Skip to main content
Log in

Genetic dissection of lint percentage in short-season cotton using combined QTL mapping and RNA-seq

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

In total, 17 QTLs for lint percentage in short-season cotton, including three stable QTLs, were detected. Twenty-eight differentially expressed genes located within the stable QTLs were identified, and two genes were validated by qRT-PCR.

Abstract

The breeding and use of short-season cotton have significant values in addressing the question of occupying farmlands with either cotton or cereals. However, the fiber yields of short-season cotton varieties are significantly lower than those of middle- and late-maturing varieties. How to effectively improve the fiber yield of short-season cotton has become a focus of cotton research. Here, a high-density genetic map was constructed using genome resequencing and an RIL population generated from the hybridization of two short-season cotton accessions, Dong3 and Dong4. The map contained 4960 bin markers across the 26 cotton chromosomes and spanned 3971.08 cM, with an average distance of 0.80 cM between adjacent markers. Based on the genetic map, quantitative trait locus (QTL) mapping for lint percentage (LP, %), an important yield component trait, was performed. In total, 17 QTLs for LP, including three stable QTLs, qLP-A02, qLP-D04, and qLP-D12, were detected. Three out of 11 non-redundant QTLs overlapped with previously reported QTLs, whereas the other eight were novel QTLs. A total of 28 differentially expressed genes associated with the three stable QTLs were identified using RNA-seq of ovules and fibers at different seed developmental stages from the parental materials. The two genes, Ghir_A02G017640 and Ghir_A02G018500, may be related to LP as determined by further qRT-PCR validation. This study provides useful information for the genetic dissection of LP and promotes the molecular breeding of short-season cotton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data were deposited in the NCBI database. The genome resequencing is under accessions BioProject PRJNA917106 and BioSample SAMN32527284, and the RNA-sequencing is under accessions BioProject PRJNA917106 and BioSample SAMN32546507.

References

  • Abdurakhmonov IY, Buriev ZT, Saha S, Pepper AE, Musaev JA, Almatov A, Shermatov SE, Kushanov FN, Mavlonov GT, Reddy UK, Yu JZ, Jenkins JN, Kohel RJ, Abdukarimov A (2007) Microsatellite markers associated with lint percentage trait in cotton, Gossypium hirsutum. Euphytica 156:141–156

    CAS  Google Scholar 

  • Cai CP, Ye WX, Zhang TZ, Guo WZ (2014) Association analysis of fiber quality traits and exploration of elite alleles in Upland cotton cultivars/accessions (Gossypium hirsutum L.). J Integr Plant Biol 56:51–62

    CAS  PubMed  Google Scholar 

  • Chen ZJ, Scheffler BE, Dennis E, Triplett BA, Zhang TZ, Guo WZ, Chen XY, Stelly DM, Rabinowicz PD, Town CD, Arioli T, Brubaker C, Cantrell RG, Lacape JM, Ulloa M, Chee P, Gingle AR, Haigler CH, Percy R, Saha S, Wilkins T, Wright RJ, Deynze AV, Zhu YX, Yu SX, Abdurakhmonov I, Katageri I, Kumar PA, Rahman M, Zafar Y, Yu JZ, Kohel RJ, Wendel JF, Paterson AH (2007) Toward sequencing cotton (Gossypium) genomes. Plant Physiol 145:1303–1310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Gao Y, Chen P, Zhou J, Zhang CY, Song ZQ, Huo XH, Du ZH, Gong JW, Zhao CJ, Wang SL, Zhang JX, Wang FR, Zhang J (2022) Genome-wide association study reveals novel quantitative trait loci and candidate genes of lint percentage in upland cotton based on the CottonSNP80K array. Theor Appl Genet 135:2279–2295

    CAS  PubMed  Google Scholar 

  • Deshmukh R, Singh A, Jain N, Anand S, Gacche R, Singh A, Gaikwad K, Sharma T, Mohapatra T, Singh N (2010) Identification of candidate genes for grain number in rice (Oryza sativa L.). Funct Integr Genomic 10:339–347

