased Estimates (BLUEs) of the NAM 
population genotypes and the mean of all the BLUEs of the primary 

SHW is shown with the BLUE of the recurrent parent ‘Robigus’ for 
comparison. d Pearson’s correlation coefficient (r) heatmap for the 
three traits using data from genotypes present in the Full21 trial and 
each Core Nursery in which each blank square represents an insignifi-
cant r (P > 0.05)
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differences between trait distributions for selected versus 
non-selected genotypes are shown in Supplementary 
Figure S4. The Core17 and Core18 nurseries had reduced 
fungicide application and there were significant differences 
for the means of selected versus non-selected genotypes 
(Supplementary Figure S4). For example, the Yr means were 
16.9% versus 21.4% in 2017 and 7.1% versus 20.2% in 2018, 
for selected and non-selected genotypes, respectively. Less 
consistent directional selection was observed for the traits 
Ft and Ph (Supplementary Figure S4).

Next we considered the consequence of breeder selection, 
based on which T. durum (AB) and Ae. tauschii (D) SHW 
sub-genome donors were present in the selected versus non-
selected genotypes. It should be noted that the donor con-
tributions across the NAM were not balanced (particularly 
with the T. durum donors, Supplementary Table S2). Addi-
tionally, the inclusion of donor backgrounds within each 
Core Nursery was not randomized, as nested populations 
were developed as cohorts. Therefore, only visual trends are 
commented on. The visual patterns of the breeders’ selection 
versus donor backgrounds are shown in Fig. 4a, b, where 
‘selected genotypes’ indicate if any breeder selected that 
genotype within any of the Core Nursery trials. T. durum 
‘Hoh-501’ was the most common tetraploid background 
used in the generation of primary SHW (Fig. 4a), and 29.7% 
of the 1645 BC1F5 genotypes with ‘Hoh-501’ as a donor in 
their primary SHW parent were selected by breeders. Aside 
from the ‘Sculptur’ and ‘Biensur’ T. durum backgrounds 
(where selection was 37.9% and 37.7%, respectively), selec-
tion was greater than 40% across all other T. durum back-
grounds (Fig. 4a). Notably, 69.1% and 67.6% of genotypes 
with ‘Amadur’ and ‘UKR-OD 1530.94’, respectively, were 
selected. Selections based on the diploid background are 
shown in Fig. 4b. Ae. tauschii donors from the L2 line-
age were the most used source of D sub-genome for SHW 
creation (Supplementary Table S1-S2) and were also most 
enriched in the selected versus unselected genotypes (45.2% 
selected). Selection was considerably lower in genotypes 
derived from SHW with Ae. tauschii lineage L1 donors, with 
25.6% of 773 selected. Of the 69 L3 genotypes available for 
selection, only 13.0% were selected by the breeders.

Genetic mapping

The three assessed traits (Yr, Ft and Ph) were used for 
QTL mapping. LD was determined to decay (R2 = 0.2) at 
a window of 18 Mb (Supplementary Figure S5). After the 
marker scores (−log10(P)) were computed in each GWAS 
run, QTLs were initially called as the most significant 
SNP across a 18 Mb window. These QTLs were named, 
and where appropriate combined, using visual inspection 
of marker scores (−log10(P)), SNP effects and taking the 
physical location of markers into account. All six trials 

were used and QTLs that were found in at least two trials 
are summarized in Table 2. In total, 27 QTLs were found 
across all trials and traits (Supplementary Table S5), of 
which eight were found in at least two trials (Table 2). 
Manhattan plots for all three traits across all trials are shown 
in Supplementary Figures S6, S7 and S8.

