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Abstract
Key message Genomic prediction of GCA effects based on model training with full-sib rather than half-sib families 
yields higher short- and long-term selection gain in reciprocal recurrent genomic selection for hybrid breeding, if 
SCA effects are important.
Abstract Reciprocal recurrent genomic selection (RRGS) is a powerful tool for ensuring sustainable selection progress in 
hybrid breeding. For training the statistical model, one can use half-sib (HS) or full-sib (FS) families produced by inter-
population crosses of candidates from the two parent populations. Our objective was to compare HS-RRGS and FS-RRGS 
for the cumulative selection gain ( ΣΔG ), the genetic, GCA and SCA variances ( �2

G
,�2

gca
 , �2

sca
 ) of the hybrid population, and 

prediction accuracy ( rgca ) for GCA effects across cycles. Using SNP data from maize and wheat, we simulated RRGS pro-
grams over 10 cycles, each consisting of four sub-cycles with genomic selection of Ne = 20 out of 950 candidates in each 
parent population. Scenarios differed for heritability 

(

h2
)

 and the proportion � = 100 × �
2

sca
∶ �

2

G
 of traits, training set (TS) 

size ( NTS ), and maize vs. wheat. Curves of ΣΔG over selection cycles showed no crossing of both methods. If � was high, 
ΣΔG was generally higher for FS-RRGS than HS-RRGS due to higher rgca . In contrast, HS-RRGS was superior or on par 
with FS-RRGS, if � or h2 and NTS were low. ΣΔG showed a steeper increase and higher selection limit for scenarios with low 
� , high h2 and large NTS . �2

gca
 and even more so �2

sca
 decreased rapidly over cycles for both methods due to the high selection 

intensity and the role of the Bulmer effect for reducing �2

gca
 . Since the TS for FS-RRGS can additionally be used for hybrid 

prediction, we recommend this method for achieving simultaneously the two major goals in hybrid breeding: population 
improvement and cultivar development.

Introduction

Recurrent selection (RS) comprises a multitude of breeding 
methods sharing as common feature the testing, selection 
and recombination of genetic units in successive steps of 

each selection cycle. The basic idea of RS is to improve 
the population mean by increasing the frequency of favora-
ble alleles over selection cycles without loosing desirable 
genetic variation for future cycles (Hallauer et al. 2010). 
While recurrent selection in a broad sense is practiced in 
every breeding program, scientific studies on the efficiency 
of RS were generally conducted with closed populations. 
Quantitative genetics provided the theoretical basis for quan-
tifying the short-term selection gain ( ΔG ) expected under 
different RS schemes and the relevant factors contributing 
to it (Falconer and Mackay 1996; Hallauer et al. 2010). 
Numerous RS methods have been described in textbooks 
(e.g., Bernardo 2002, Chap. 9), which differ with regard to 
the genetic units used in the various steps and whether they 
deal with intra-population or inter-population improvement.

In hybrid breeding, usually two genetically distant 
populations are used as base material to take full advan-
tage of hybrid vigor (Melchinger and Gumber 1998). For 
this reason, RS is mainly concerned with inter-population 
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improvement of both parent populations in reciprocal terms 
to maximize the mean performance of their hybrid popu-
lation and the top hybrids between lines developed from 
the two parent populations (Hallauer et al. 2010). While 
the technical details of reciprocal recurrent selection can 
vary depending on the biological requisites of the crop (e.g., 
multiplication coefficient, ease of pollination control and 
production of selfed and cross-pollinated seed or doubled-
haploid lines), two general categories are distinguished, 
depending on whether the test units are half-sib (HS) or 
full-sib (FS) families (Hallauer et al. 2010).

Comstock et al. (1949) proposed HS reciprocal recur-
rent selection as a method to maximize general combining 
ability (GCA) in hybrid breeding and mistakenly also men-
tioned improvement of specific combining ability (SCA). 
They suggested to select candidates from each population 
based on their GCA evaluated in HS progenies produced 
with the opposite population as common tester. Later, the 
HS method was modified replacing as tester the opposite 
population by an inbred line or single cross produced from 
it (Horner et al. 1973).

Full-sib recurrent reciprocal selection was proposed 
as an alternative to the HS methods (Hallauer 1967; Lon-
nquist and Williams 1967). The basic idea is to produce and 
evaluate FS families, corresponding to single crosses (SCs), 
between pairs of candidates from the two parent populations 
and recombine within each population the parents (or selfed 
progenies of them) of crosses with superior hybrid perfor-
mance to generate the base material for the next breeding 
cycle. The main advantage of FS over the HS selection is 
that twice as many candidates can be sampled from each par-
ent population, yielding the same number of SC entries for 
phenotyping in trials. However, a line with superior GCA is 
unlikely to be selected in the FS method if crossed by chance 
to a partner with poor GCA or if their cross has negative 
SCA. Thus, the positive effect of higher selection intensity is 
partly offset by a reduced correlation between the selection 
criterion and GCA, as reflected in the formula for the selec-
tion response of the FS method (Bernardo 2002, p. 201).

Genomic selection can readily be integrated into RS 
methods because the phenotypic data from testing of the 
genetic units can be used for training the statistical model 
for genomic prediction. This offers the opportunity to sub-
stantially improve the selection response as demonstrated 
by numerous studies on intra-population improvement in 
animal and plant breeding (e.g., Crossa et al. 2017; Hickey 
et al. 2017; Schaeffer 2006). First, the low costs of genotyp-
ing permits predicting the breeding value of a large num-
ber of non-phenotyped individuals, enabling a tremendous 
increase in the selection intensity. Second, applying genomic 
selection for several cycles benefits the selection response 
by savings in time and costs due to bypassing the time-con-
suming and expensive step of phenotyping. However, little is 

known about the persistency of the prediction accuracy and 
selection gain under different schemes of recurrent genomic 
selection (Müller et al. 2017). Furthermore, integration of 
genomic selection into FS reciprocal recurrent selection has 
so far received little attention in hybrid breeding.

In the present study, we applied fully stochastic forward-
in-time simulations based on molecular data from breed-
ing programs in maize and wheat to generate in silico base 
populations. These were subject to ten cycles of HS-RRGS 
or FS-RRGS, each cycle consisting of (re-)training and four 
sub-cycles of genomic selection. Our goal was to (i) inves-
tigate the cumulative selection gain ( ΣΔG ) of the hybrid 
population over selection (sub-)cycles, (ii) monitor the cor-
responding changes in the genetic variance ( �2

G
 ) and the 

GCA and SCA variances ( �2
gca

 , �2
sca

 ), and (iii) examine the 
prediction accuracy ( rgca ) for GCA effects over cycles and 
sub-cycles. Our main objective was to compare HS-RRGS 
and FS-RRGS with regard to the short- and long-term selec-
tion progress under various scenarios differing in the herita-
bility ( h2 ) and proportion � = 100 × �

2
sca
∕�

2

G
 at the beginning 

of the selection program as well as the presence or absence 
of genetically distant parent populations.

