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Abstract
Key message  The diploid wheat recessive stem rust resistance gene SrTm4 was fine-mapped to a 754-kb region on 
chromosome arm 2AmL and potential candidate genes were identified.
Abstract  Race Ug99 of Puccinia graminis f. sp. tritici (Pgt), the causal agent of wheat stem (or black) rust is one of the 
most serious threats to global wheat production. The identification, mapping, and deployment of effective stem rust resist-
ance (Sr) genes are critical to reduce this threat. In this study, we generated SrTm4 monogenic lines and found that this gene 
confers resistance to North American and Chinese Pgt races. Using a large mapping population (9522 gametes), we mapped 
SrTm4 within a 0.06 cM interval flanked by marker loci CS4211 and 130K1519, which corresponds to a 1.0-Mb region in 
the Chinese Spring reference genome v2.1. A physical map of the SrTm4 region was constructed with 11 overlapping BACs 
from the resistant Triticum monococcum PI 306540. Comparison of the 754-kb physical map with the genomic sequence of 
Chinese Spring and a discontinuous BAC sequence of DV92 revealed a 593-kb chromosomal inversion in PI 306540. Within 
the candidate region, we identified an L-type lectin-domain containing receptor kinase (LLK1), which was disrupted by the 
proximal inversion breakpoint, as a potential candidate gene. Two diagnostic dominant markers were developed to detect 
the inversion breakpoints. In a survey of T. monococcum accessions, we identified 10 domesticated T. monococcum subsp. 
monococcum genotypes, mainly from the Balkans, carrying the inversion and showing similar mesothetic resistant infection 
types against Pgt races. The high-density map and tightly linked molecular markers developed in this study are useful tools 
to accelerate the deployment of SrTm4-mediated resistance in wheat breeding programs.

Introduction

Common wheat (Triticum aestivum L., 2n = 6x = 42, 
AABBDD) is a major crop used for consumption by humans 
and domestic animals in many areas of the world and further 
increases in production are required to accommodate a grow-
ing human population. However, these increases are limited 
by losses generated by pathogens, with fungal pathogens 
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among the major constraints for increasing global wheat pro-
duction (Figueroa et al. 2018). Among these pathogens, Puc-
cinia graminis f. sp. tritici (Pgt) causes stem (or black) rust 
of wheat and is potentially a devastating disease worldwide. 
Severe wheat stem rust epidemics occurred in the United 
States and Europe in the nineteenth and early twentieth 
centuries causing large yield losses (Roelfs 1978; Zadoks 
1967). Due to efforts to eradicate the alternate host barberry 
(Berberis vulgaris L.) and breed for resistant wheat varieties, 
this disease was successfully controlled over the past several 
decades (Peterson 2001; Roelfs 1982; Singh et al. 2015).

However, stem rust re-emerged as a major concern with 
the appearance of Pgt race TTKSK (also known as Ug99) 
in Uganda in 1998 (Pretorius et al. 2000). Ug99 was the 
first Pgt race to defeat the widely deployed stem rust resist-
ance gene Sr31 (Jin et al. 2007; Pretorius et al. 2000). Sub-
sequently, Ug99 and its derivatives spread throughout the 
major wheat-growing countries of eastern and southern 
Africa (Pretorius et al. 2020; Shahin et al. 2020; Singh et al. 
2015) and into the Middle East (Nazari et al. 2009, 2021), 
and gained virulence to additional Sr genes, including Sr24 
(Jin et al. 2008), Sr36 (Jin et al. 2009), and SrTmp (New-
comb et al. 2016).

In recent years, other highly virulent Pgt races outside 
the Ug99 race group, such as TKTTF, TRTTF, RRTTF and 
TTRTF, were detected in wheat stem rust outbreaks. Race 
TKTTF was responsible for severe stem rust epidemics in 
Ethiopia in 2013/14 on the Ug99 resistant wheat cultivar 
“Digalu” (Olivera et al. 2015), and was subsequently found 
in more than ten countries, including Ethiopia, Azerbaijan, 
Egypt, Iraq, Iran, Sudan, Lebanon, Turkey, Germany, Swe-
den, Denmark and the UK (Lewis et al. 2018; Patpour et al. 
2017). Race TRTTF and the closely related race RRTTF 
were detected in Pakistan, Yemen, Ethiopia, and Ecuador 
(Barnes et al. 2018; Fetch et al. 2016), and were virulent 
to at least three Sr genes (Sr36, SrTmp, and Sr1RSAmigo) 
that are effective against race TTKSK (Olivera et al. 2012). 
Another Pgt race of concern is TTRTF, which caused a 
severe epidemic of stem rust on thousands of hectares of 
durum and bread wheat in Southern Italy in 2016 (Bhat-
tacharya 2017). This race overcame the resistance pro-
vided by Sr13b, Sr21, Sr35, Sr45, Sr50 and several other 
Sr genes (Barnes et al. 2018; Bhattacharya 2017; Patpour 
et al. 2020), and was recently reported in more countries, 
including Hungary, Egypt, Ethiopia, Eritrea and Iran (Oli-
vera et al. 2019; Patpour et al. 2020; Tesfaye et al. 2020). 
Additionally, several Pgt races caused large scale wheat stem 
rust outbreaks in Northern Kazakhstan and Western Siberia 
generating yield losses in more than one million hectares of 
spring wheat (Rsaliyev et al. 2020; Skolotneva et al. 2020). 
The recent evolution and spread of new virulent Pgt races 
have prompted widespread efforts to identify new Sr genes 
and to develop new wheat cultivars with durable resistance.