Across the trials, 18 QTLs for Ft, on 13 chromosomes, 
were found in total (Supplementary Table S5). Of these, 
four QTLs were identified across multiple trials, with the 
alternative SHW allele contributing to earlier flowering in 
each case (Table 2). The most significant of these four was 
QFt.niab-2D.1wSHWnam on chromosome 2D in the Core21 
trial (−log10(P) = 10.7), which explained 10.8% of the phe-
notypic variation for Ft. This was also found in the Core19 
trial (−log10(P) = 5.3) with a 18.5 Mb position change in 
the peak marker. QFt.niab-2D.1wSHWnam was the only QTL 
found across multiple trials that was not identified in the 
Full21 trial, typically the other QTLs were found in the 
Full21 trial and at least one Core Nursery (Table 2). The 
most significant hit for Ft in the Full21 trial was QFt.niab-
4A.1wSHWnam (−log10(P) = 10.31), located on chromosome 
4A at 681.4 Mb (Fig. 5), where the QTL interval ranged 
from 627.8 to 726.3 Mb (Supplementary Table S5). This 
QTL was identified in the Core18 trial across a similar inter-
val on 4A (625.4 Mb to 744.5 Mb), although the peak marker 
position shifted to 735.8 Mb. QFt.niab-7D.1wSHWnam was 
found at the start of chromosome 7D in three trials (includ-
ing the Full21 trial, Fig. 5) and spanned a 59.3 Mb QTL 
interval across the trials. QFt.niab-7D.1wSHWnam explained 
a low percentage (< 1%) of the phenotypic variation in the 
Core18 and Full21 trial, but explained more of the variation 
in the Core20 trial (5.1%). QFt.niab-2B.1wSHWnam, located 
on chromosome 2B at a similar physical position to QFt.
niab-2D.1wSHWnam on 2D, was significant in the Full21 and 
Core19 trials where the peak marker was found at 58.1 and 
26.6 Mb, respectively (Table 2).

For Ph seven unique QTLs were found in total 
(Supplementary Table S5) including three QTLs detected 
across multiple trials (Table 2). QPh.niab-6A.1wSHWnam was 
a highly significant QTL detected across four trials including 
the Full21 trial, with a −log10(P) score of 19.1 (Fig. 5). 
This QTL was found close to the pericentromeric region 
of chromosome 6A, with the peak markers from 114.2 to 
405.4 Mb (Table 2), and a large QTL interval which spanned 
from 50.7 to 495.7 Mb (Supplementary Table S5). For six 
out of the seven Ph QTLs detected, including QPh.niab-
6A.1wSHWnam, the alternative SHW allele increased height 
(Supplementary Table  S5). QPh.niab-6D.1wSHWnam was 
found at the start of chromosome 6D in three trials, including 
the Full21 trial, with the same peak marker (AX.94940605) 
located at 84.3 Mb (Fig. 5). This QTL explained a low 
percentage of variation in each trial (< 1%), whereas QPh.
niab-6A.1wSHWnam explained between 0.9 and 9.8% (Table 2). 
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The third replicated Ph QTL was QPh.niab-5A.2wSHWnam, 
with the peak marker AX.94462177 located at 527.9 Mb on 
chromosome 5A. This QTL was significant in the Core18 
and Full21 trial (Fig. 5). In the Core17 and Core19 trial 
the peak on 5A was just below the significance threshold 
(Supplementary Figure S7) and in the Core20 trial a close 
QTL was detected at 467.0 Mb (QPh.niab-5A.1wSHWnam, 
Supplementary Table S5).

Three trials were used for scoring Yr. Trials Core17 and 
Core18 had reduced fungicide application, with Yr scored 
in early June, while trial Full21 received a Yr assessment 
in late April, just prior to the first application of a stand-
ard fungicide regime. In total, two Yr QTLs were found, of 
which only one was identified across all three trials (QYr.