Simulations

Genetic markers, founder lines and generation 
of the base populations

Our starting point were two data sets of SNP marker geno-
types from maize and wheat. Data set DS1 comprised 145 
dent and 111 flint founder lines, serving as female and male 
lines, respectively, from the maize breeding program of the 
University of Hohenheim detailed in previous publications 
(Schrag et al. 2018; Technow et al. 2014; Westhues et al. 
2017). Briefly, the lines had been developed either by recur-
rent selfing for more than six generations or the doubled-
haploid (DH) technique and had been selected for per se 
performance as well as for general combining ability (GCA) 
of important agronomic traits in testcrosses (TCs) with line 
testers from the opposite population. All lines had been gen-
otyped with the 50k Illumina SNP chip MaizeSNP50 (Ganal 
et al. 2011). After a rigorous quality check, a total of 13,813 
markers (corresponding to panel SNPall ) polymorphic in the 
256 founder lines were available for our simulations, provid-
ing a fairly uniform coverage of the entire maize genome. 
The genetic map of these SNPs was constructed as detailed 
by Lanzl et al. (2023) and covered in total 1,442 cM of the 
maize genome.

Data set DS2 comprised 667 female and 18 male founder 
lines from spring bread wheat (Triticum aestivum L.) used 
as parents of 1,888 SC hybrids phenotyped in large experi-
ments described by Basnet et al. (2019). The elite parent 
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lines were chosen from CIMMYT’s spring bread wheat pro-
gram based on per se performance for agriculturally impor-
tant traits, suitability for producing hybrids and ancestral 
diversity measured with the co-ancestry coefficient. The 
female and male parents were genotyped with customary 
SNP arrays. For our analyses, CIMMYT kindly provided 
the 10,250 SNP markers (corresponding to panel SNPall ) 
underlying the comparison of different methods for genomic 
prediction of hybrids reported by Basnet et al. (2019). The 
genetic map of these markers covered in total 3,009 cM of 
the wheat genome.

For each data set, the base material (denoted as C1,0 ) for 
the parent populations F (females) and M(males) was gen-
erated in silico by the following steps: (i) random mate the 
founder female or male lines, excluding selfing. (ii) Sample 
950  S0 genotypes from each parent population under the 
restriction that each founder line contributed no more than 
12 gametes to the sample, except for the males in set DS2, 
where the threshold was raised to a maximum of 55 gametes 
per founder line due to their small number. (iii) Simulate 
meiosis in each of the  S0 genotypes and produce from a 
randomly chosen gamete one DH line. Thus, we obtained 
a set of 950 largely unrelated DH lines in both set F and 
M representing the parent populations at the beginning of 
genomic selection for both breeding schemes.

Genetic architecture of the simulated traits

For each data set we followed the same procedure to simu-
late traits differing in their architecture with regard to the 
importance of dominance effects detailed in our companion 
paper (Melchinger et al. 2023). First, a panel QP of 3,000 
SNPs, representing an equal proportion of the markers posi-
tioned on each chromosome, was randomly sampled from 
the entire panel SNPall of SNP markers and retained as pool 
for choosing the QTL positions. The remaining panel R of 
SNPs in each data set served as markers for genomic predic-
tion. Second, a panel Q of 1,000 QTL randomly chosen from 
QP were assigned additive ( al ) and dominance ( dl ) effects 
as defined in the textbook of Lynch and Walsh (1998). The 
additive effects ai were drawn from a Gamma distribution 
with parameter scale = 1.66 and shape = 0.4 following previ-
ous studies (Meuwissen et al. 2001; Technow et al. 2012). 
The dominance effects dl = al × kl were obtained multiply-
ing ai by the degree of dominance kl sampled from a normal 
distribution kl ∼ N

(

�k, �
2

k

)

 . Third, a random panel Qd ⊂ Q 
of nd QTL displaying only dominance effects dl was obtained 
replacing their al value by zero. Fourth, the additive effects 
were scaled such that the genetic variance of the hybrid pop-
ulation F ×M in C1,0 was �2

G
 = 1. The parameters 

(

�k, �
2

k

)

 and 
nd were chosen based on estimates of the degree of domi-
nance and QTL mapping results from numerous studies in 
maize as detailed in Melchinger et al. (2023) and for wheat, 

based on a literature survey of various (partially) autoga-
mous crops (see Suppl. Table S1).

For each trait, determined by the location and the genetic 
effects of the QTL in Q , the genotypic value of each candi-
date from every selection cycle was obtained by summing 
the respective additive and dominance effects over all QTL. 
Phenotypic values of TCs (HS-RRGS) or SCs (FS-RRGS) 
in the training set (TS) of the initial and later selection 
cycles were obtained by adding to the genotypic values a 
noise variable from a normal distribution N

(

0, �2
e

)

 , where 
�
2
e
= �

2

G

(

1 − h2
)

∕h2 , �2

G
 is the genetic variance and h2 the 

desired broad-sense heritability of the hybrid population 
F ×M in C1,0.

Simulation of half‑sib and full‑sib reciprocal 
recurrent genomic selection

In our notation, numbers with capital and lower case letters 
(e.g., NTS and nTS ) refer to the hybrid and parent populations, 
respectively. Each selection cycle Ct (t = 1, ..., 10) includes 
(re-)training the model in sub-cycle Ct,0 and s (s = 1, ..., 4) 
sub-cycles Ct,s of genomic selection. The candidates selected 
in Ct,4 are used to generate the materials for Ct+1,0 by produc-
tion of DH lines as described below. The two methods HS-
RRGS and FS-RRGS differ with respect to (i) the number of 
line candidates sampled from each population for producing 
the test units in the TS, (ii) the test units (inter-population 
HS versus FS families) in the TS used for phenotyping and 
(re-)training the model in Ct,0 , and (iii) the selection criterion 
(GBLUPs for TC performance in HS-RRGS versus GBLUPs 
for GCA effects in FS-RRGS) used for genomic selection 
in sub-cycles Ct,s . However, the two breeding schemes are 
identical with respect to (a) the identification of superior 
candidates based on the selection criterion applied by each 
method, (b) the recombination scheme for generating the 
material of the next sub-cycle, and (c) the production of DH 
lines after recombining the candidates selected in Ct,4 to be 
used as base material for Ct+1,0 (Suppl. Figure S1).

In each cycle Ct of the HS-RRGS scheme, nF female and 
nM = nF male lines were randomly sampled from parent pop-
ulation F and M , respectively, of subcycle Ct,0 and crossed 
to a tester from the opposite population (Fig. 1). The TCs 
from each parent population, adding to a total of NTS = 2nF 
entries over both parent populations, were phenotyped and 
served as TS for training the model for TC performance of 
the respective parent population described below [Eq. (1)]. 
The GBLUPs of the candidates in sub-cycles Ct,s obtained 
with this model served as selection criterion within cycle 
Ct . For each parent population, the tester in cycle Ct was the 
genotype with highest GBLUP value among the 950 DH 
lines from the opposite population identified in the previous 
cycle Ct−1,0 . For cycle C1 , the tester was the best among 100 
randomly chosen DH lines with highest GCA to the opposite 
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population determined by phenotypic evaluation of TCs with 
the same heritability as in C1,0.