    CAS  Google Scholar 

  • Fan SL, Yu SX, Song MZ, Yuan RH (2006) Construction of molecular linkage map and QTL mapping for earliness in short-season cotton. Cotton Sci 18:135–139 (In Chinese)

    Google Scholar 

  • Fang L, Wang Q, Hu Y, Jia YH, Chen JD, Liu BL, Zhang ZY, Guan XY, Chen SQ, Zhou BL, Mei GF, Sun JL, Pan ZE, He SP, Xiao S, Shi WF, Gong WF, Liu JG, Ma J, Cai CP, Zhu XF, Guo WZ, Du XM, Zhang TZ (2017) Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nat Genet 49:1089–1098

    CAS  PubMed  Google Scholar 

  • Godoy AS, Palomo GA (1999) Genetic analysis of earliness in upland cotton (Gossypium hirsutum L.). II Yield Lint Percent Euphytica 105:161–166

    Google Scholar 

  • Gong WF, He SP, Tian JH, Sun JL, Pan ZE, Jia YH, Sun GF, Du XM (2014) Comparison of the transcriptome between two cotton lines of different fiber color and quality. PLoS ONE 9:e112966

    PubMed  PubMed Central  Google Scholar 

  • Haigler CH, Betancur L, Stiff MR, Tuttle JR (2012) Cotton fiber: a powerful single-cell model for cell wall and cellulose research. Front Plant Sci 3:104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang C, Nie XH, Shen C, You CY, Li W, Zhao WX, Zhang XL, Lin ZG (2017) Population structure and genetic basis of the agronomic traits of upland cotton in China revealed by a genome-wide association study using high-density SNPs. Plant Biotechnol J 15:1374–1386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang C, Sun HY, Xu DY, Chen QY, Liang YM, Wang XF, Xu GH, Tian JE, Wang CL, Li D, Wu LS, Yang XH, Jin WW, Doebley JF, Tian F (2018) ZmCCT9 enhances maize adaptation to higher latitudes. Proc Natl Acad Sci USA 115:18058

    Google Scholar 

  • Hulse-Kemp AM, Lemm J, Plieske J, et al. (2015) Development of a 63K SNP Array for cotton and high density mapping of intraspecific and interspecific populations of Gossypium spp. G3-Genes Genom Genet 5:1187–1209

  • Huo X, Wu S, Zhu Z, Zhu ZF, Liu FX, Fu YG, Cai HW, Sun XY, Gu P, Xie DX, Tan LB, Sun CQ (2017) NOG1 increases grain production in rice. Nat Commun 8:1497

    PubMed  PubMed Central  Google Scholar 

  • Islam MS, Zeng L, Thyssen GN, Delhom CD, Kim HJ, Li P, Fang DD (2016) Mapping by sequencing in cotton (Gossypium hirsutum) line MD52ne identified candidate genes for fiber strength and its related quality attributes. Theor Appl Genet 129:1071–1086

    CAS  PubMed  Google Scholar 

  • Jia F, Sun FD, Li JW, Liu AY, Shi YZ, Gong JW, Shang HH, Gong WK, Wang T, Liu Z, Yuan YL (2011) Identification of QTL for boll weight and lint percentage of Upland cotton (Gossypium hirsutum L.) RIL population in multiple environments. Mol Plant Breed 9:318–326 (In Chinese)

    CAS  Google Scholar 

  • Jia X, Pang C, Wei H, Wang H, Ma Q, Yang J, Cheng S, Su J, Fan S, Song M, Wusiman N, Yu S (2016) High-density linkage map construction and QTL analysis for earliness-related traits in Gossypium hirsutum L. BMC Genomics 17:909

    PubMed  PubMed Central  Google Scholar 

  • Jian HG, Zhang AX, Ma JQ, Wang TY, Yang B, Shuang LS, Liu M, Li JN, Xu XF, Paterson AH, Liu LZ (2019) Joint QTL mapping and transcriptome sequencing analysis reveal candidate flowering time genes in Brassica napus L. BMC Genomics 20:21