niab-4D.1wSHWnam, Table 2). This QTL had the same peak 
marker in all three trials (AX.94546744) located at 1.4 Mb 
at the start of chromosome 4D and was highly significant 
in the Full21 and Core18 trials (−log10(P) = 13.8 and 14.3, 
respectively). Out of the 54 primary SHW parents, 37 were 
homozygous for the allele linked to increased Yr resistance at 
the peak SNP for QYr.niab-4D.1wSHWnam (AX.94546744). 
In the Full21 trial, 34 primary SHW lines with this resist-
ance allele had an average Yr score significantly lower than 
16 primary SHW lines with the same allele as ‘Robigus’, 
which showed increased susceptibility to Yr (Supplementary 
Figure S9). The significance of QYr.niab-4D.1wSHWnam was 
lower in the Core17 trial (−log10(P) = 4.9), this trial had far 
fewer genotypes than in Core18 and Full21, which may have 

Fig. 4   Selection patterns are shown in the tetraploid (a) and diploid lineage (b) backgrounds for the population genotypes represented by each 
square. A genotype is shown as ‘selected’ if it was selected by any breeder across the Core Nurseries
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reduced the statistical power. The QTL interval on 4D across 
the three trials was small and ranged from 1.3 to 3.6 Mb 
(Supplementary Table S5). The QTL explained between 3.0 
to 7.9% of the Yr phenotypic variation (Table 2). A second 
QTL, QYr.niab-7B.1wSHWnam QTL, was found only in the 
Full21 trial (Supplementary Table S5). For both QTLs, the 
alternative SHW allele conferred a lower Yr score, indicating 
increased yellow rust resistance.

To see if any other QTLs could be identified, GWAS 
scans were repeated for the Full21 trial using major hits 
as covariates (Supplementary Figure  S10). The major 
hits were taken as the peak marker for QTLs found in 
both the Full21 trial and at least one of the Core Nurser-
ies (Ft: QFt.niab-2B.1wSHWnam, QFt.niab-4A.1wSHWnam and 
QFt.niab-7D.1wSHWnam; Ph: QPh.niab-5A.2wSHWnam, QPh.
niab-6A.1wSHWnam and QPh.niab-6D.1wSHWnam; Yr: QYr.
niab-4D.1wSHWnam). For Ft, QFt.niab-5D.1wSHWnam was the 
only QTL observed above the significance threshold and no 
new QTLs were found. Similarly, for Ph only QPh.niab-
4B.1wSHWnam was significant and no new QTLs were found. 

For Yr, QYr.niab-7B.1wSHWnam was significant, together with 
a marginal additional hit on chromosome 4B at 528.0 Mb 
(−log10(P) = 4.99), for which the ‘Robigus’ allele increased 
Yr resistance. In summary, aside from the additional mar-
ginal hit found for Yr, covariate analysis detected no addi-
tional QTLs.

Discussion

The NIAB_WW_SHW_NAM population

The NIAB_WW_SHW_NAM population, consisting of 
3241 genotypes created from 54 primary SHW, represents a 
large, genetically diverse resource for accessing novel D sub-
genome variation from the wheat progenitor Ae. tauschii. 
To aid rapid exploitation via pre-breeding, the population 
makes this diversity available in the adapted UK elite wheat 
background ‘Robigus’ together with associated genome-
wide high density SNP genotype data. The population is 

Table 2   QTLs found across multiple trials using the NIAB_WW_SHW_NAM population for flowering time (Ft), plant height (Ph) and yellow 
rust infection (Yr)

The chromosome (Chr.) and physical position (measured in Mb) for each peakmarker of each QTL are listed. ‘−log10(P)’ represents the −
log10(P-value) for each QTL; ‘Var.’ shows percentage variation explained by each QTL. Significance thresholds (Sig. threshold) were estimated 
with a Bonferroni-type correction that uses effective markers based on linkage disequilibrium for a corrected P = 0.05. The ‘Alt. allele effect’ 
represents the dosage of the alternative SHW allele (where ‘Robigus’ was the reference) and ‘n’ was the number of genotypes used in the genetic 
mapping for each trial

QTL Trait Trial n Sig. threshold Genetic marker Chr Peak 
Position 
(Mb)

–log10(P) Alt. allele effect Var. (%)