In each cycle Ct of the FS-RRGS scheme, n∗
F
 female and 

n∗
M
= n∗

F
 male lines were randomly sampled from parent 

population F and M of subcycle Ct,0 and pairwise crossed 
(Fig. 1). The NTS = n∗

F
 inter-population single-cross (SC) 

hybrids were phenotyped and served as TS for training the 
statistical model for hybrid performance described below 
[Eq. (2)]. The GBLUPs for the GCA of the candidates in 
Ct,s , obtained with this model served as selection criterion. 
Under the assumption of equal expenditures for phenotying 
the TS for each method, NTS is equal for both methods so that 

Fig. 1  Production of hybrids (green) for the training set using dou-
bled-haploid lines sampled from parent populations ΠF (females, 
yellow) and ΠM (males, blue). Top: Half-sib reciprocal recurrent 
genomic selection (HS-RRGS) with NTS/2 half-sib families in each 
population produced by crossing the candidates with an inbred tester 

from the opposite population. Bottom: Full-sib reciprocal recurrent 
genomic selection (FS-RRGS) with NTS single-cross hybrids obtained 
from paired crosses of DH lines. DH lines in the prediction set of ΠF 
and ΠM are also shown
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n∗
F
= n∗

M
= 2n

F
= 2n

M
 , meaning that twice as many lines 

are sampled from each parent population for (re-)training in 
FS-RRGS than HS-RRGS.

For both RRGS methods and both parent populations, we 
applied the same scheme for recombination and recurrent 
genomic selection in sub-cycles Ct,s (Suppl. Figure S1). In 
Ct,0 , the top nsel,1 = 40 out of the 950 DH lines were selected 
from each parent population on the basis of their GBLUPs 
for TC performance in HS-RRGS and GCA in FS-RRGS, 
respectively. In each parent population, each selected line 
was crossed at random with one other selected line. Subse-
quently, the 20 intra-population single crosses were mated 
according to a half-diallel design and each of the 190 mat-
ings (corresponding to intra-population FS families) con-
tributed exactly five  S0 progeny to the next generation. The 
n = 950  S0 plants constituted the parent population compris-
ing the recombined material of subcycle Ct,1 and served as 
starting material for subcycle Ct,2 . They were genotyped in 
the juvenile stage to select the nsel,2 = 20 plants with top 
GBLUPs based on their marker genotype and the statistical 
model trained in Ct,0 . The 20 top  S0 plants were again pair-
wise mated and five  S0 progeny plants per intra-population 
FS family were genotyped for a total of n = 950 candidates, 
comprising the recombined material of subcycle Ct,2 . This 
procedure was continued up to subcycle Ct,4 , where from 
each of the 950 candidates after recombination one DH 
line was produced in silico to generate 950 DH lines cor-
responding the material in subcycle Ct+1,0 . Thus, the allele 
frequencies in Ct,4 and Ct+1,0 and consequently the mean of 
the hybrid population between the two parent populations 
in these sub-cycles are expected to be identical except for 
sampling effects. Our rationale for selecting nsel,1 = 40 DH 
lines from Ct,0 but nsel,s = 20  S0 plants in advanced subcycles 
Ct,s was to have the same effective population size Ne in all 
sub-cycles.

Our decision to conduct within each cycle four sub-
cycles of genomic selection before re-training was based on 
results examining the persistency of prediction accuracy for 
genomic selection with synthetic populations (Müller et al. 
2017). Our goal was that the prediction accuracy of GBLUPs 
for the selection criterion should not fall below 25% of the 
level in Ct,0.

Statistical analyses

Genomic prediction models

For HS-RRGS, we calculated GBLUPs for TC performance 
of all candidates from each parent population separately and 
but describe the procedure here only for candidates from 
population F . We used the model,

where �TC is the vector of TC performance (corresponding 
to inter-population HS families) of the nF candidates in the 
TS of population F in sub-cycle Ct,0 , µ is the fixed model 
intercept, �F is the design matrix linking the vector � of TC 
ef fects  of  the  genotypes  f rom F  wi th  �TC  , 
�F ∼ N

(

0, �2

TC,F
�F

)

 , where �2

TC,F
 refers to the genetic TC 

variance of the DH lines from population F in Ct,0 , �F is the 
genomic relationship matrix among the genotypes in popula-
tion F calculated as described below, and � is the residual 
error. The TC performance of all candidates in F was pre-
dicted with the formula �̂F = 𝜎

2

TC,F
�F,TS�

−1

TC,TC
�TC , where 

�F,TS is a sub-matrix of �F , referring to the genomic rela-
tionship of the genotypes in F and the candidates in the TS, 
and �

TC,TC
 is the phenotypic covariance matrix for TC per-

formance of the candidates in the TS. The variance compo-
nents required in the above formulas were estimated from 
the data in the respective TS using the R package regress 
version 1.3 (Clifford and McCullagh 2006).

For FS-RRGS, we calculated GBLUPs for the GCA of 
the genotypes in each population based on the following 
model for inter-population SC hybrids among DH lines 
(corresponding to inter-population FS families) from the 
TS

where �SC is the vector of phenotypic values of the 
NTS = n∗

F
= 2nF SC hybrids in the TS, µ is the fixed model 

intercept, �F and �M are the design matrices linking the 
random GCA effects of the parent lines from F and M , 
respectively, with their hybrids in the TS, �S the design 
matrix of SCA effects for the SC hybrids in the TS. The 
residuals are again represented by vector � . The covariance 
matrix of the GCA effects �F and �M was �F�

2

gcaF
 and 

�M�
2

gcaM
 , respectively, and that of SCA effects was �S�

2
sca

 , 

where �2

gcaF
 , �2

gcaM
 and �2

sca
 are the variance components per-

taining to GCA and SCA effects of the complete factorial 
F ×M , �F and �M are the genomic relationship matrices 
among the genotypes from F and M , respectively, and 
�S = �F ⊗�M , with ⊗ referring to the Kronecker product. 
The GCA of all candidates in population F was predicted 
with the formula �̂F = 𝜎

2

gcaF
�F,SC�

−1

SC,SC
�SC , where �F,SC is 

the genomic relationship matrix of the individuals in popula-
tion F and the parents from this population used for produc-
ing the SC hybrids in the TS, and �

SC,SC
 is the phenotypic 

covariance matrix of the SC hybrids in the TS. Variance 
components required for application of GBLUP were 
obtained from the data in the TS using again the R package 
regress version 1.3 (Clifford and McCullagh 2006).