    PubMed  PubMed Central  Google Scholar 

  • Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lander E, Kruglyak L (1995) Genetic dissection of complex traits guidelines for interpreting and reporting linkage results. Nat Genet 11:241–247

    CAS  PubMed  Google Scholar 

  • Li CQ, Guo WZ, Zhang TZ (2009a) Quantitative inheritance of yield and its components in upland cotton (Gossypium hirsutum L.) cultivars with varied lint percentages. Acta Agron Sin 35:1990–1999 (In Chinese)

    Google Scholar 

  • Li CQ, Guo WZ, Zhang TZ (2009b) Fiber initiation development in upland cotton (Gossypium hirsutum L.) cultivars varying in lint percentage. Euphytica 165:223–230

    Google Scholar 

  • Li CQ, Wang XY, Dong N, Zhao HH, Xia Z, Wang R, Converse RL, Wang QL (2013a) QTL analysis for early-maturing traits in cotton using two upland cotton (Gossypium hirsutum L.) crosses. Breed Sci 63:154–163

    PubMed  PubMed Central  Google Scholar 

  • Li XH, Wu M, Yu JJ, Zhang JF, Fan SL, Song MZ, Pang CY, Yu SX (2013b) Transcriptome analysis of early developing cotton fiber by RNA-Seq. Cotton Sci 25:189–196 (In Chinese)

    Google Scholar 

  • Li FG, Fan GY, Lu CR, Xiao GH, Zou CS, Kohel RJ, Ma ZY, Shang HH, Ma XF, Wu JY, Liang XM, Huang G, Percy RG, Liu K, Yang WH, Chen WB, Du XM, Shi CC, Yuan YL, Ye WW, Liu X, Zhang XY, Liu WQ, Wei HL, Wei SJ, Huang GD, Zhang XL, Zhu SJ, Zhang H, Sun FM, Wang XF, Liang J, Wang JH, He Q, Huang LH, Wang J, Cui JJ, Song GL, Wang KB, Xu X, Yu JZ, Zhu YX, Yu SX (2015) Genome sequence of cultivated upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotech 33:524–530

    Google Scholar 

  • Li C, Dong Y, Zhao T, Zhao T, Li L, Li C, Yu E, Mei L, Daud MK, He Q, Chen J, Zhu S (2016) Genome-wide SNP linkage mapping and QTL analysis for fiber quality and yield traits in the upland cotton recombinant inbred lines population. Front Plant Sci 7:218

    Google Scholar 

  • Li LB, Zhao SQ, Su JJ, Fan SL, Pang CY, Wei HL, Wang HT, Gu LJ, Zhang C, Liu GY, Yu DW, Liu QB, Zhang XL, Yu SX (2017a) High-density genetic linkage map construction by F2 populations and QTL analysis of early-maturity traits in upland cotton (Gossypium hirsutum L.). PLoS ONE 12:e0182918

    PubMed  PubMed Central  Google Scholar 

  • Li XH, Wu M, Liu GY, Pei WF, Zhai HH, Yu JW, Zhang JF, Yu SX (2017b) Identification of candidate genes for fiber length quantitative trait loci through RNA-Seq and linkage and physical mapping in cotton. BMC Genomics 18(1):427

    PubMed  PubMed Central  Google Scholar 

  • Li CQ, Wang YY, Ai NJ, Li Y, Song JF (2018) A genome-wide association study of early-maturation traits in upland cotton based on the CottonSNP80K array. J Integr Plant Biol 60:970–985

    CAS  PubMed  Google Scholar 

  • Liu RZ, Wang BH, Guo WZ, Qin YS, Wang LG, Zhang YM, Zhang TZ (2012) Quantitative trait loci mapping for yield and its components by using two immortalized populations of a heterotic hybrid in Gossypium hirsutum L. Mol Breed 29:297–311