QFt.niab-2B.1 Ft Core19 596 4.86 AX.94970315 2B 26.6 6.34 − 0.96 0.84
QFt.niab-2B.1 Ft Full21 2389 4.97 AX.95082190 2B 58.1 6.25 − 0.99 1.10
QFt.niab-2D.1 Ft Core19 596 4.86 AX.94779177 2D 14.9 5.33 − 0.86 0.04
QFt.niab-2D.1 Ft Core21 277 4.66 AX.94603120 2D 33.4 10.74 − 1.77 10.75
QFt.niab-4A.1 Ft Core18 852 4.66 AX.94552332 4A 735.8 10.09 − 0.68 0.18
QFt.niab-4A.1 Ft Full21 2389 4.97 AX.95165912 4A 681.4 10.31 − 0.84 0.86
QFt.niab-7D.1 Ft Core18 852 4.66 AX.95229555 7D 17.8 8.50 − 0.62 0.03
QFt.niab-7D.1 Ft Core20 457 4.66 AX.94929727 7D 61.2 5.87 − 1.06 5.07
QFt.niab-7D.1 Ft Full21 2389 4.97 AX.94688897 7D 32.0 5.33 − 0.59  < 0.01
QPh.niab-5A.2 Ph Core18 852 4.66 AX.94462177 5A 527.9 8.52 2.25 0.34
QPh.niab-5A.2 Ph Full21 2389 4.97 AX.94462177 5A 527.9 5.36 1.50 1.07
QPh.niab-6A.1 Ph Core17 253 4.46 AX.94474129 6A 114.2 6.18 3.61 0.87
QPh.niab-6A.1 Ph Core18 852 4.66 AX.95630086 6A 230.7 12.63 3.18 3.28
QPh.niab-6A.1 Ph Core21 277 4.66 AX.95630086 6A 230.7 6.73 4.25 9.81
QPh.niab-6A.1 Ph Full21 2389 4.97 AX.95159326 6A 405.4 19.10 3.06 2.45
QPh.niab-6D.1 Ph Core17 253 4.46 AX.94940605 6D 84.3 6.06 3.43 0.99
QPh.niab-6D.1 Ph Core18 852 4.66 AX.94940605 6D 84.3 6.71 2.01  < 0.01
QPh.niab-6D.1 Ph Full21 2389 4.97 AX.94940605 6D 84.3 6.64 1.58  < 0.01
QYr.niab-4D.1 Yr Core17 253 4.46 AX.94546744 4D 1.4 4.90 − 2.25 7.89
QYr.niab-4D.1 Yr Core18 852 4.66 AX.94546744 4D 1.4 14.27 − 3.93 7.76
QYr.niab-4D.1 Yr Full21 2389 4.97 AX.94546744 4D 1.4 13.82 − 0.78 2.98
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the largest publicly available resource of genotyped SHW-
derived germplasm in a North European elite winter wheat 
background.

The 47 D sub-genome donors of the NIAB_WW_SHW_
NAM population represent the three known Ae. tauschii line-
ages. This includes 14 primary SHW formed from Lineage 
1 (L1) donors, which are considered to be under-utilized in 

modern wheat breeding (Singh et al. 2019). Lineage 2 (L2) is 
thought to include the ancestral donor of wheat (Wang et al. 
2013), with a geographical distribution around the south of 
the Caspian Sea, consistent with the accessions used here. 
More recent evidence supports the contribution of the puta-
tive ‘Lineage 3’ (L3) to the modern wheat D sub-genome; 
Gaurav et al. (2022) attributed genetic signatures from L2 

