Skip to main content
Log in

Dissected Leaf 1 encodes an MYB transcription factor that controls leaf morphology in potato

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

The transcription factor StDL1 regulates dissected leaf formation in potato and the genotype frequency of recessive Stdl1/Stdl1, which results in non-dissected leaves, has increased in cultivated potatoes.

Abstract

Leaf morphology is a key trait of plants, influencing plant architecture, photosynthetic efficiency and yield. Potato (Solanum tuberosum L.), the third most important food crop worldwide, has a diverse leaf morphology. However, despite the recent identification of several genes regulating leaf formation in other plants, few genes involved in potato leaf development have been reported. In this study, we identified an R2R3 MYB transcription factor, Dissected Leaf 1 (StDL1), regulating dissected leaf formation in potato. A naturally occurring allele of this gene, Stdl1, confers non-dissected leaves in young seedlings. Knockout of StDL1 in a diploid potato changes the leaf morphology from dissected to non-dissected. Experiments in N. benthamiana and yeast show that StDL1 is a transcriptional activator. Notably, by calculating the genotype frequency of the Stdl1/Stdl1 in 373-potato accessions, we found that it increases significantly in cultivated potatoes. This work reveals the genetic basis of dissected leaf formation in potato and provides insights into plant leaf morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The BSA-seq data are available at NCBI with BioProject accession number PRJNA877053 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA877053).

References

  • Barkoulas M, Hay A, Kougioumoutzi E, Tsiantis M (2008) A developmental framework for dissected leaf formation in the Arabidopsis relative Cardamine hirsuta. Nat Genet 40:1136–1141

    CAS  PubMed  Google Scholar 

  • Berger Y, Harpaz-Saad S, Brand A, Melnik H, Sirding N, Alvarez JP, Zinder M, Samach A, Eshed Y, Ori N (2009) The NAC-domain transcription factor GOBLET specifies leaflet boundaries in compound tomato leaves. Development 136:823–832

    CAS  PubMed  Google Scholar 

  • Bharathan G, Goliber TE, Moore C, Kessler S, Pham T, Sinha NR (2002) Homologies in leaf form inferred from KNOXI gene expression during development. Science 296:1858–1860

    CAS  PubMed  Google Scholar 

  • Blein T, Hasson A, Laufs P (2010) Leaf development: what it needs to be complex. Curr Opin Plant Biol 13:75–82

    CAS  PubMed  Google Scholar 

  • Busch BL, Schmitz G, Rossmann S, Piron F, Ding J, Bendahmane A, Theres K (2011) Shoot branching and leaf dissection in tomato are regulated by homologous gene modules. Plant Cell 23:3595–3609

    CAS  PubMed Central  PubMed  Google Scholar 

  • Byrne ME, Barley R, Curtis M, Arroyo JM, Dunham M, Hudson A, Martienssen RA (2000) Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 408:967–971

    CAS  PubMed  Google Scholar 

  • Canales C, Barkoulas M, Galinha C, Tsiantis M (2010) Weeds of change: Cardamine hirsuta as a new model system for studying dissected leaf development. J Plant Res 123:25–33

    PubMed  Google Scholar 

  • Chen Y, Gols R, Stratton CA, Brevik KA, Benrey B (2015) Complex tritrophic interactions in response to crop domestication: predictions from the wild. Entomol Exp Appl 157:40–59

    Google Scholar 

  • Chuck G, Lincoln C, Hake S (1996) KNAT1 induces lobed leaves with ectopic meristems when overexpressed in Arabidopsis. Plant Cell 8:1277–1289

    CAS  PubMed Central  PubMed  Google Scholar 

  • Du F, Guan C, Jiao Y (2018) Molecular mechanisms of leaf morphogenesis. Mol Plant 11:1117–1134

    CAS  PubMed  Google Scholar 

  • Efroni I, Eshed Y, Lifschitz E (2010) Morphogenesis of simple and compound leaves: a critical review. Plant Cell 22:1019–1032

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gaarslev N, Swinnen G, Soyk S (2021) Meristem transitions and plant architecture-learning from domestication for crop breeding. Plant Physiol 187:1045–1056

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hake S, Smith HM, Holtan H, Magnani E, Mele G, Ramirez J (2004) The role of knox genes in plant development. Annu Rev Cell Dev Biol 20:125–151

    CAS  PubMed  Google Scholar 

  • Hardigan MA, Laimbeer FPE, Newton L, Crisovan E, Hamilton JP, Vaillancourt B, Wiegert-Rininger K, Wood JC, Douches DS, Farre EM, Veilleux RE, Buell CR (2017) Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato. Proc Natl Acad Sci USA 114:E9999–E10008

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hellens RP, Allan AC, Friel EN, Bolitho K, Grafton K, Templeton MD, Karunairetnam S, Gleave AP, Laing WA (2005) Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1:1–14