So far, over 60 Sr genes (Sr1-Sr63) have been assigned 
official designations (Mago et al. 2022; Yu et al. 2022), 
among which a significant proportion were introgressed 
into wheat from wild relatives (Singh et al. 2015). Triticum 
monococcum (2n = 2x = 14, AmAm), is commonly known as 
einkorn wheat. This diploid species is closely related to Trit-
icum urartu (AuAu), the A-genome donor of polyploid wheat 
(Dvorak et al. 1988). Triticum monococcum has contributed 
five Sr genes, including Sr21 (Chen et al. 2015; The 1973), 
Sr22a/Sr22b (Gerechter-Amitai et al. 1971; Luo et al. 2022), 
Sr35 (Saintenac et al. 2013), Sr60 (Chen et al. 2018a), and 
SrTm4 (Briggs et al. 2015). Except for the recessive gene 
SrTm4, all previously mapped Sr genes in T. monococcum 
have been cloned (Chen et al. 2018b, 2020; Luo et al. 2022; 
Saintenac et al. 2013; Steuernagel et al. 2016).

SrTm4, discovered in cultivated T. monococcum accession 
PI 306540, is a recessive resistance gene effective against all 
Pgt races tested, including race TTKSK (Briggs et al. 2015). 
Using two mapping populations, this gene was previously 
mapped within a 2.1 cM interval on the distal region of chro-
mosome arm 2AmL (Briggs et al. 2015). The objectives of 
this study were to: (1) obtain an SrTm4 monogenic line; (2) 
generate a precise map of SrTm4; and (3) identify candidate 
genes within the physical maps of the SrTm4 region.

Material and methods

Plant materials and mapping populations

T. monococcum accession PI 306540 was identified as 
having a unique resistance response to multiple Pgt races 
(Rouse and Jin 2011a, b), which was subsequently associ-
ated with the presence of four Sr genes: Sr21, Sr60, Sr22b, 
and SrTm4 (Briggs et al. 2015; Chen et al. 2018b, 2020; Luo 
et al. 2022). PI 306540 was crossed with both wild T. mono-
coccum ssp. aegilopoides accession G3116 (Dubcovsky 
et al. 1996) and cultivated T. monococcum ssp. monococcum 
accession PI 272557 (Rouse and Jin 2011b) to generate two 
segregating populations. Wild accession G3116 was selected 
as a susceptible parent because it is highly polymorphic 
compared to cultivated PI 306540 (Chen et al. 2018a; Dub-
covsky et al. 1996). The other susceptible parent PI 272557 
does not possess any known Sr genes (Rouse and Jin 2011b).

A high-density genetic map of SrTm4 was constructed 
using 9522 recombinant gametes from the cross of 
G3116 × PI 306540. From cross PI 272557 × PI 306540, 
we selected two F3 families homozygous for the presence 
(TmR4-260; lacking Sr21, Sr60, and Sr22b) or absence 
(TmS4-110; carrying no Sr gene) of SrTm4 using molecu-
lar markers. Markers BQ461276 and DR732348 flanking the 
SrTm4 resistance gene (Briggs et al. 2015) were used to con-
firm the presence of the PI 306540 segment in the selected 



Theoretical and Applied Genetics (2023) 136:120	

1 3

Page 3 of 14  120

family, whereas diagnostic markers from cloned genes Sr21 
(Chen et al. 2018b), Sr60 (Chen et al. 2020), and Sr22b (Luo 
et al. 2022) were used to determine absence of the other Sr 
genes. Finally, we explored the distribution of a chromo-
somal inversion within the SrTm4 candidate region in a col-
lection of 79 wild and cultivated T. monococcum accessions.

Stem rust assays

Infection types of PI 306540, PI 272557, and G3116 
to Pgt races TTTTF (isolate 01MN84A-1-2), TTKSK 
(04KEN156/04), TRTTF (06YEM34-1), MCCFC (59KS19), 
TPMKC (74MN1409), RKQQC (99KS76A-1), RCRSC 
(77ND82A-1), QTHJC (75ND717C), QFCSC (06ND717C), 
and SCCSC (09ID73-2) were reported in previous studies 
(Briggs et al. 2015; Rouse and Jin 2011a). Race TTTTF 
is virulent to resistance genes Sr21, Sr60, and Sr22b, but 
avirulent to SrTm4 (Briggs et al. 2015; Chen et al. 2018a). 
Moreover, SrTm4 showed a mesothetic resistant infection 
type (intermediate reaction with both resistant and suscep-
tible infection types present) (Rouse and Jin 2011a).

In the current study, the parental lines, selected fami-
lies TmR4-260 and TmS4-110, and segregating popula-
tions were evaluated with race TTTTF at the United States 
Department of Agriculture, Agricultural Research Service 
(USDA-ARS) Cereal Disease Laboratory. For plants carry-
ing recombination events in the candidate gene region, we 
carried out progeny tests using at least 25 individuals from 
each F2:3 family with race TTTTF. We further confirmed the 
phenotypes of these critical lines in the next generation by 
challenging 25 F3:4 plants homozygous for the recombina-
tion with the same race.