Fig. 5   QTL mapping results from the Full21 trial for the three traits: 
flowering time (Ft; a), (b) and (c)), plant height (Ph; d), (e) and (f)) 
and yellow rust infection (Yr; g), (h) and (i)). For each trait, a Man-
hattan plot is shown, with genetic markers ordered based on physi-
cal map position (a), (d) and (g)). Bonferroni-like corrections using 

effective markers determined by linkage disequilibrium were used to 
estimate the significance thresholds for a corrected P = 0.05. The phe-
notype distributions of all genotypes used in the mapping (b), (e) and 
(h)) and the quantile–quantile plot for each QTL scan (c), and (f) and 
(i)) were also plotted for each trait
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and the L3 in modern wheat. One primary SHW (NIAB.
SHW.092) captures the D sub-genome of the donor Ae. 
tauschii line ‘Ent 272’, which has previously been assigned 
to the putative L3 by Gaurav et al. (2022). In the forma-
tion of the NIAB_WW_SHW_NAM population, the highest 
proportion of Ae. tauschii donors came from L2, with these 
accessions contributing to 39 of the primary SHW used as 
population donors.

Flowering time (Ft)

Incorporating novel chromosomal introgressions from 
progenitor species into modern elite genomes risks 
disrupting desirable allelic combinations, assembled 
over many generations of selective breeding, that confer 
adaptability to local climate conditions and farming systems. 
For example, high-input wheat production in North-Western 
Europe is generally based on winter habit varieties that 
require vernalization, which are mid-late flowering (to 
escape the risk of late frosts causing sterility), with a semi-
dwarf stature (which allows for high grain yields while 
minimizing the risk of crop losses through lodging). Here, 
the primary SHW were taller and earlier flowering than 
‘Robigus’, with the QTL effects of the alternative SHW 
alleles also following this trend.

The alternative SHW alleles at QFt.niab-2D.1wSHWnam 
and QFt.niab-2B.1wSHWnam (found across multiple trials) 
contributed to earlier Ft. Flowering time in wheat is a 
complex trait influenced by interactions between the 
environment and several genetic pathways, including 
response to photoperiod and vernalization, as well as 
additional loci referred to as ‘earliness per se’ genes 
(Cockram et al. 2007). Photoperiod response genes (Ppd) 
play an important role in determining flowering time 
in wheat (Snape et  al. 2001). ‘Robigus’ has wild-type 
photoperiod sensitive alleles at Ppd-B1 and Ppd-D1, with 
flowering promoted in long days (Bentley et  al. 2013). 
It is likely that QFt.niab-2D.1wSHWnam and QFt.niab-
2B.1wSHWnam, represent Ppd-D1 and Ppd-B1 (respectively), 
as these genes are located at colinear positions on 
homoeologous chromosomes 2D and 2B (Law et al. 1978). 
Furthermore, the peak markers for QFt.niab-2D.1wSHWnam 
(14.9 to 33.4 Mb) correspond well with the Chinese Spring 
reference position for the gene (TraesCS2D02G079600, 
2D: 34.0  Mb, IWGSC 2018). For the most significant 
hit for QFt.niab-2D.1wSHWnam, 51 of the primary SHW 
carried an alternative allele to ‘Robigus’ at the peak marker 
(AX.94603120), suggesting that alternative haplotypes 
linked to an earlier flowering response may be common in 
the Ae. tauschii donors. This contrasts with another SHW 
NAM population in which the Ppd-D1 haplotype of the 
recurrent parent (‘Norin 61’) was linked to earlier flowering 
(Gorafi et al. 2018). Photoperiod-insensitivity may have 

been incorporated from T. durum on the A and/or B genome, 
although only Ppd-B1 appears to have been detected in 
our NAM (as QFt.niab-2B.1wSHWnam). Allelic variation at 
Ppd-B1 has been shown to be important in controlling T. 
durum flowering time (Würschum et al. 2019). No QTLs 
for flowering time were identified consistently in every trial 
and it is probable that observed variation in Ft across trials 
was caused by different combinations of T. durum and Ae. 
tauschii alleles at different genes in the complex flowering 
time pathway in each nested population.