(1)�TC = �� + �F�F + �

(2)�SC = �� + �F�F + �M�M + �S� + �,
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Statistical analyses of the selection (sub‑)cycles

With the SNP data from panel R = SNPall�Q , we calculated 
the genomic relationship matrices �F and �M for all geno-
types i and j from all sub-cycles of population F and M , 
respectively, according to Schopp et al. (2017), here exem-
plified for genotypes i and j from population F:

where xi,l , xj,l ∈ {0, 1, 2} are the genotypic scores of i and j , 
respectively, reflecting the number of reference alleles in i 
and j , and pi

l
 and pj

l
 are the frequencies of the reference allele 

at marker l in the sub-cycle(s) of population F , from which 
i and j originated. We also calculated modified Rogers’ dis-
tances (Rogers 1972, 1986) on the basis of the markers in 
panel R between the entire population of 950 DH lines from 
different sub-cycles Ct,0 of the same or the opposite parent 
population.

For both HS-RRGS and FS-RRGS and all sub-cycles Ct,s , 
we determined the genotypic values of all hybrids in the 
factorial between F and M using from each population (a) 
the 950 DH lines if s = 0 , (b) the 40 selected DH lines if 
s = 1 , or (c) the 40 DH lines corresponding to the parental 
gametes of the 20 selected  S0 genotypes if s > 1 . These pro-
vided the basis for calculating with standard procedures (i) 
the mean �F×M,t,s of all hybrids as well as the GCA and SCA 
effects and (ii) the genetic variance �2

G
 and variance compo-

nents �2

gcaF
 , �2

gcaM
 and �2

sca
 as well as the proportion 

�t = 100 × �
2
sca

∶ �
2

G
 for all sub-cycles Ct,0 . The cumulative 

selection gain ΣΔGF×M of the hybrid population F ×M in 
sub-cycle Ct,s was calculated as �F×M,t,s − �F×M,1,0 using the 
fact that �G = 1 in C1,0.

For each sub-cycle Ct,s of HS-RRGS, the prediction accu-
racy rgca(TC) for GCA effects was calculated by correlating 
the true GCA values in vectors �

F
 and �

M
 of the female and 

male parents of the factorials with their GBLUPs �̂
F
 and �̂

M
 , 

respectively. Further, we calculated the correlation ru,û(TC) 
of the GBLUPs �̂

F
 or �̂

M
 with their true TC performance 

�
F
 or �

M
 determined from the genotypic values of the TCs 

of the candidates in parent population F and used the same 
procedure for parent population M . For each sub-cycle Ct,s of 
FS-RRGS, the prediction accuracy rgca(SC) for GCA effects 
was calculated by correlating the true GCA values from the 
factorials with their GBLUPs �̂

F
 or �̂

M
 in each sub-cycle Ct,s . 

For sub-cycles Ct,0 , these correlations were calculated for the 
entire set of 950 DH lines and also separately calculated for 
(i) the DH lines used as parents of the TS and (ii) the DH 

(3)�F(i, j) =

∑

l∈R

�

xi,l − pi
l

�

�

xj,l − p
j

l

�

�

2
∑

l∈R p
i
l

�

1 − pi
l

�

�

2
∑

l∈R p
j

l

�

1 − p
j

l

�

,

lines used as parents of the PS. For both methods, rgca values 
were finally averaged over both parent populations.

With regard to the reduction in the genetic variance due 
to negative linkage disequilibrium caused by selection, 
known as the Bulmer effect (Bulmer 1971), we calculated 
for each sub-cycle Ct,s also the genic GCA variances ( ̃𝜎2

gcaF
 

and �̃�2

gcaM
),the genic SCA variance ( ̃𝜎2

sca
 ), and the total genic 

variance ( ⌢𝜎
2

G
 ) as follows:

where pF
l
 and pM

l
 is the frequency of the reference allele at 

QTL l ∈ Q in sub-cycle Ct,s of population F and M , respec-
tively, and al and dl the additive and dominance effect at the 
QTL. Finally, we computed the ratios 𝜎2

G
∶ �̃�

2

G

,
(

𝜎
2

gcaF
+ 𝜎

2

gcaM

)

∶

(

�̃�
2

gcaF
+ �̃�

2

gcaM

)

and 𝜎2
sca

∶ �̃�
2
sca

.
For all statistics mentioned above, we calculated the mean 

and corresponding standard deviations from 400 simulation 
runs, starting with the production of the parent populations 
in C1,0 from the founder lines in data set DS1 and DS2.

Results

For the maize data set, the curves of the cumulative selection 
gain ΣΔG as a function of the (sub-)cycles showed for each 
scenario a similar pattern for both breeding methods with 
no intersection between them (Fig. 2). A striking difference 
existed between the scenarios with high and low � , where 
with low � the curves for ΣΔG displayed a much steeper 
slope in the first cycle and approached faster the selection 
limit, irrespective of NTS . For both values of � , the selection 
limit increased by ~ 30% when doubling h2 from 0.4 to 0.8, 
and by ~ 15% when doubling NTS from 190 to 380. For high 
� , FS-RRGS had higher ΣΔG than HS-RRGS with differ-
ences being largest (10%) for low h2 and NTS = 380 , interme-
diate (4–6%) for high h2 irrespective of NTS , and small (3%) 
for low h2 and NTS = 190 . For small � , ΣΔG for HS-RRGS 
was ~ 5% greater than for FS-RRGS.

The curves for ΣΔG obtained with the wheat data showed 
essentially the same picture as for maize (Fig. 3). Despite 
identical assumptions about the genetic architecture of het-
erotic traits, the contribution of �2

sca
 to the genetic variance 

(4)

�̃�
2

gcaF
=

∑

l∈Q
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l

(

1 − pF
l
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al −
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l
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al −
(

2pF
l
− 1

)
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(
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)
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+ �̃�
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�
2

G
 among hybrids was much larger in wheat than in maize 

( � = 45% vs. 24%). This was associated with a much slower 
increase and substantially lower selection limit of ΣΔG if � 
was high. Furthermore, differences between both methods 
were more pronounced in that FS-RRGS had 10–12% higher 
ΣΔG than HS-RRGS for high � , whereas HS-RRGS sur-
passed FS-RRGS by ~ 2 to 10% for all scenarios with small 
�.

For the maize data set, the reduction of the prediction 
accuracy rgca as a function of Ct,0 followed approximately an 
inverse sigmoid function for high h2 and an inverse logarith-
mic function for low h2 (Figs. 4, Suppl. Figure S2). Increas-
ing h2 from 0.4 to 0.8 increased rgca by up to 25% for both 
breeding schemes with only minor modifications due to � . 
By comparison, doubling NTS improved rgca by up to 15%. 
For high � , in the first cycles rgca was ~ 10% higher for FS-
RRGS than HS-RRGS irrespective of h2 , but this advantage 

reduced in advanced cycles. For scenarios with low � , rgca 
was for both methods at the same level in the first cycle but 
slightly higher for HS-RRGS in advanced cycles. While rgca 
for the TS was ~ 15% higher than for the PS in HS-RRGS, 
differences between both sets were less than 10% for FS-
RRGS. Independent of the breeding scheme and scenario, 
the reduction of rgca in consecutive sub-cycles within a 
cycle amounted to ~ 40% from sub-cycle Ct,0 to Ct,1 but only 
to ~ 20% in later sub-cycles.