We also evaluated the selected families TmR4-260 and 
TmS4-110 with the Chinese Pgt race 34C3RTGQM (iso-
late 20IAL32) at Peking University Institute of Advanced 
Agricultural Sciences. The virulence/avirulence formulae of 
the Pgt races are provided in Table S1. Plants were grown 
in growth chambers at 18 °C day/15 °C night with a 16 h 
light/8 h darkness photoperiod. Procedures for inoculation 
and scoring disease reactions were as described previously 
(Briggs et al. 2015; Stakman et al. 1962).

RNA‑seq and qRT‑PCR analysis

From the population G3116 × PI 306540, we selected two 
F4 lines homozygous for the resistant SrTm4 haplotype 
(R-F14 and R-K18) and two sister control lines (S-A13 and 
S-E14) carrying the susceptible haplotype. The selected 
lines and parental lines G3116 and PI 306540 (total rep-
lications = 3) were inoculated with Pgt race 34C3RTGQM 
and mock-inoculated with water in two independent cham-
bers under the environmental conditions described above: 
18 °C day/15 °C night and 16 h light/8 h darkness. Leaf 

samples from different plants were collected immediately 
before inoculation (0 h) and 3-, 6- and 14-days post inocula-
tion (dpi).

Total RNAs were isolated using the Spectrum Plant 
Total RNA Kit (MilliporeSigma, MO, USA). We performed 
RNA-seq for Pgt-inoculated RNA samples of G3116 and 
PI 306540 and the selected F4 lines (R-F14, R-K18, S-A13 
and S-E14) at 14 dpi (accession number PRJNA932462). 
RNA-seq library preparation and sequencing was carried 
out at Beijing Novogene Bioinformatics Technology Co., 
Ltd.. Sequencing data quality control, sequence alignment, 
and variant calling were performed as described previously 
(Jiang et al. 2023). Differentially expressed genes (DEGs) 
were identified using edgeR software (Robinson et al. 2010) 
with a false discovery rate (FDR) of 0.05. The significance 
of the differences in transcript levels between the two 
groups was estimated using Student’s t-tests. DEGs within 
the SrTm4 candidate region of chromosome 2A were ana-
lyzed and a heatmap was created using the pheatmap pack-
age (Kolde and Kolde 2018). Principal component analysis 
(PCA) of RNA-seq data from the homozygous resistant lines 
(PI 306540, R-F14 and R-K18) and the susceptible lines 
(G3116, S-A13 and S-E14) was presented in supplemental 
Figure S1.qRT-PCR was carried out on an ABI QuantStudio 
5 Real-Time PCR System (Applied Biosystems, CA, USA) 
using PowerUp SYBR Green Master Mix. Transcript levels 
were expressed as fold-ACTIN levels using the 2−ΔCT method 
as described previously (Pearce et al. 2013).

Development of molecular markers

Based on the RNA-seq data, single nucleotide polymor-
phisms (SNPs) between the two parental lines G3116 and 
PI 306540 spaced throughout the candidate gene region 
were selected to develop markers. The sequences flanking 
the target polymorphisms were obtained from the T. aes-
tivum reference genome of ‘Chinese Spring’ (CS) RefSeq 
v2.1 (Zhu et al. 2021). Primers were designed using the 
software Primer3 web version 4.1.0 (https://​prime​r3.​ut.​ee/) 
to amplify intronic regions carrying the target polymor-
phisms. PCR amplification products were sequenced using 
the Sanger method to confirm sequence polymorphisms 
between parents. The detected polymorphisms were used to 
develop Insertion-Deletion (InDel), or Cleaved Amplified 
Polymorphic Sequence (CAPS), or derived Cleaved Ampli-
fied Polymorphic Sequence (dCAPS) markers (Bhattramakki 
et al. 2002; Konieczny and Ausubel 1993; Neff et al. 1998).

BAC library screening and sequencing

Bacterial artificial chromosome (BAC) libraries from T. 
monococcum accessions DV92 (Lijavetzky et  al. 1999) 
and PI 306540 (Chen et al. 2020; Luo et al. 2022) were 

https://primer3.ut.ee/
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available at the Wheat Molecular Genetics Laboratory, Uni-
versity of California, Davis. High quality DNAs from the 
selected BAC clones were extracted using QIAGEN Large-
Construct Kit (Qiagen, Hilden, Germany). BAC DNAs were 
fingerprinted using restriction enzyme HindIII. Selected 
BACs were sequenced using WideSeq at Purdue Univer-
sity (https://​purdue.​ilabs​oluti​ons.​com/​landi​ng/​808) or/and 
Illumina HiSeq 4000 platform at Beijing Novogene Bioin-
formatics Technology Co., Ltd.. We blocked the repetitive 
sequences in the SrTm4 region using the Triticeae Repeat 
Sequence Database (http://​wheat.​pw.​usda.​gov/​ITMI/​Repea​
ts/​blast​repea​ts3.​html), and searched the unblocked region 
using TBLASTX available at National Center for Biotech-
nology Information (NCBI, https://​www.​ncbi.​nlm.​nih.​gov/).