    CAS  Google Scholar 

  • Liu DX, Liu F, Shan XR, Zhang J, Tang S, Fang XM, Liu XY, Wang WW, Tan ZY, Teng ZH, Zhang ZS, Liu DJ (2015a) Construction of a high-density genetic map and lint percentage and cottonseed nutrient trait QTL identification in upland cotton (Gossypium hirsutum L.). Mol Genet Genomics 290:1683–1700

    CAS  PubMed  Google Scholar 

  • Liu X, Zhao B, Zheng HJ, Hu Y, Lu G, Yang CQ, Chen JD, Chen JJ, Chen DY, Zhang L, Zhou Y, Wang LJ, Guo WZ, Bai YL, Ruan JX, Shangguan XX, Mao YB, Shan CM, Jiang JP, Zhu YQ, Jin L, Kang H, Chen ST, He XL, Wang R, Wang YZ, Chen J, Wang LJ, Yu ST, Wang BY, Wei J, Song SC, Lu XY, Gao ZC, Gu WY, Deng X, Ma D, Wang S, Liang WH, Fang L, Cai CP, Zhu XF, Zhou BL, Chen ZJ, Xu SH, Zhang YG, Wang SY, Zhang TZ, Zhao GP, Chen XY (2015b) Gossypium barbadense genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites. Sci Rep 5:14139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu DX, Zhang J, Liu XY, Wang WW, Liu DJ, Teng ZH, Fang XM, Tan ZY, Tang SY, Yang JH, Zhong JW, Zhang ZS (2016) Fine mapping and RNA-Seq unravels candidate genes for a major QTL controlling multiple fiber quality traits at the T1 region in upland cotton. BMC Genomics 17:295

    PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    PubMed  PubMed Central  Google Scholar 

  • Ma ZY, He SP, Wang XF, Sun JL, Zhang Y, Zhang GY, Wu LQ, Li ZK, Liu ZH, Sun GF, Yan YY, Jia YH, Yang J, Pan ZE, Gu QS, Li XY, Sun ZW, Dai PH, Liu ZW, Gong WF, Wu JH, Wang M, Liu HW, Feng KY, Ke HF, Wang JD, Lan HY, Wang GN, Peng J, Wang N, Wang LR, Pang BY, Peng Z, Li RQ, Tian SL, Du XM (2018) Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nat Genet 50:803–813

    CAS  PubMed  Google Scholar 

  • Mccouch S, Cho Y, Yano M, Paul E, Blinstrub M, Morishima H, Mccouch S, Cho Y, Paul E, Morishima H (1997) Report on QTL nomenclature. Rice Genet Newsl 14:11–13

    Google Scholar 

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M (2010) The genome analysis toolkit: a mapreduce framework for analyzing next generation DNA sequencing data. Genome Res 20:1297–1303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pajoro A, Madrigal P, Muio JM, Matus JT, Jin J, Mecchia MA, Debernardi JM, Palatnik JF, Balazadeh S, Arif M, Maoileidigh DS, Wellmer F, Krajewski P, Riechmann JL, Angenent GC, Kaufmann K (2014) Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factors in flower development. Genome Biol 15:R41

    PubMed  PubMed Central  Google Scholar 

  • Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33:290–295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qi HK, Wang N, Qiao WQ, Xu QH, Zhou H, Shi JB, Yan GT, Huang Q (2017) Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of three plant morphological traits in upland cotton (Gossypium hirsutum L.). Euphytica 213:83

    Google Scholar 

  • Russell RB, Sasieni PD, Sternberg MJ (1998) Supersites within superfolds. Binding site similarity in the absence of homology. J Mol Biol 282:903–918

    CAS  PubMed  Google Scholar 

  • Shang LG, Liang QZ, Wang YM, Zhao YP, Wang KB, Hua JP (2016) Epistasis together with partial dominance, over-dominance and QTL by environment interactions contribute to yield heterosis in upland cotton. Theor Appl Genet 129:1429–1446