For the wheat data set, the rgca values for FS-RRGS dis-
played essentially the same trends as for maize regarding the 
level and the rate of reduction over (sub-)cycles in all sce-
narios (Figs. 5, Suppl. Figure S3). For HS-RRGS and sce-
narios with high � , rgca started in C1,0 at a much lower level 
yet decreased less in the following sub-cycles and reached 
in sub-cycles C2,s about the same level as FS-RRGS. For 
HS-RRGS and scenarios with low � , rgca was at a similar or 

Fig. 2  Cumulative selection 
gain ΣΔG (expressed in units of 
σG in cycle C1,0) in the hybrid 
population for full-sib and half-
sib reciprocal recurrent genomic 
selection (RRGS). Results 
for 10 selection cycles, each 
consisting of four subcycles, 
based on SNP data from maize. 
Scenarios differed for the size 
NTS of the training set (TS), 
heritability h2, and proportion 
� = 100% × �

2

sca
∶ �

2

G
 of the 

trait



 Theoretical and Applied Genetics (2023) 136:203

1 3

203 Page 8 of 17

higher level for sub-cycles C1,s and Ct,s ( t ≥ 2 ), respectively, 
and discrepancies between rgca for the TS and PS were much 
larger than for FS-RRGS.

For the maize data, the curves for �2

G
 in Ct,0 were almost 

identical for both breeding methods (Fig. 6). Lower h2 and 
smaller NTS delayed the reduction in �2

G
 over cycles to a 

minor extent, whereas low � had an accelerating effect. Like-
wise, the reduction in �2

gca
= �

2

gcaF
+ �

2

gcaM
 was almost iden-

tical for both breeding methods and followed the same trends 
as for �2

G
 . The only difference was a faster reduction in �2

sca
 

for HS-RRGS in C2,0 and C3,0 for scenarios with high � . The 
ratio �t = 100 × �

2
sca

∶ �
2

G
 decreased in an inverse logarith-

mic function with selection cycles t and the reduction rate 
was higher for HS-RRGS than FS-RRGS (Suppl. Figure S5).

For the wheat data set, the curves of �2

G
 , �2

gca
 , and �2

sca
 

over selection cycles were at a similar level as for the cor-
responding scenario in maize (Suppl. Figure S4). For all 

scenarios with high � , the rate of reduction in �2

G
 was for 

both breeding methods slightly higher than in maize due 
to the high initial value of � and the steep reduction in 
�
2
sca

 , especially for HS-RRGS. The curves for �2
gca

 were 
flatter than for maize. For the scenarios with small � , the 
reduction in �2

sca
 was congruent for both methods in wheat 

but remained at higher level than in maize. The proportion 
�t = 100 × �

2
sca

∶ �
2

G
 dropped substantially during the first 

cycle with a higher rate for HS-RRGS than FS-RRGS, 
especially for large NTS (Suppl. Figure S6).

The curves of 𝜎2
gca

∶ �̃�
2
gca

 (ratio of genetic to genic GCA 
variance) were for the maize and wheat data set largely 
congruent for both breeding methods (Fig.  7, Suppl. 
Figure S7). In maize, the ratio dropped from ~ 1.0 at the 
beginning of selection to values in advanced cycles below 
0.9 for h2 = 0.8 and NTS = 380, above 0.9 for h2 = 0.4 and 
NTS = 190, and close to 0.9 in the other two scenarios. The 

Fig. 3  Cumulative selection 
gain ΣΔG (expressed in units of 
σG in cycle C1,0) in the hybrid 
population for full-sib and half-
sib reciprocal recurrent genomic 
selection (RRGS). Results 
for 10 selection cycles, each 
consisting of four subcycles, 
based on SNP data from wheat. 
Scenarios differed for the size 
NTS of the training set (TS), 
heritability h2, and proportion 
� = 100% × �

2

sca
∶ �

2

G
 of the 

trait
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ratio 𝜎2
sca

∶ �̃�
2
sca

 remained for all scenarios close to 1.0. In 
wheat, the ratio 𝜎2

gca
∶

⌢

𝜎

2

gca
 started for scenarios with high � 

at a level above 1.6 and approached rapidly its assymptote 
1.0, whereas for low � , the ratio was consistently below 
1.0 with smaller values for large NTS . The ratio 𝜎2

sca
∶ �̃�

2
sca

 
exceeded 1.5 at the beginning and rapidly approached the 
asymptote 1.0.

Discussion

Reciprocal recurrent selection of the parent populations 
is routine in hybrid breeding to support sustainable selec-
tion progress. Numerous studies have been conducted in 
maize and other crops to compare the effectiveness of 
different methods of reciprocal recurrent selection based 
on phenotypic data. The comprehensive review by Hal-
lauer et al. (2010) indicates a slightly higher selection gain 
per cycle for FS over HS reciprocal recurrent selection 
in accordance with theoretical results (Jones et al. 1971). 
While these studies were invaluable for experimental 
quantitative genetics and breeding methodology, they are 

Fig. 4  Prediction accuracy rgca 
for GCA averaged over popula-
tions ΠF and ΠM for full-sib and 
half-sib reciprocal recurrent 
genomic selection (RRGS). 
Results for 10 selection cycles, 
each consisting of four subcy-
cles, based on SNP data from 
maize. Scenarios differed in the 
heritability h2 and the propor-
tion � = 100% × �

2

sca
∶ �

2

G
 of 

the trait. The training set size 
was NTS = 380
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not meaningful for the comparison of HS-RRGS and FS-
RRGS due to the fundamental differences between phe-
notypic and genomic selection in these breeding methods 
discussed below. In particularly, it was unknown, whether 
both methods differ in the prediction accuracy rgca and how 
this will affect the development of the GCA and SCA vari-
ances and the selection gain in the hybrid population over 
selection cycles. We resorted to simulations for investigat-
ing these questions, because they offer a unique flexibility 
to analyze different scenarios.

Comparison of reciprocal recurrent selection 
with half‑sib and full‑sib families

Reciprocal recurrent selection methods based on phenotypic 
or genomic data have three steps in common: (i) determi-
nation of the selection criterion for all candidates in each 
parent population, (ii) selection of candidates on the basis 
of the selection criterion, and (iii) recombination of the 
selected candidates within each parent population to gener-
ate the base material for the next breeding cycle. In pheno-
typic selection, the selection criterion is based on phenotypic 
evaluation of HS or FS families produced by inter-popula-
tion crosses of the candidates in each parent population. By 
comparison, in genomic selection the selection criterion is 

Fig. 5  Prediction accuracy rgca 
for GCA averaged over popula-
tions ΠF and ΠM for full-sib and 
half-sib reciprocal recurrent 
genomic selection (RRGS). 
Results for 10 selection cycles, 
each consisting of four subcy-
cles, based on SNP data from 
wheat. Scenarios differed in the 
heritability h2 and the propor-
tion � = 100% × �

2

sca
∶ �

2

G
 of 

the trait. The training set size 
was NTS = 380
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calculated on the basis of genomic data of the candidates 
as input for a statistical model (re-)trained with phenotypic 
and genomic data of the TS in sub-cycle Ct,0 . With the HS 
method, the observed or predicted TC performance is used 
as proxy for the GCA of the candidates under phenotypic 
and genomic selection, respectively. For phenotypic selec-
tion with the FS method, the candidates from each parent 
population are selected based on the performance of their 
SC combination with another randomly chosen parent from 
the opposite population, serving as a proxy for their GCA. 
Consequently, selection of a candidate depends not only 
on its own GCA but also on the GCA of its crossing part-
ner and SCA of the hybrid combination. This confounding 
of effects is reflected in the formula for the selection gain 

under FS reciprocal recurrent selection, where �2
sca

 and the 
GCA variance of the opposite population contribute to the 
denominator (Bernardo 2002, p. 201). The new feature of 
genomic selection applied to the FS method is that by taking 
advantage of the genomic relationships among the candi-
dates in the female and male parent populations, it is pos-
sible to disentangle the GCA effects of both parents as well 
as the SCA of the hybrid and predict them individually (cf. 
our companion paper, Melchinger et al. 2023). This feature 
of genomic selection enables improving the selection gain in 
FS-RRGS far beyond that of phenotypic selection with the 
FS method and has received little attention hitherto. In sum-
mary, the methods of HS-RRGS and FS-RRGS compared 

Fig. 6  Genetic variances �2

G
 , 

GCA variances �2

gcaF
+ �

2

gcaM
 , 

and SCA variances �2

sca
 among 

hybrids for full-sib and half-sib 
reciprocal recurrent genomic 
selection (RRGS). Results for 
10 selection cycles based on 
SNP data from maize. Scenarios 
differed for the training set size 
NTS, heritability h2, and propor-
tion � = 100% × �

2

sca
∶ �

2

G
 of 

the trait
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in our study are identical with regard to steps (ii) and (iii) 
but they differ with regard to the selection criterion applied 
in step (i) for all sub-cycles to identify the candidates with 
highest GCA for subsequent recombination.

Prediction accuracy for GCA effects and persistency 
over cycles

Both the HS and FS method have in common that phenotyping 
of the TCs and SCs, respectively, in the TS does not yield a 
direct estimate of the GCA of their parental candidates 
unless—contrary to common practice—a broad-based tester 
from the opposite population would be used for the HS 

method. Considering genomic selection as a form of indirect 
selection, according to the breeder’s equation (Falconer and 
Mackay 1996, p. 317) the selection gain ΔG for the target 
character Y  is proportional to the coheritability 
r(X, Y) = hXrA(X, Y) , where hX is the square root of the herit-
ability of the selection criterion X , rA(X, Y) is the genetic cor-
relation between X and Y , and r(X, Y) is the correlation of X 
with Y , or synonymously the prediction accuracy of X for Y . 
In both HS-RRGS and FS-RRGS, the target character Y is the 
GCA of the candidates in each parent population with regard 
to the opposite population. For brevity, we confine our further 
discussion to the GCA of candidates from population F . For 
HS-RRGS, X is the predicted TC performance of the female 

Fig. 7  Ratio of genetic to 
genic variances 𝜎2

G
∶ �̃�

2

G
 , of 

genetic to genic GCA variances 
(𝜎

2

gcaF
+ 𝜎

2

gcaM
) ∶ (�̃�

2

gcaF
+ �̃�

2

gcaM
) , 

and genetic to genic SCA 
variances 𝜎2

sca
∶ �̃�

2

sca
 among 

hybrids for full-sib and half-sib 
reciprocal recurrent genomic 
selection (RRGS). Results for 
10 selection cycles based on 
SNP data from maize. Scenarios 
differed for the training set size 
NTS, heritability h2, and propor-
tion � = 100% × �

2

sca
∶ �

2

G
 of 

the trait
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candidates in combination with the tester from the male popu-
lation on the basis of Eq. (1). Thus, hX = ru,û(TC) is the predic-
tion accuracy of the GBLUPs for TC performance and 
rA = rg(TC, gca) is the genetic correlation of TC performance 
with GCA. If the GCA of candidates and their SCA effects 
with the tester are uncorrelated, which holds strictly true for a 
randomly chosen tester but approximately also for testers 
selected for high or low GCA (results not shown), we can 
express rg(TC, gca) as a function of �2

gcaF
 and �2

sca

where � depends on the tester, with � = 1 for an inbred line, 
� = 1∕2 for a SC tester from two unrelated lines, and � = 0 
if the entire opposite population is used as tester. Thus, 
rg(TC, gca) can be much smaller than 1.0 (e.g., 0.77 and 0.62 
for an inbred tester, if � = 24% or 45%, respectively). Sum-
marizing, the prediction accuracy rgca(TC) for GCA effects 
in HS-RRGS is obtained as product

Since ru,û(TC) is little affected by the size of �(results no 
shown), this formula explains why the values for rgca(TC) 
differed in C1,0 only by a constant factor between traits with 
high and low values of � (Suppl. Figure S8).

In FS-RRGS, the GCA of the candidates is directly pre-
dicted on the basis of the SC performance of the hybrids in 
the TS. Thus, hX = ru,û(SC, gca) is the prediction accuracy 
of the GBLUPs for the GCA effects obtained from the sta-
tistical model in Eq. (2) and rA = rg(gca, gca) = 1 so that 
rgca(SC) = ru,û(SC, gca) . We disregarded SCA effects in the 
calculation of GBLUPs for GCA effects in Eq. (2), which 
would require reliable estimates of �2

sca
 that are difficult to 

obtain in applied breeding programs. Altogether, the higher 
rgca values for FS-RRGS than HS-RRGS in our simulations 
are in harmony with a recent experimental study showing for 
forage traits in maize a higher prediction accuracy for sparse 
factorial designs than TC designs (Lorenzi et al. 2022).

The persistency of rgca over sub-cycles is of crucial 
importance for the decision, after how many sub-cycles re-
training becomes necessary. The decline of rgca in succes-
sive sub-cycles followed generally the same pattern for FS-
RRGS and HS-RRGS (Figs. 4, 5, Suppl. Figure S2 and S3), 
albeit at slightly different levels which depended mainly on 
the rgca values in Ct,0 discussed above. The substantial drop 
of ~ 50% from Ct,0 to Ct,1 and the much smaller reductions 
in subsequent sub-cycles are in harmony with the simula-
tion results of Müller et al. (2017) for genomic prediction of 
TC performance in synthetics produced from a large num-
ber of parents. These authors attributed this pattern to the 
fact that in sub-cycle Ct,0 , pedigree relationships between 

(5)rg(TC, gca) =

√

√

√

√

�
2

gcaF

�
2

gcaF
+ ��

2
sca

=

√

1 − �

1 + �(2� − 1)
,

(6)rgca(TC) = ru,û(TC)rg(TC, gca)

candidates in the TS and PS captured by markers are the 
main driver of rgca . However, the variation in pedigree rela-
tionships between TS and PS erodes in advanced sub-cycles 
so that linkage disequilibrium (LD) between SNPs and QTL 
becomes the primary source for genomic prediction, which 
is more persistent due to the low recombination rate between 
adjacent loci.