Statistical analyses

Genetic linkage maps were generated using MapChart 2.2 
software (Voorrips 2002). The released reference genomes 
of diploid, tetraploid and hexaploid wheat varieties (Avni 
et al. 2017; Ling et al. 2018; Luo et al. 2017; Maccaferri 
et al. 2019; Walkowiak et al. 2020) were used in our analy-
ses. The transcriptome databases of DV92 and G3116 (Fox 
et al. 2014) were also used to detect the expressions of can-
didate genes. The “Sorting Intolerant from Tolerant” (SIFT) 
algorithm was used to predict the effect of coding variants 
on protein function (Ng and Henikoff 2003). The assay for 
transposase-accessible chromatin (ATAC)-seq data from 
tetraploid wheat seedling roots was reported previously 
(Debernardi et al. 2022).

Results

Characterization of stem rust responses

A total of 388 F2 plants from cross PI 272557 × PI 306540 
were used to separate SrTm4 from the other three Sr genes 
(Sr21, Sr60 and Sr22b) present in PI 306540. From this 
population, we selected F3 family TmR4-260 carrying only 
SrTm4 and family TmS4-110 carrying no Sr gene. Seedlings 
from the TmR4-260 family exhibited mesothetic resistant 
infection types (ITs = ‘3’ to ‘31’) to Pgt races TTTTF and 
34C3RTGQM, whereas seedlings from family TmS4-110 
displayed susceptible infection types of ‘3+’ to ‘4’ (Fig. S2). 
Pgt race TTTTF, which is virulent on parental plants car-
rying resistance genes Sr21, Sr60, and Sr22b, but avirulent 
on plants carrying SrTm4 (Briggs et al. 2015; Chen et al. 
2018a), was used to determinate disease reactions in the 
G3116 × PI 306540 population. F3:4 seedlings homozygous 
for the presence of SrTm4 showed ITs ranging from ‘;3’ to 
‘31’ (similar to PI 306540), whereas plants homozygous for 

the absence of the gene displayed susceptible infection types 
(ITs = ‘3 + ’ to ‘4’, similar to G3116) (Fig. 1).

High‑resolution genetic map of SrTm4

The SrTm4 locus was previously mapped within a 2.1 cM 
interval on chromosome arm 2AmL (Briggs et al. 2015). 
To accelerate the development of markers in the candi-
date region, we first performed an RNA-seq experiment to 
identify single nucleotide polymorphisms (SNPs) between 
parental lines G3116 and PI 306540. Approximately 40.9 
million and 28.1 million PE150 reads were generated for 
PI 306540 and G3116, respectively. After removing low-
quality reads and adaptors, ~ 94% of the reads were mapped 
to ‘Chinese Spring’ wheat reference genome RefSeq v2.1, 
and a total of 84,495 polymorphisms were identified.

Based on these polymorphisms, we developed 12 
new markers in the candidate region (Fig. 2b, Table S2). 
Screening of 811 F2 plants from the G3116 × PI 306540 
cross yielded 48 plants with recombination events between 
SrTm4-flanking markers BQ461276 (IWGSC RefSeq v2.1: 
760,094,323 bp) and gwm526 (763,867,267 bp), a genetic 
distance of 2.96 cM (Fig. 2b). The new markers were used 
to genotype the 48 lines with recombination events and 
to construct a genetic map of the SrTm4 region (Fig. 2b). 
SrTm4 was mapped within a 0.37 cM interval flanked by 
markers CD903048 and DK658885 and completely linked 

1       2         3        4        5         6        7         8       

R        S       R        R R S        S S

TTTTF

Fig. 1   Stem rust reactions to Pgt race TTTTF (isolate 01MN84A-1-
2) inoculated on leaves of segregating resistant and susceptible plants 
from cross G3116 × PI 306540. 1, PI 306540 (SrTm4); 2, G3116; 3–5, 
resistant F3:4 plants; 6–8, susceptible F3:4 plants. R, resistant; S, sus-
ceptible

https://purdue.ilabsolutions.com/landing/808
http://wheat.pw.usda.gov/ITMI/Repeats/blastrepeats3.html
http://wheat.pw.usda.gov/ITMI/Repeats/blastrepeats3.html
https://www.ncbi.nlm.nih.gov/
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to markers CK167245.1, CK167245.2, BJ314745.1 and 
BJ314745.2 (Fig. 2b).

To define better the position of SrTm4, we screened 
another 3950 F2 plants with the new flanking markers 
CD903048 and DK658885. The genetic distance between 
these two markers was estimated to be 0.27 cM based on 
20 plants with informative recombination events identified 
in this screen plus another 6 plants found in the previous 
811 plants. Using these informative recombination events 
and six new markers developed in this candidate region 
(Table S2), SrTm4 was finally mapped within a 0.06 cM 
interval flanked by marker loci CS4211 (IWGSC RefSeq 
v2.1: 762.67 Mb) and 130K1519 (IWGSC RefSeq v2.1: 
763.67 Mb, Fig. 2c).

The candidate gene region partially overlapped with a 
1.8 Mb chromosomal inversion between IWGSC RefSeq 
v2.1 (763.4 Mb to 765.2 Mb) and IWGSC RefSeq v1.1 (Fig. 
S3 and Table S3). Comparisons among published reference 
genomes of diploid, tetraploid and hexaploid wheat showed 
that this 1.8-Mb inversion is present only in IWGSC RefSeq 
v1.1 but absent in all other sequenced wheat varieties (Fig. 