    PubMed  Google Scholar 

  • Shen XL, Guo WZ, Lu QX, Zhu XF, Yuan YL, Zhang TZ (2007) Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in upland cotton. Euphytica 155:371–380

    CAS  Google Scholar 

  • Si Z, Jin S, Chen J, Wang S, Fang L, Zhu X, Zhang T, Hu Y (2022) Construction of a high-density genetic map and identifcation of QTLs related to agronomic and physiological traits in an interspecifc (Gossypium hirsutum × Gossypium barbadense) F2 population. BMC Genomics 23:307

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song CX, Li W, Pei XY, Liu YG, Ren ZY, He KL, Zhang F, Sun K, Zhou XJ, Ma XF, Yang DG (2019) Dissection of the genetic variation and candidate genes of lint percentage by a genome-wide association study in upland cotton. Theor Appl Genet 132:1991–2002

    CAS  PubMed  Google Scholar 

  • Stirnimann CU, Petsalaki E, Russell RB, Muller CW (2010) WD40 proteins propel cellular networks. Trends Biochem Sci 35:565–574

    CAS  PubMed  Google Scholar 

  • Su CF, Lu WG, Zhao TJ, Gai JY (2010) Verification and fine-mapping of QTL conferring days to flowering in soybean using residual heterozygous lines. Chin Sci Bull 55:499–508

    CAS  Google Scholar 

  • Su J, Fan S, Li L, Wei H, Wang C, Wang H, Song M, Zhang C, Gu L, Zhao S, Mao G, Wang C, Pang C, Yu S (2016) Detection of favorable QTL alleles and candidate genes for lint percentage by GWAS in Chinese upland cotton. Front Plant Sci 7:1576

    PubMed  PubMed Central  Google Scholar 

  • Su J, Ma Q, Li M, Hao F, Wang C (2018) Multi-locus genome-wide association studies of fiber-quality related traits in Chinese early-maturity upland cotton. Front Plant Sci 9:1169

    PubMed  PubMed Central  Google Scholar 

  • Su J, Wang C, Hao F, Ma Q, Wang J, Li J, Ning X (2019) Genetic detection of lint percentage applying single-locus and multi-locus genome-wide association studies in Chinese early-maturity upland cotton. Front Plant Sci 10:964

    PubMed  PubMed Central  Google Scholar 

  • Sun FD, Zhang JH, Wang SF, Gong WK, Shi YZ, Liu AY, Li JW, Gong JW, Shang HH, Yuan YL (2012) QTL mapping for fiber quality traits across multiple generations and environments in Upland cotton. Mol Breed 30:569–582

    Google Scholar 

  • Sun ZW, Wang XF, Liu ZW, Gu QS, Zhang Y, Li ZK, Ke HF, Yang J, Wu JH, Wu LQ, Zhang GY, Zhang CY, Ma ZY (2018) A genome-wide association study uncovers novel genomic regions and candidate genes of yield-related traits in upland cotton. Theor Appl Genet 131:2413–2425

    CAS  PubMed  Google Scholar 

  • Takuji S (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Google Scholar 

  • Tan ZY, Zhang ZQ, Sun XJ, Li QQ, Sun Y, Yang P, Wang WW, Liu XY, Chen CL, Liu DX, Teng ZG, Guo K, Zhang J, Liu DJ, Zhang ZS (2018) Genetic map construction and fiber quality QTL mapping using the CottonSNP80K array in upland cotton. Front Plant Sci 9:225

    PubMed  PubMed Central  Google Scholar 

  • Wang M, Li CQ, Wang QL (2014) Quantitative trait loci mapping and genetic dissection for lint percentage in Upland cotton (Gossypium hirsutum). J Genet 93:371–378

    CAS  PubMed  Google Scholar 

  • Wang SS, Cao M, Ma X, Chen WK, Zhao J, Sun CQ, Tan LB, Liu FX (2017) Integrated RNA sequencing and QTL mapping to identify candidate genes from oryza rufipogon associated with salt tolerance at the seedling stage. Front Plant Sci 8:1427