    Google Scholar 

  • Keller T, Abbott J, Moritz T, Doerner P (2006) Arabidopsis REGULATOR OF AXILLARY MERISTEMS1 controls a leaf axil stem cell niche and modulates vegetative development. Plant Cell 18:598–611

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koenig D, Sinha N (2010) Evolution of leaf shape: a pattern emerges. Curr Top Dev Biol 91:169–183

    CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li L, Kang D, Chen Z, Qu L (2007) Hormonal regulation of leaf morphogenesis in Arabidopsis. J Integr Plant Biol 49:75–80

    CAS  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    PubMed Central  PubMed  Google Scholar 

  • Li D, Lu X, Zhu Y, Pan J, Zhou S, Zhang X, Zhu G, Shang Y, Huang S, Zhang C (2022) The multi-omics basis of potato heterosis. J Integr Plant Biol 64:671–687

    CAS  PubMed  Google Scholar 

  • Ma L, Zhang C, Zhang B, Tang F, Li F, Liao Q, Tang D, Peng Z, Jia Y, Gao M, Guo H, Zhang J, Luo X, Yang H, Gao D, Lucas WJ, Li C, Huang S, Shang Y (2021) A nonS-locus F-box gene breaks self-incompatibility in diploid potatoes. Nat Commun 12:4142

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marja C, Hudson A, Becraft PW, Nelson T (1999) ROUGH SHEATH2: a Myb protein that represses knox homeobox genes in maize lateral organ primordia. Science 284:151–153

    Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakayama H, Ichihashi Y, Kimura S (2023) Diversity of tomato leaf form provides novel insights into breeding. Breed Sci 73(1):76–85

    PubMed Central  PubMed  Google Scholar 

  • Naz AA, Raman S, Martinez CC, Sinha NR, Schmitz G, Theres K (2013) Trifoliate encodes an MYB transcription factor that modulates leaf and shoot architecture in tomato. Proc Natl Acad Sci 110:2401–2406

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ori N, Cohen AR, Etzioni A, Brand A, Yanai O, Shleizer S, Menda N, Amsellem Z, Efroni I, Pekker I, Alvarez JP, Blum E, Zamir D, Eshed Y (2007) Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nat Genet 39:787–791

    CAS  PubMed  Google Scholar 

  • PGSC (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195

    Google Scholar 

  • Pham GM, Hamilton JP, Wood JC, Burke JT, Zhao H, Vaillancourt B, Ou S, Jiang J, Buell CR (2020) Construction of a chromosome-scale long-read reference genome assembly for potato. Gigascience 9:giaa100

    PubMed Central  PubMed  Google Scholar 

  • Piazza P, Jasinski S, Tsiantis M (2005) Evolution of leaf developmental mechanisms. New Phytol 167:693–710

    CAS  PubMed  Google Scholar 

  • Ramirez J, Bolduc N, Lisch D, Hake S (2009) Distal expression of knotted1 in maize leaves leads to reestablishment of proximal/distal patterning and leaf dissection. Plant Physiol 151:1878–1888

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rodriguez RE, Debernardi JM, Palatnik JF (2014) Morphogenesis of simple leaves: regulation of leaf size and shape. Wiley Interdiscip Rev Dev Biol 3:41–57

    PubMed  Google Scholar 

  • Shin J-H, Blay S, McNeney B, Graham J (2006) LDheatmap: an R function for graphical display of pairwise linkage disequilibria between single nucleotide polymorphisms. J Stat Softw 16:1–9

    Google Scholar 

  • Tsiantis M, Schneeberger R, Golz JF, Freeling M, Langdale JA (1999) The maize rough sheath2 gene and leaf development programs in monocot and dicot plants. Science 284:154–156

    CAS  PubMed  Google Scholar 

  • Tsukaya H (2006) Mechanism of leaf-shape determination. Annu Rev Plant Biol 57:477–496

    CAS  PubMed  Google Scholar 

  • Uchida N, Kimura S, Koenig D, Sinha N (2010) Coordination of leaf development via regulation of KNOX1 genes. J Plant Res 123:7–14

    CAS  PubMed  Google Scholar 

  • White Charles A (1901) Varietal mutation in the tomato. Science 14:841–844

    Google Scholar 

  • Wu Y, Li D, Hu Y, Li H, Ramstein GP, Zhou S, Zhang X, Bao Z, Zhang Y, Song B, Zhou Y, Zhou Y, Gagnon E, Särkinen T, Knapp S, Zhang C, Städler T, Buckler ES, Huang S (2023) Phylogenomic discovery of deleterious mutations facilitates hybrid potato breeding. Cell 186:2313–2328

    CAS  PubMed  Google Scholar 

  • Xing H, Dong L, Wang Z, Zhang H, Han C, Liu B, Wang X, Chen Q (2014) A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol 14:327