S4), indicating that the IWGSC RefSeq v2.1 is the correct 
assembly for this region.

Candidate genes for SrTm4 within the colinear 
region of hexaploid wheat genome

The 0.06 cM candidate region between SrTm4-flanking 
markers CS4211 and 130K1519 defines a 1.0-Mb region 
(762.67–763.67 Mb, Fig. 2d) in the reference genome of 
hexaploid wheat ‘Chinese Spring’ (IWGSC RefSeq v2.1) 
that contains 19 high-confidence annotated genes (TraesC-
S2A03G1276000-TraesCS2A03G1280800, Table S4).

Among these 19 candidate genes, four were differen-
tially expressed (FDR < 0.05; p-value < 0.01; and |log2 
foldchange|> 1) between the inoculated susceptible and 
resistant sister lines in the RNA-seq experiment (TraesC-
S2A03G1276800, TraesCS2A03G1278700, TraesC-
S2A03G1280400, and TraesCS2A03G1280700). Two of 
the differentially expressed genes (DEGs) showed that their 
transcripts were significantly higher in the plants carrying 
the susceptible SrTm4 allele compared to the resistant allele, 
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Fig. 2   High-density genetic maps for stem rust resistance locus 
SrTm4. a Genomic region containing SrTm4 (marked in gray) on the 
long arm of wheat chromosome 2A. b Genetic map based on 811 F2 

plants and 14 molecular markers; c High-density genetic map based 
on 4761 F2 plants and 10 molecular markers; d Physical map of Chi-
nese Spring. Coordinates are based on CS RefSeq v2.1
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whereas the other two DEGs were downregulated in the 
same lines (Table S5).

Among DEGs identified in the RNAseq data (accession 
number PRJNA932462), 149 genes were significantly upreg-
ulated and 136 genes were significantly downregulated in the 
homozygous resistant lines (PI 306540, R-F14 and R-K18) 
relative to the susceptible lines (G3116, S-A13 and S-E14). 
Principal component analysis (PCA) of the RNAseq samples 
confirmed that the transcriptomes of the sister monogenic 
lines with and without SrTm4 are very similar to each other 
and intermediate between the parental lines (Fig. S1). It also 
shows that the small number of DEGs detected between the 
sister lines are not sufficient to generate a clear difference 
between the two groups in the PCA.

Physical maps of the SrTm4 region

To determine whether additional genes were present in the 
candidate region in T. monococcum, we screened the BAC 
libraries of susceptible line DV92 and resistant parent PI 
306540 using flanking markers CS4211 and 130K1519 
and three markers completely linked to SrTm4 (PRRF4R4, 
CK167245.2 and BJ314745.1, Fig. 2d). In addition, we 
developed new markers (Table S2) from genes located in 
the orthologous region in the ‘Chinese Spring’ reference 
genome to accelerate the screening process.

By chromosome walking, we identified 12 and 11 over-
lapping BACs from the BAC libraries of DV92 and PI 
306540, respectively, covering the candidate gene region 
(Fig. S5 and S6). Based on sequencing and assembly of 
BAC sequences, we determined that the 0.06 cM candidate 
region defines a contiguous sequence of 754-kb region in 
T. monococcum accession PI 306540 (GenBank acces-
sion QQ503488). The 12 overlapping BACs of DV92 were 
sequenced at lower depth using the WideSeq approach, 
which yielded 30 non-overlapping contigs covering 652-kb 
excluding gaps.

High confidence genes in the SrTm4 candidate 
region

Our annotation of the 754-kb sequence showed no additional 
genes in the SrTm4 candidate region in PI 306540 relative 
to Chinese Spring and DV92. TraesCS2A03G1276100 is a 
pseudogene in both T. monococcum genotypes (DV92 and 
PI 306540), suggesting it is not a good candidate gene for 
SrTm4. For the other genes, we focused on those that were 
either differentially expressed or polymorphic in their cod-
ing regions between the resistant parent PI 306540 and 
the susceptible line DV92 (Table S5 and S6). We detected 
amino acid changes between PI 306540 and DV92 for 
nine expressed candidate genes (Table S6) and calculated 
SIFT scores to predict their effects on protein structure and 

function. Six genes had SIFT scores lower than 0.05, indi-
cating high probabilities of deleterious effects (Table S6). 
Based on the functional annotation of these genes, we pri-
oritized TraesCS2A03G1276200, TraesCS2A03G1276800, 
and TraesCS2A03G1278900 given their known roles in plant 
defense against pathogens (Hopkins et al. 2008; Laluk et al. 
2011; Qiu et al. 2021; Ruffel et al. 2002; Zhang et al. 2019a, 
2021; Zhao et al. 2022).

The four DEGs identified in the candidate gene region 
are also potential candidates for SrTm4 (Table S5). For each 
of these genes, we sequenced the promoter and open chro-
matin regions identified by ATAC-seq (Debernardi et al. 
2022) (Fig. S7). We found multiple polymorphisms in these 
regions that may explain their differential expression.

Among the four DEGs, we eliminated TraesC-
S2A03G1280400, which is a short putative gene with a sin-
gle predicted exon encoding a 120-amino acid peptide with 
no similarity to any known-function protein. Attempts to 
annotate the orthologous regions on chromosomes 2B and 
2D revealed multiple frame-shift mutations, and no possible 
functional orthologs. Based on these results, we hypothesize 
that this is not a real gene, and we did not consider it further 
as a candidate for SrTm4.