    PubMed  PubMed Central  Google Scholar 

  • Wang MJ, Tu LL, Yuan DJ, Zhu D, Shen C, Li JY, Liu FY, Pei LL, Wang PC, Zhao GN, Ye ZX, Huang H, Yan FL, Ma YZ, Zhang L, Liu M, You JQ, Yang YC, Liu ZP, Huang F, Li BQ, Qiu P, Zhang QH, Zhu LF, Jin SX, Yang XY, Min L, Li GL, Chen LL, Zheng HK, Lindsey K, Lin ZX, Udall JA, Zhang XL (2019) Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet 51:224–229

    PubMed  Google Scholar 

  • Wang J, Li H, Zhang L, Meng L (2016) Users’ Manual of QTL IciMapping. The Quantitative Genetics Group, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China

  • Xing H, Yuan Y, Zhang H, Wang L, Mao L, Tao J, Sun XZ (2019) Multi-environments and multi-models association mapping identified candidate genes of lint percentage and seed index in Gossypium hirsutum L. Mol Breed 39:1–16

    Google Scholar 

  • Yang J, Guo ZH, Luo LX, Gao QL, Xiao WM, Wang JF, Wang H, Chen ZQ, Guo T (2021) Identification of QTL and candidate genes involved in early seedling growth in rice via high-density genetic mapping and RNA-seq. Crop J 9:360–371

    Google Scholar 

  • Yoo MJ, Wendel JF (2014) Comparative evolutionary and developmental dynamics of the cotton (Gossypium hirsutum) fiber transcriptome. Plos Genet 10:e1004073

    PubMed  PubMed Central  Google Scholar 

  • Yu SX, Song MZ, Fan SL (2007) Short-season cotton breeding in china. Cotton Sci 19:418–427 (In Chinese)

    Google Scholar 

  • Yu JW, Zhang K, Li SY, Yu SX, Zhai HH, Wu M, Li XL, Fan SL, Song MZ, Yang DG, Li YH, Zhang JF (2013) Mapping quantitative trait loci for lint yield and fiber quality across environments in a Gossypium hirsutum × Gossypium barbadense backcross inbred line population. Theor Appl Genet 126:275–287

    PubMed  Google Scholar 

  • Yu J, Jung S, Cheng CH, Lee T, Zheng P, Buble K, Crabb J, Humann J, Hough HH, Jones D, Campbell JT, Udall J, Main D (2021) CottonGen: the community database for cotton genomics, genetics, and breeding research. Plants 10:2805

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan DJ, Tang ZH, Wang MJ, Gao WH, Tu LL, Jin X, Chen LL, He YH, Zhang L, Zhu LF, Li Y, Liang Q, Lin ZX, Yang XY, Liu N, Jin SX, Lei Y, Ding YH, Li GL, Ruan XA, Ruan YJ, Zhang XL (2015) The genome sequence of sea-island cotton (Gossypium barbadense) provides insights into the allopolyploidization and development of superior spinnable fibres. Sci Rep 5:17662

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang ZS, Xiao YH, Luo M, Li XB, Luo XY, Hou L, Pei Y (2005) Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton (Gossypium hirsutum L.). Euphytica 144:91–99

    CAS  Google Scholar 

  • Zhang X, Gao J, Song G, Liu F, Li S, Liu K, Chu Z, Shao Y, Wang K (2009) Additive and epistatic effects QTL analysis on upland cotton CRI-G6. Mol Plant Breed 2:312–320 (In Chinese)

    Google Scholar 

  • Zhang M, Zheng XL, Song SQ, Zeng QW, Hou L, Li DM, Zhao J, Wei Y, Li XB, Luo M, Xiao YH, Luo XY, Zhang JF, Xiang CB, Pei Y (2011) Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality. Nat Biotechnol 29:453–458