    PubMed Central  PubMed  Google Scholar 

  • Yang Z, Feng S, Tang D, Zhang L, Li Y, Kear P, Huang S, Zhang C (2020) The mutation of a PECTATE LYASE-LIKE gene is responsible for the Yellow Margin phenotype in potato. Theor Appl Genet 133:1123–1131

    CAS  PubMed  Google Scholar 

  • Ye M, Peng Z, Tang D, Yang Z, Li D, Xu Y, Zhang C, Huang S (2018) Generation of self-compatible diploid potato by knockout of S-RNase. Nat Plants 4:651–654

    CAS  PubMed  Google Scholar 

  • Zhang C, Wang P, Tang D, Yang Z, Lu F, Qi J, Tawari NR, Shang Y, Li C, Huang S (2019) The genetic basis of inbreeding depression in potato. Nat Genet 51:374–378

    CAS  PubMed  Google Scholar 

  • Zhang C, Yang Z, Tang D, Zhu Y, Wang P, Li D, Zhu G, Xiong X, Shang Y, Li C, Huang S (2021) Genome design of hybrid potato. Cell 184:3873–3883

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate the advice from Dr. Sanwen Huang (Agricultural Genomics Institute at Shenzhen) on this work. The work was supported by China National Key Research and Development Program (2019YFE0120500 to C. Z.), Guangdong Major Project of Basic and Applied Basic Research (2021B0301030004), the Agricultural Science and Technology Innovation Program (CAAS‐ZDXT2018004), China Postdoctoral Science Foundation (2022M723462), the National Science Fund of Yunnan for Distinguished Young Scholars (202001AV070003) and Yunnan Fundamental Research Project (202001AV070003).

Funding

The work was supported by China National Key Research and Development Program (2019YFE0120500 to C. Z.), Guangdong Major Project of Basic and Applied Basic Research (2021B0301030004), the Agricultural Science and Technology Innovation Program (CAAS‐ZDXT2018004), China Postdoctoral Science Foundation (2022M723462), the National Science Fund of Yunnan for Distinguished Young Scholars (202001AV070003) and Yunnan Fundamental Research Project (202001AV070003).

Author information

Authors and Affiliations

Authors

Contributions

CZ and GZ conceived and designed the project. DL and XL performed molecular experiments. DL conducted the bioinformatics analyses. ZW, HG, DQ and YZ assisted in molecular experiments. DT assisted in the bioinformatics analyses. PW contributed to the greenhouse work. YS coordinated the project. DL wrote the manuscript. CZ and DL revised the final manuscript.

Corresponding authors

Correspondence to Guangtao Zhu or Chunzhi Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Herman J. van Eck.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

122_2023_4430_MOESM1_ESM.jpg

Supplemental Fig. S1: Statistics of leaflet number of DL and EL plants at different leaf positions. NS: not significant, *P < 0.05, **P < 0.01, ***P < 0.001 (Student’s t test). n = 5.

122_2023_4430_MOESM2_ESM.jpg

Supplemental Fig. S2: Knockout of C gene and overexpression of StDL1 in tomato. a and b, Phenotypes of tomato cultivar "Ailsa Craig" (wild type) and three SlDL1 knockout lines. c, The mutant genotypes of the three knockout lines. "-" means deletion. The position of insertion is indicated using a blue arrow. d and e, Phenotypes of tomato seedlings (d) and leaves (e) in TS-21 (wild type) and three StDL1 overexpression lines. f, Expression level of StDL1 in tomato young and mature leaves of TS-21 and three overexpression lines. n = 3

122_2023_4430_MOESM3_ESM.jpg

Supplemental Fig. S3: Arabidopsis wild type (left) and transgenic lines overexpressing StDL1 (right). The Arabidopsis COL-0 was used for transgenic experiment. No obvious changes in leaves are found between COL-0 and overexpression lines.

122_2023_4430_MOESM4_ESM.jpg

Supplemental Fig. S4: Subcellular localization of Stdl1. The nuclei were stained with DAPI. The empty vector was used as a negative control. Scale bar = 20 µm.

122_2023_4430_MOESM5_ESM.jpg

Supplemental Fig. S5: Sequence alignment of RAX family proteins in Arabidopsis, tomato and potato. The red box indicates the MYB domain. Variations between StDL1 and Stdl1 are marked with red arrows. The sequence alignment was conducted using Jalview software. The different colors indicate the amino acid conservation based on Clustal X color scheme.

Supplemental Table 1: Potential candidate genes within the mapping interval. (XLSX 10 KB)

Supplemental Table 2: List of primers used in this study. (XLSX 10 KB)

Supplemental Table 3: The 10 polymorphic mutation sites of StDL1 in 373-potato accessions. (XLSX 33 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Lu, X., Qian, D. et al. Dissected Leaf 1 encodes an MYB transcription factor that controls leaf morphology in potato. Theor Appl Genet 136, 183 (2023). https://doi.org/10.1007/s00122-023-04430-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-023-04430-x

Navigation