QFt.niab-4A.1wSHWnam was found for Ft on chromosome 
4A across two trials, where peak markers ranged from 
681.4 to 735.8 Mb and the alternative SHW alleles gave 
earlier Ft. Genetic control for Ft has been found in this 
region in other wheat multi-founder populations, and 
work to explore candidate genes is underway [Ian Mackay, 
personal communication 2022]. The vernalization pathway 
also plays an important role in controlling Ft in wheat, 
with several major vernalization genes (Vrn) characterized 
(Snape et al. 2001). As the peak markers for QFt.niab-
7D.1wSHWnam ranged from 17.8 to 61.2 Mb on chromosome 
7D, it is likely that this is the vernalization gene Vrn-D3 
(TraesCS7D02G111600, 7D: 68.4  Mb, IWGSC 2018). 
Further investigation is needed into the underlying, and 
potentially, useful novel haplotypes at the QTLs and major 
gene loci that have been mapped here. Introgression libraries, 
such as chromosome segment substitution lines (CSSLs; 
Horsnell et al. 2023), that incorporate specific introgressions 
from Ae. tauschii accessions across the bread wheat genome, 
could subsequently be used to better understand the function 
of these potentially novel haplotypes.

Plant height (Ph)

Dramatic increases in global wheat yields in the latter half 
of the twentieth century, called the ‘Green Revolution’, 
were driven in part by changes in plant architecture and 
physiology. These changes were linked to a set of reduced 
height (Rht) genes. ‘Robigus’ is known to possess the 
dwarf allele at Rht-B1 (Gordon et al. 2015). The Rht-B1 
physical position in the reference genome of cv. ‘Chinese 
Spring’ is located on chromosome 4B at 30.9  Mb 
(TraesCS4B02G043100; IWGSC 2018). A QTL close to this 
region was found only in the Full21 trial, with a peak marker 
located at 25.8 Mb (QPh.niab-4B.1wSHWnam, Supplementary 
Table S5). The dwarf phenotype in T. durum is also typically 
controlled by Rht-B1 (Subira et al. 2016) and it is likely 
that a high proportion of tetraploid donors would have also 
carried the dwarfing allele at this locus; only four nested 
populations were clearly segregating for the QTL. Due 
to the back-cross structure of the population, ~ 75% of 
each genotype’s genome would originate from ‘Robigus’. 
Therefore, if there are rare alleles in only a small number 
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of primary SHW, statistical power will be low to map these 
QTLs. QPh.niab-4B.1wSHWnam was found in the Full21 
trial, where most genotypes were screened and statistical 
power to find rarer QTLs would have been higher than 
the Core Nurseries. The QTL QPh.niab-5A.2wSHWnam was 
significant in the Core18 and the Full21 trial, but just below 
the significance threshold in the Core17 and Core19 trials. 
Furthermore, QPh.niab-5A.1wSHWnam was mapped 60.9 Mb 
away from QPh.niab-5A.2wSHWnam in the Core20 trial and 
may have been the same QTL. There is a known dwarfing 
gene on chromosome 5A called Rht12, although it has 
been mapped to the distal end of the long arm (Sun et al. 
2019). Other studies have identified QTLs for Ph on 5A 
in wheat (Griffiths et al. 2012; Yu et al. 2020) and further 
work is needed to establish the candidate gene for QPh.
niab-5A.2wSHWnam.