The other three DEGs are annotated in the genome of 
Chinese Spring (RefSeq v2.1) as eukaryotic initiation 
factor 4A-III homolog B-like (TraesCS2A03G1276800), 
S-acyltransferase 11-like (TraesCS2A03G1278700), and 
acyl-activating enzyme 5 (TraesCS2A03G1280700). Their 
transcript levels were analyzed in Pgt-inoculated and mock-
inoculated T. monococcum plants by qRT-PCR at 0 h, 3- and 
6- days post inoculation (dpi). Since we were not able to 
detect transcripts of TraesCS2A03G1276800 in PI 306540 
and TraesCS2A03G1280700 in G3116 based on RNAseq 
data (Table S5), their transcripts were evaluated only in 
PI 306540 or in G3116. We found that transcript levels of 
TraesCS2A03G1276800 and TraesCS2A03G1278700 in 
G3116 were significantly higher (P < 0.05) in Pgt-inocu-
lated plants than in mock-inoculated controls only at 6 dpi 
(Fig. S8a, b). There was no significant difference in the 
transcript levels of TraesCS2A03G1278700 and TraesC-
S2A03G1280700 in PI 306540 between Pgt-inoculated and 
mock-inoculated plants (Fig. S8c, d). In addition, we also 
detected higher transcript levels of TraesCS2A03G1278700 
in PI 306540 than in G3116 (Fig. S8b, c), supporting the 
RNAseq data analysis (Table S5) (Fig. 3).

Detection of a 593‑kb chromosomal inversion 
in the candidate region that disrupts a potential 
candidate gene

Based on chromosomal walking experiments, we observed 
that the order of the markers was reversed within a ~ 600-
kb region between PI 306540 and DV92 (Fig. S5 and S6), 
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indicating a potential chromosomal inversion in the can-
didate region. We then compared the two SrTm4 physical 
maps with the Chinese Spring reference genome sequence 
(RefSeqv2.1) and confirmed the presence of an inverted 
segment in PI 306540 (Fig. 4a and b) relative to CS and 
DV92. Figure 4a shows that the PI 306540 inverted region 
was approximately 0.8 Mb, extending from 762.7 Mb to 
763.5 Mb based on CS RefSeq v2.1 coordinates.

Further sequence analysis revealed the inversion 
breakpoints in PI 306540, as shown in Figure S9. On 
the proximal side, we delimited the inversion break-
point to a 3.3-kb region in PI 306540. This 3.3-kb region 
includes the border of the inversion located at ~ 762.7 Mb 
(762,705,407–762,705,985  bp) and the inverted part 
located at ~ 763.5  Mb (763,515,576–763,513,146  bp) 
based on CS RefSeq v2.1 coordinates. The two parts 
of the sequences are located ~ 807 kb apart in the Chi-
nese Spring reference genome but they are adjacent in 
the 3.3  kb region in PI 306540. On the distal side of 
the inversion, we also identified a 5.2-kb region in PI 
306540 that contains two segments located far apart 
in Chinese Spring (762,705,509–762,704,291  bp and 
763,515,638–763,518,339 bp, Fig. S9). Using the physical 
map of SrTm4, we were able to determine that the inverted 
region in PI 306540 was ~ 593 kb.

The proximal inversion breakpoint disrupted one gene, 
TraesCS2A03G1276600LC.1, which was annotated as 
encoding an L-type lectin-domain containing receptor 

kinase protein (designated here as LLK1). The inversion 
breakpoint is located in the coding region of this gene in 
PI 306540 and, therefore affects the protein structure and 
function. TraesCS2A03G1276600LC.1 is a truncated gene 
in Chinese Spring since it carries premature stop codons, but 
its B- and D-genome homeologs encode complete proteins 
of 759 and 764 amino acids, respectively. Using the publicly 
available transcriptome databases of DV92 and G3116 (Fox 
et al. 2014) and other wheat genome sequences, we found 
that LLK1 is expressed in susceptible T. monococcum DV92 
and G3116, and encodes proteins containing ~ 763 amino 
acids in different wheat species (Fig. S10). Using qRT-
PCR analysis, we found that the transcript levels of LLK1 
in G3116 were significantly higher in Pgt-inoculated than 
in mock-inoculated plants at both 3- and 6-dpi (P < 0.05; 
Fig. S11). LLK1 was completely linked to SrTm4 in the 
population of 4761 F2 plants, and is of particular interest 
because this type of protein was previously associated with 
disease resistance (Wang et al. 2015a, 2015b, 2018; Woo 
et al. 2016).

Distribution of the chromosomal inversion

Based on BLASTN searches using the 3.3-kb and 5.2-kb 
segments carrying the inversion breakpoints in the pub-
lished reference genomes, we determined that this chro-
mosomal inversion was not present in sequenced acces-
sions of T. urartu (G1812), Aegilops tauschii (AL8/78), T. 