The reduction in rgca across cycles occurred at a much 
lower rate than expected from theory (Daetwyler et al. 2008) 
based on the decline in h2 calculated from the values for 
�
2
gca

 (Figs. 4, 6, Suppl. Figure S2 and S3) and constant �2
e
 

in all cycles. This is most likely attributable to the accu-
mulation of negative LD between adjacent loci over (sub-)
cycles as a result of the Bulmer effect discussed below. Thus, 
LD became in advanced cycles a more important driver of 
genomic prediction and this hypothesis is supported by the 
relatively smaller gap in rgca between Ct,0 and Ct,1 for higher 
values of t. A notable exception from this trend was the 
increase in rgca between C1,0 and C2,0 in HS-RRGS of wheat 
for � = 45% . This was accompanied by a substantial reduc-
tion in �2

sca
 , much stronger than for �2

gca
 (Suppl. Figure S4 

and S6), which explains the increased prediction accuracy 
of GCA effects in the subsequent cycle.

We decided to re-train the model after four sub-cycles 
because at this stage, rgca had in both breeding schemes and 
all scenarios dropped to a level, where it seems no longer 
rewarding to continue genomic selection. In practice, the 
decision for re-training aims at maximizing the selec-
tion gain per time unit under given financial and logistic 
resources. Hence, it depends on numerous factors detailed 
by Müller et al. (2017), which are beyond the scope of this 
paper.

Combining the TS data from cycle t − 1 to the TS for re-
training the model in cycle t hardly improved the prediction 
accuracy of both methods (results not shown). Since succes-
sive cycles were separated by four generations of selection 
and intermating, they display low levels of pedigree relation-
ships and linkage phase similarity so that combining old and 
new sources of information had little effect on the predic-
tion accuracy. For HS-RRGS, the carry-over of phenotypic 
information across selection cycles was further hampered 
by choosing in each cycle a new tester with outstanding TC 
performance in the previous cycle.

Development of GCA and SCA variances 
over selection cycles

Since rgca differed little between HS-RRGS and FS-RRGS 
and the selection and recombination schemes were identi-
cal for both methods (Suppl. Figure S1), the curves for �2

G
 

(and its major component �2
gca

 ) as a function of the selec-
tion cycle were almost congruent for both breeding methods 
(Fig. 6, Suppl. Figure S4). Based on the effective population 
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size Ne = 20 of the selected fraction in all sub-cycles, the 
expected reduction in �2

gca
 due to genetic drift in one cycle 

(≙ four sub-cycles) amounts to 1 − (0.975)
4

∧

= 10% (Falconer 
and Mackay 1996, p. 59). This corresponds to about one 
quarter of the ~ 40% drop in �2

gca
 observed from C1,0 to C2,0 

in all scenarios.
The remaining larger part of the reduction in �2

gca
 is due 

to selection and reflects the changes in allele frequencies 
and build-up of negative covariances among QTL due to the 
Bulmer effect (Bulmer 1971). To disentangle these causes, 
we examined the reduction in the genic GCA variance �̃�2

gca
 , 

which reflects exclusively the changes in allele frequencies 
due to drift and selection, including hitchhiking effects, but 
which is unaffected by the Bulmer effect. Since the QTL 
effects were randomly assigned to the QTL in set Q , �2

gca
 and 

�̃�
2
gca

 were similar in cycle C1,0 as expected (Fig. 7, Suppl. 
Figure S7). An exception was the wheat data set, where the 
ratio of genetic to genic variance was much larger than 1.0 
for all variance components, most likely due to the high 
level of LD among adjacent loci in the population of males 
and its high linkage phase similarity with the population 
of females. After two selection cycles, however, �2

gca
 was 

always about 10% smaller than its counterpart �̃�2
gca

 due to 
the predominance of negative covariances between pairs of 
QTL, revealing that the Bulmer effect explains a substantial 
proportion of the reduction in �2

gca
 in all scenarios of both 

breeding schemes. The increase in �2
gca

 from cycle C1,0 to 
C2,0 for � = 45% in the wheat data set (Suppl. Figure S4) is 
attributable to the substantial increase of the genetic dis-
tance between the parent populations (results not shown) 
as a consequence of selection, which entails an increase of 
�
2
gca

 at the expense of a sharp reduction in �2
sca

 , as expected 
from theory (Reif et al. 2007).

The higher rate of reduction in �2
sca

 than �2
gca

 over selec-
tion cycles for scenarios with high � (Fig. 6, Suppl. Fig-
ure S4) observed for both methods is partly attributable 
to the stronger effect of genetic drift on the reduction in 
�
2
sca

 because the latter depends on the product of the vari-
ance-reducing effect of inbreeding in each parent popula-
tion and amounts to 

(

1 − (0.975)
4
)2 ∧

= 19% over four sub-
cycles. Interestingly, the ratio 𝜎2

sca
∶ �̃�

2
sca

 was close to 1.0 
across all selection cycles in maize and after four cycles 
in wheat suggesting that covariances of dominance effects 
display no Bulmer effect. The slower reduction of �2

sca
 for 

FS-RRGS compared to HS-RRGS can be explained by dif-
ferences in the selection pressure for SCA effects. Since 
the TS for FS-RRGS is composed of a large number of 
inter-population SCs, each parent population acts as a 
kind of broad-based tester for the opposite population so 
that the predicted GCA effects are hardly affected by SCA 
effects. By contrast, GCA and SCA are confounded in the 

TC performance for HS-RRGS so that selection affects 
equally both types of effects.

Altogether, our simulation results support the apprehen-
sion of previous studies (e.g., Heslot et al. 2015) that the 
high selection intensity enabled by genomic selection can 
cause a rapid depletion of �2

G
 in both breeding schemes. The 

rate of reduction in GCA variances is closely associated 
with the level of rgca and consequently, the risk of narrowing 
the genetic base is greatest under those conditions, where 
genomic selection is most successful. Hence, it seems pru-
dent to estimate regularly the genetic variance components 
in the TS so that breeders can take effective counter meas-
ures to avoid a genetic narrowing of their germplasm.

Selection gain and limits under both breeding 
methods

We determined the cumulative selection gain ΣΔG achieved 
in the hybrid population by the mean of the genotypic val-
ues of the complete factorial of crosses among the gametes 
produced by the selected candidates. This corresponds to 
the sum of the selection gain for GCA in the two parent 
populations except for marginal deviations due to dominance 
effects. Thus, differences in the curves of ΣΔG between both 
methods are primarily due to the corresponding differences 
in rgca and GCA variances. A further factor was that the TS 
included twice as many candidates for FS-RRGS as for HS-
RRGS because they had slightly higher rgca than the candi-
dates in the PS (Figs. 4, 5, Suppl. Figure S2 and S3), their 
contribution to ΔG in Ct,0 was slightly higher.