The Ph QTL QPh.niab-6A.1wSHWnam was notable for 
its high significance. There are several known Rht genes 
located on chromosome 6A (McIntosh et al. 2017, 2013), 
including Rht-24 which is an important determinant of 
Ph in global winter wheat (Würschum et al. 2017). Tian 
et al. (2022) used map-based cloning to isolate and identify 
Rht-24 as TraesCS6A02G221900, located at 413.7  Mb 
on chromosome 6A in the reference genome (IWGSC 
2018). The peak markers and physical position of QPh.
niab-6A.1wSHWnam varied across trials (114.2 to 405.4 Mb 
on 6A) and the QTL peaks typically extended across large 
stretches of the pericentromeric region of chromosome 6A. 
Reduced recombination rates across the physically large 
pericentromeric region would have decreased mapping 
resolution. The wide significance peaks of QPh.niab-
6A.1wSHWnam may have also been caused by the effects of 
multiple loci. Rht-25 has also been mapped to a region close 
to the centromere on chromosome 6A (144.0–148.3 Mb; Mo 
et al. 2018). Furthermore, the Gibberellic Acid-sensitive 
Rht genes Rht-14, Rht-16 and Rht-18, that originate from 
T. durum mutants, have been mapped to the short arm of 
chromosome 6A (Haque et  al. 2011). Although when 
the peak marker of QPh.niab-6A.1wSHWnam was used as a 
covariate in an additional scan using the Full21 trial, no 
other hits were observed on chromosome 6A. QPh.niab-
6D.1wSHWnam was found in three trials and may have been a D 
genome homoeologue for one of these 6A Rht genes. Other 
QTLs linked to plant height have been identified on 6D in 
previous studies (Wang et al. 2020), although Ph QTLs 
have been found distributed across every chromosome in 
wheat (Mao et al. 2010). The peak marker for QPh.niab-
6D.1wSHWnam (AX.94940605) was the only significant 
marker on 6D and could have been anchored to the wrong 
chromosome. However, there were no alternative BLAST 
hits on 6A, suggesting the marker was not linked to QPh.
niab-6A.1wSHWnam. Further efforts are needed to explore the 
haplotype diversity of the 6A centromeric regions in the 

NIAB_WW_SHW_NAM population to examine the genetic 
control of Ph and narrow down the QPh.niab-6A.1wSHWnam 
genetic interval.

Yellow rust infection (Yr)

Primary SHW are recognized as promising resources for 
resistance to yellow rust and other pathogens (Li et  al. 
2018). Yellow rust infection (Yr) was scored in three field 
trials, and in each of these experiments QTL QYr.niab-
4D.1wSHWnam was the most significant hit: 37 primary SHW 
donors carried the alternative allele to ‘Robigus’ that was 
linked to improved resistance. The primary SHW donors 
had a lower mean Yr compared to ‘Robigus’ in the Full21 
trial (Fig. 3c). The peak marker for QYr.niab-4D.1wSHWnam 
(AX.94546744, located at 1.4 Mb on chromosome 4D) was 
identical across trials. Yr28 is a previously described Ae. 
tauschii resistance gene on the short arm of chromosome 
4D (Singh et al. 2000). Additionally, a gene originating 
from Ae. tauschii and designated as YrAS2388 has been 
mapped to the same chromosome arm (Huang et al. 2011). 
Yr28 and YrAS2388 are now considered to be the same 
gene (Liu et al. 2013). Athiyannan et al. (2022) showed 
that YrAS2388 and another source of resistance found in an 
Ae. tauschii accession from Turkmenistan (YrAet672) were 
haplotype variants of Yr28. These haplotype variants encode 
nucleotide-binding leucine-rich repeat proteins typical 
of plant disease resistance genes (Athiyannan et al. 2022; 
Zhang et al. 2019). The susceptible allele of YrAS2388 in the 
reference genome of cv. ‘Chinese Spring’ is located in the 
region of 4D:1,821,950-1825589 bp (IWGSC 2018; Zhang 
et al. 2019). The peak hit for our yellow rust resistance 
QTL QYr.niab-4D.1wSHWnam was ~ 400 kb away from this 
location, indicating that Yr28 is a very strong candidate for 
QYr.niab-4D.1wSHWnam. There is limited evidence to suggest 
that Yr28 has been used as a source of resistance in modern 
wheat (Athiyannan et al. 2022; Zhang et al. 2019). Here, we 
propose that Yr28 can be effectively deployed in a UK winter 
wheat background (‘Robigus’) to confer resistance against 
current yellow rust pathotypes under field conditions in a 
maritime, temperate climate. In nested populations where 
Yr28 was segregating, Yr resistance was actively selected 
for by breeders. Furthermore, Yr28 is reported to perform 
better at warmer field temperatures (Singh et al. 2000), and 
so could be a useful source of resistance for future climate 
scenarios.