Fig. 3   Transcript levels of high-
confidence genes annotated 
in the candidate gene region. 
Differentially expressed genes 
(DEGs) between homozygous 
susceptible lines (G3116, S-A13 
and S-E14) and homozygous 
resistant lines (PI 306540, 
R-F14 and R-K18) were identi-
fied using RNA-seq data. The 
heatmap was generated using 
the pheatmap package (Kolde 
and Kolde 2018)

Susceptible Resistant

G3116      S-A13      S-E14      PI306540   R-F14       R-K18 

group

TraesCS2A03G1276000
TraesCS2A03G1276100
TraesCS2A03G1276200

TraesCS2A03G1276800

TraesCS2A03G1277200
TraesCS2A03G1277300
TraesCS2A03G1277600
TraesCS2A03G1277700
TraesCS2A03G1278600
TraesCS2A03G1278700
TraesCS2A03G1278800
TraesCS2A03G1278900

TraesCS2A03G1279100
TraesCS2A03G1279800
TraesCS2A03G1279900

TraesCS2A03G1280000
TraesCS2A03G1280400
TraesCS2A03G1280700
TraesCS2A03G1280800
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turgidum subsp. dicoccoides (Zavitan), T. turgidum subsp. 
durum (Svevo), and T. aestivum (10 + wheat varieties in 
the Wheat Pan Genome project).

To characterize the distribution of the inversion in 
T. monococcum, we developed two dominant markers 
HNPI30F1R1 and HNPI30F4R4 (Table S2) on the break-
point junctions. These two pairs of primers amplify PCR 
products of 1007-bp and 1859-bp fragments when the 
593-kb chromosomal inversion is present and no product 
when it is absent (Fig. 4c). We also developed a dominant 
marker DV92F1R1 (Table S2) for absence of the inversion. 
PCR amplification with primers DV92F1R1 at an anneal-
ing temperature of 56 °C generates a 488-bp fragment 

when the inversion is absent and no amplification when 
it is present.

In a previous screen of 1,061 T. monococcum acces-
sions using five selected Pgt races (Rouse and Jin 2011b), 
SrTm4 was postulated to be present in five T. monococcum 
accessions in addition to PI 306540, including PI 352480, 
PI 306544, PI 355541, PI 435000-R, and PI 221414. We 
identified the same inversion breakpoints in these lines 
using the three dominant markers (Table S7). In addition, we 
evaluated a collection of 73 T. monococcum accessions and 
identified another four accessions (PI 277131-2, PI 306547, 
PI 428158, and PI 435001) where the same inversion was 
present based on the three dominant markers. The presence 
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Fig. 4   Chromosomal inversion in the candidate region. (a) Com-
parison of the SrTm4 physical map in PI 306540 with the genomic 
sequence of Chinese Spring (RefSeqv2.1). The figure was gener-
ated using the Python drawing library matplotlib (Hunter 2007). The 
inverted region is highlighted by the red square. (b) Syntenic relation-
ships between Chinese Spring and PI 306540. The figure was created 
using the  NGenomeSyn  program (https://​github.​com/​hewm2​008/​
NGeno​meSyn). Blue arrows represent the inverted regions. (c) Domi-

nant markers used to characterize the inversion breakpoints. Two 
dominant markers HNPI30F1R1 and HNPI30F4R4 (Table S2) were 
developed on the breakpoint junctions. These primers amplify PCR 
products of 1007-bp and 1859-bp when the 593-kb chromosomal 
inversion is present and no product when its absent. The amplification 
products are marked with a red arrow. + , PCR product present; -, no 
PCR product (colour figure online)

https://github.com/hewm2008/NGenomeSyn
https://github.com/hewm2008/NGenomeSyn
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of the same inversion was confirmed by sequencing of the 
PCR products of HNPI30F1R1 and HNPI30F4R4, which 
revealed identical sequences flanking the inversion as in PI 
306540. Finally, we challenged these four lines with race 
TTTTF (isolate 01MN84A-1-2), and observed very similar 
responses to that conferred by PI 306540 (Fig. 5), although 

we cannot rule out the presence of additional or other Sr 
genes in these lines.

In summary, the presence of the inversion seems to be 
linked to the SrTm4 resistance allele. This inversion was 
found only in a few domesticated T. monococcum ssp. mono-
coccum but was absent in all tested wild T. monococcum ssp. 
aegilopoides accessions (Table S7). Most of the accessions 
carrying the inversion were collected in the Balkans (Fig. 6), 
suggesting that the inversion event likely originated in this 
region.

Discussion

SrTm4 shows broad‑spectrum resistance to Pgt races

In this study, we generated SrTm4 monogenic line TmR4-
260 and sister susceptible line TmS4-110 lacking SrTm4. 
The monogenic line is useful to determine response profiles 
for SrTm4 without confounding effects of other resistance 
genes. In a previous study, we showed that SrTm4 conferred 
a low hypersensitive reaction to Pgt races TTKSK, TTTTF, 
TRTTF, QFCSC, MCCFC (Rouse and Jin 2011a), and meso-
thetic infection types for additional races TPMKC, RKQQC, 
RCRSC, and SCCSC that were virulent to Sr21 (Briggs et al. 
2015). Using the SrTm4 monogenic line, we confirmed that 