    CAS  PubMed  Google Scholar 

  • Zhang TZ, Hu Y, Jiang WK, Fang L, Guan XY, Chen JD, Saski CA, Scheffler BE, Stelly DM, Hulse-Kemp AM, Wan Q, Liu BL, Liu CX, Wang S, Pan MQ, Wang YK, Wang DW, Ye WX, Chang LJ, Zhang WP, Song QX, Kirkbride RC, Chen XY, Dennis E, Llewellyn DJ, Peterson DG, Thaxton P, Jones DC, Wang Q, Xu XY, Zhang H, Wu HT, Zhou L, Mei GF, Chen SQ, Tian Y, Xiang D, Li XH, Ding J, Zuo QY, Tao LN, Liu YC, Li J, Lin Y, Hui YY, Cao ZS, Cai CP, Zhu XF, Jiang Z, Zhou BL, Guo WZ, Li RQ, Chen ZJ (2015) Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol 33:531–537

    CAS  PubMed  Google Scholar 

  • Zhang SW, Feng LC, Xing LT, Yang B, Gao X, Zhu XF, Zhang TZ, Zhou BL (2016a) New QTLs for lint percentage and boll weight mined in introgression lines from two feral landraces into Gossypium hirsutum acc TM-1. Plant Breed 135:90–101

    CAS  Google Scholar 

  • Zhang Z, Shang HH, Shi YZ, Huang L, Li JW, Ge Q, Gong JW, Liu AY, Chen TT, Wang D, Wang YL, Palanga KK, Muhammad J, Li WJ, Lu QW, Deng XY, Tan YN, Song WW, Cai J, Li PT, Rashid HO, Gong WK, Yuan YL (2016b) Construction of a high-density genetic map by specific locus amplified fragment sequencing (SLAF-seq) and its application to Quantitative Trait Loci (QTL) analysis for boll weight in upland cotton (Gossypium hirsutum.). BMC Plant Biol 16:79

    PubMed  PubMed Central  Google Scholar 

  • Zhang C, Li LB, Liu QB, Gu LJ, Huang JQ, Wei HL, Wang HT, Yu SX (2019) Identification of loci and candidate genes responsible for fiber length in upland cotton (Gossypium hirsutum L.) via association mapping and linkage analyses. Front Plant Sci 10:53

    PubMed  PubMed Central  Google Scholar 

  • Zhang JJ, Jia XY, Guo XH, Wei HL, Zhang M, Wu AM, Cheng SS, Cheng XQ, Yu SX, Wang HT (2021) QTL and candidate gene identification of the node of the first fruiting branch (NFFB) by QTL-seq in upland cotton (Gossypium hirsutum L.). BMC Genomics 22:882

    PubMed  PubMed Central  Google Scholar 

  • Zhu GZ, Gao WW, Song XH, Sun FL, Hou S, Liu N, Huang YJ, Zhang DY, Ni ZY, Chen QJ, Guo WZ (2020) Genome-wide association reveals genetic variation of lint yield components under salty field conditions in cotton (Gossypium hirsutum L.). BMC Plant Biol 20:23

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (31671743, 32201763), the Key Research and Development Program of the Xinjiang Production and Construction Corps (2021AB010), and the Fundamental Research Project of Shanxi Province (20210302123081).

Author information

Authors and Affiliations

Authors

Contributions

CQL designed the experiments. QL, YYW, QLW, LD, NJA, and GLF performed field trials and data analyses. YYW and RRS prepared cotton DNA and RNA samples. YZF and YLZ contributed to performing RNA-seq and qRT-PCR experiments. QL and CQL performed QTL mapping and drafted the manuscript. CQL revised the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Chengqi Li.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest in the reported research.

Ethical approval

The authors note that this research was performed and reported in accordance with ethical standards of scientific conduct.

Additional information

Communicated by Tianzhen Zhang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 4725 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Wang, Y., Fu, Y. et al. Genetic dissection of lint percentage in short-season cotton using combined QTL mapping and RNA-seq. Theor Appl Genet 136, 205 (2023). https://doi.org/10.1007/s00122-023-04453-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-023-04453-4

Navigation