We observed no crossing of the curves of ΣΔG for HS-
RRGS and FS-RRGS (Figs. 2, 3). Hence, the superiority of 
one method observed in the first cycle carries over to sub-
sequent cycles. Thus, only few sub-cycles are required for 
comparing both methods in breeding experiments. Moreo-
ver, there is no incentive for changing the breeding method 
between early and late cycles. Only if no genetically distant 
parent populations are available in the initial phase of the 
program as applied to our example from wheat, one might 
start with FS-RRGS due to its higher rgca in C1,0 and pos-
sibly continue afterwards with HS-RRGS depending on the 
genetic architecture of the trait(s) of primary interest.

For both methods, the rate of increase in ΣΔG and the 
selection limit were much higher for traits with low � . In this 
case, half of the upper limit for ΣΔG was already reached 
after one cycle (≙ four sub-cycles), whereas for large � 
at least twice as many cycles were required. Doubling h2 
increased ΣΔG more than doubling NTS from 190 to 380. 
Hence, to ensure a high long-term ΣΔG , it is particularly 
important to use large NTS in combination with high h2 at the 
beginning of RRGS because otherwise numerous favorable 
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alleles are lost, which cannot be compensated by increased 
inputs in later cycles.

Within all cycles, the selection gain was by far largest in 
sub-cycle Ct,0 (Figs. 2, 3). This is attributable to the strong 
reduction in rgca and GCA variances in later sub-cycles dis-
cussed above. Further, selection in Ct,0 was among DH lines 
with the full amount of �2

gca
 whereas selection in later sub-

cycles was among  S0 plants with half the amount of �2
gca

.
An important question for ΣΔG in HS-RRGS concerns 

the choice of the tester. According to theory (Rawlings and 
Thompson 1962) and experimental results, low-performing 
testers with low frequency of favorable alleles at important 
loci are most effective for improving GCA (Hallauer et al. 
2010). By contrast, we adapted the common practice in 
hybrid breeding and chose from the previous cycle the top 
line with highest predicted GCA from the opposite popula-
tion as tester, because in this case the best TCs evaluated in 
the TS represent already promising hybrids of direct use for 
commercialization. For large � , it follows from Eq. (5) that 
using a single-cross tester increases prediction accuracy for 
GCA effects and consequently also ΣΔG , but this would 
rule out direct development. Updating and choice of the best 
tester from the lines of the previous cycle most likely helped 
to push the genetic composition of each parent population 
in a direction that it optimally complemented the opposite 
population of the heterotic pattern, but further research is 
warranted to investigate the choice of the tester on the long-
term selection in HS-RRGS.

In our selection scheme, we restricted the maximum num-
ber of individuals selected from an intra-population FS fam-
ily in the recombination step to five genotypes. Alternatively, 
inbreeding in each parent population could be mitigated by 
applying optimum contribution selection (Woolliams et al. 
2015) and/or selection amongst heterozygous genotypes 
with greater gametic variance (Bijma et al. 2020; Lehermeier 
et al. 2017; Müller et al. 2018), which could be further com-
bined with optimal cross selection (Gorjanc et al. 2018). 
These modifications could be applied equally to both meth-
ods but most likely do not change their ranking, yet further 
research is warranted to quantify their effect.

As a spin-off of reciprocal recurrent selection, breeders 
are interested to identify in every (sub-)cycle the best gen-
otypes for cultivar development. The usefulness criterion 
proposed by Schnell and Utz (1975) is a suitable tool for 
comparing the two methods with respect to the expected 
performance level of the selected genotypes. For hybrid 
genotypes, usefulness is a function of the mean of the 
hybrid population and �2

gca
 of each parent population. Since 

the two methods hardly differed in �2
gca

 for most scenarios, 
their ranking with regard to the usefulness criterion followed 
closely that for ΣΔG discussed above. With FS-RRGS, how-
ever, it is possible to predict not only the GCA but also the 

performance of the hybrids in the entire factorial between all 
lines (i.e., TS ∪ PS) in the parent populations, which opens 
new avenues for improving the efficiency of hybrid breeding.

Limitations of our study

While simulations are a powerful tool for analyzing the ques-
tions addressed in our study, they are meaningful only if the 
underlying model allows a simplified but nevertheless faith-
ful representation of reality. This is of utmost importance for 
long-term selection because even minor deviations irrelevant 
for a single selection cycle will accumulate exponentially 
over cycles and may therefore lead to erroneous conclusions 
regarding the long-term prospects. A critical assumption 
underlying our simulations concerned the genetic architec-
ture of the traits. We choose our genetic models ignoring 
epistasis based on experimental data of maize detailed in 
our companion paper (Melchinger et al. 2023). Since little 
comparable information is available on self-fertilizing spe-
cies, we resorted to a literature review about the importance 
of GCA and SCA variances in autogamous and partially 
allogamous crops (Suppl. Table S1). In general, the � val-
ues underlying our simulations were in agreement with the 
estimates from these experimental studies.

The marker densities in our simulations correspond to 
those of custom-made SNP chips currently used in the com-
mercial sector. Higher marker densities resulted only in mar-
ginal improvements of rgca (DoVale et al. 2022; Müller et al. 
2017). We ignored the effects of mutation for retarding the 
depletion of �2

G
 (Walsh and Lynch 2018) as this should affect 

the long-term ΣΔG of both methods equally. We also disre-
garded genotype × environment interactions in the phenotyp-
ing of the TS. If a highly selected tester with proven stability 
over environments is used in HS-RRGS, one might expect 
that TCs show smaller interactions and consequently higher 
h2 than the unselected hybrids in the TS for FS-RRGS, which 
would increase their rgca . Experimental comparisons of both 
methods should therefore be conducted in multiple environ-
ments and consider genotype × environment interactions in 
the statistical model for analyses due to their impact on the 
prediction accuracy (Acosta-Pech et al. 2017; Basnet et al. 
2019; Crossa et al. 2017).

Conclusions

For hybrid breeding in crops and heterotic patterns with high 
�
2
sca

 for important agronomic traits such as yield in temper-
ate maize, FS-RRGS is the method of choice because with 
high h2 or large NTS , ΣΔG is ~ 3–10% higher than what is 
achieved with HS-RRGS. In contrast, for traits with mainly 
additive gene action, one might consider HS-RRGS, because 
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it was always on par or slightly better than FS-RRGS when 
�
2
sca

 was low although differences were generally small. In 
view of the daunting reduction in the genetic variances at risk 
with the rapid cycles and high selection intensity in genomic 
selection, the benefits of optimum contribution selection and 
optimum cross selection should be investigated. In addition, 
the effects of additional generations of recombination before 
model re-training and various intermating schemes of the 
selected candidates on the short- and long-term selection 
gain deserves further attention. Altogether, implementing 
FS-RRGS promises tremendous progress in hybrid breed-
ing by integrating reciprocal recurrent genomic selection 
with genomic prediction of hybrid performance for cultivar 
development.
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