Breeder selection

The primary aim of SHW creation was to capture novel D 
sub-genome diversity, explaining the disparity between the 
number of unique Ae. tauschii (47) compared to T. durum 
(15) accessions captured. The majority of SHW used in 
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developing the NIAB_WW_SHW_NAM used ‘Hoh-501’ 
as the tetraploid because it gave a high success rate during 
resynthesis. However, there was indication that breeders 
selected toward other T. durum backgrounds in the Core 
Nurseries. For example, ‘Hoh-501’ was a component of 
a portion of SHW-derivatives in every Core Nursery, but 
‘UKR-OD 1530.94’, which was a component of some 
SHW-derivatives grown in just the Core20 and Core21 
trials, had a much higher selection proportion by the 
breeders. With higher representation of L2 Ae. tauschii 
donors in the SHW, it was unsurprising that L2 derived 
genotypes had a higher proportion of selection by breeders 
compared to L1. Furthermore, in the Core19 and Core20 
trials only one nested population with L1 parentage was 
present in the trial, which could have biased the selection. 
A selection experiment with more evenly distributed Ae. 
tauschii and T. durum backgrounds across trials would be 
needed before drawing statistically-backed conclusions on 
breeder selection patterns in the SHW-derived genotypes.

SHW-derivatives are known to be a valuable resource 
for breeding toward improved grain yield (Jafarzadeh 
et al. 2016), which, when combined with their rich allelic 
diversity, makes them appealing candidates for improving 
the genetic gain of breeding programs. In addition to 
their use in genetic mapping, the Core Nursery field 
experiments were intended to provide wheat breeders 
access to a genetically diverse pre-breeding resource 
in an adapted European winter wheat background. 
Breeders selected a high proportion—between 21 and 
58%—of the genotypes in each Core Nursery for further 
assessment. Once genotypes enter commercial breeding 
programs, their impact can be difficult to track. However, 
NIAB SHW-derived material continues to be evaluated 
in commercial breeding nurseries for a range of novel 
and standard traits: the breeding company DSV have 
recently developed a variety based on crosses featuring 
NIAB SHW genetics (Matt Kerton, DSV, personal 
communication). The breeders selected for Yr resistance 
in the Core Nurseries with reduced fungicide application 
(Core17 and Core18). Furthermore, in nested populations 
that were segregating for QYr.niab-4D.1 across the Core 
Nurseries, there was a difference between the frequency 
of the SHW QYr.niab-4D.1  allele linked to improved 
resistance in genotypes selected by at least one breeder 
compared to those not selected; 33% of selected genotypes 
(202/606) carried the resistance allele, compared to 21% 
(208/980) in the unselected genotypes. These observations 
highlight that the resistance provided by Yr28 was favored 
by breeders and further work is needed to establish if this 
source of resistance is effective in other genetic wheat 
backgrounds.

Concluding remarks

SHW-derived wheat pre-breeding genotypes offer the 
potential to characterize and introduce novel diversity 
into wheat research and breeding. The NIAB_WW_
SHW_NAM population is a large resource that captures 
structured diversity from a collection of SHW lines 
developed using a diverse range of T. durum and Ae. 
tauschii donors. The population is a valuable mapping 
resource for the detection of potentially useful genetic 
regions, such as QYr.niab-4D.1wSHWnam which is a 
candidate for Yr28. This resource has been generated 
in an adapted UK winter wheat background, making it 
a useful pre-breeding resource—as evidenced in practice 
by uptake of promising genotypes by commercial 
breeders. Therefore, it is likely the NIAB_WW_SHW_
NAM population complements and adds to the available 
resources for increasing genetic diversity in European 
wheat.
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