PI277131-2 PI306547 PI428158 PI 435001 G3116PI306540

R        R R R R R R R R R S        S

TTTTF    

Fig. 5   Infection types of T. monococcum accessions PI 277131-2, PI 
306547, PI 428158, PI 435001, PI 306540, and G3116 in response 
to Puccinia graminis f. sp. tritici race TTTTF (isolate 01MN84A-1-
2). Plants were grown in a growth chamber at 18 °C day/15 °C night 
with 16 h light/8 h darkness. R, resistant; S, susceptible

Fig. 6   A collection of 79 T. monococcum accessions was used to test 
the presence/absence of the chromosomal inversion. Dominant mark-
ers HNPI30F1R1, HNPI30F4R4, and DV92F1R1 (Table  S2) were 

used to genotype these T. monococcum accessions. Green circles, 
accessions without the inversion; Red triangles, genotypes with the 
inversion (colour figure online)
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SrTm4 was effective against both North American and Chi-
nese Pgt races (Fig. S2). The broad-spectrum resistance 
conferred by SrTm4 makes it a potentially valuable genetic 
resource in breeding for resistance, especially to race Ug99 
(TTKSK) and other more recently identified, widely virulent 
races.

High‑resolution mapping of SrTm4 reveals 
an inversion linked to SrTm4 resistance

Most plant disease resistance genes are dominant or partially 
dominant, but recessive R genes are also well documented. 
However, the molecular bases of recessive wheat stem rust 
recessive genes remain largely unknown, since all 18 Sr 
genes cloned so far in wheat and its relatives are dominant or 
partially dominant (Zhang et al. 2022). The recessive nature 
of SrTm4 and the mesothetic resistant infection type provide 
increased incentive to clone this gene.

Using our high-resolution genetic map, the published ref-
erence genome of hexaploid wheat (The International Wheat 
Genome Sequencing Consortium 2018), and the available 
T. monococcum BAC libraries (Chen et al. 2020; Lijavetzky 
et al. 1999), we delimited the SrTm4 candidate region to a 
1.0-Mb region in common wheat Chinese Spring, a 652-
kb discontinuous region in DV92, and a 754-kb continuous 
region in the resistant T. monococcum accession PI 306540.

A comparison of the 754-kb PI 306540 BAC sequence 
with the available genomic sequence of Chinese Spring and 
BAC sequence of DV92 revealed a 593-kb chromosomal 
inversion within the candidate region. Chromosomal inver-
sions cause suppression of  recombination, which likely 
explains the lack of recombination in the SrTm4 candidate 
region. This inversion precluded a more detailed mapping of 
SrTm4 in spite of the use of a very large mapping population 
(9522 gametes).

The geographic distribution of this inversion in the T. 
monococcum germplasm is limited to a few domesticated 
accessions that were collected mainly in the Balkans and all 
display similar mesothetic resistant responses to Pgt races 
(Fig. 5 and Table S7). Thus far, the presence of the inversion 
is completely linked to SrTm4.

Chromosomal inversions are important drivers of genome 
structure evolution in natural populations (Said et al. 2018). 
Inversions have the potential to disrupt genes at breakpoints, 
generate linkage blocks that cannot be broken by recom-
bination, and cause positional effects on adjacent chroma-
tin (Allshire et al. 1994; Spofford 1976). In this study, we 
observed significant gene expression differences in genes 
located close to the inversion breakpoint regions, such 
as TraesCS2A03G1276800 and TraesCS2A03G1280400 
(Table S5), but we currently do not know if these differences 
are caused by position effects or disruption of the resistance 
gene.

Candidate genes linked to SrTm4

We found no typical NLR gene within the candidate gene 
region. NLR genes are the most frequent gene class associ-
ated with pathogen resistance in wheat and other plant spe-
cies (Li et al. 2021; Saintenac et al. 2013; Wang et al. 2022; 
Yang et al. 2022; Zhang et al. 2017, 2019b). We did not 
detect additional genes in the SrTm4 candidate region in the 
susceptible T. monococcum line DV92 relative to the resist-
ant parent PI 306540. However, we do not have a contiguous 
BAC sequence of DV92 and therefore cannot rule out the 
possibility that we missed the susceptibility gene located in 
the gap regions. However, this is unlikely because no addi-
tional gene(s) in the candidate region were found in Chinese 
Spring and other published wheat reference genomes.

Among the candidate genes, we identified six carrying 
predicted deleterious variants and four DEGs with polymor-
phisms in their regulatory regions (Table S5, S6), but we 
currently do not know if these changes affect their functions. 
Further functional characterization will be needed to dem-
onstrate if one of these genes is SrTm4.

Except for the candidates described above, we also iden-
tified an L-type lectin-domain containing receptor kinase 
LLK1, that was completely linked to SrTm4 and disrupted 
by an inversion in the resistant parent. Members of this gene 
family have been implicated in disease resistance in several 
plant species (Wang and Bouwmeester 2017; Wang et al. 
2015b, 2018; Woo et al. 2016). Functional LLK1 alleles are 
present in susceptible T. monococcum accessions but absent 
in all resistant T. monococcum accessions since the proxi-
mal inversion breakpoint disrupts its coding sequence. These 
results agree with the recessive nature of the resistance, and 
suggest that LLK1 is a potential candidate for SrTm4. To 
determine if LLK1 is the causal gene, we have initiated 
the development of loss-of-function mutations using both 
sequenced ethyl methane sulfonate (EMS)-mutagenized 
population of durum wheat Kronos (Krasileva et al. 2017) 
and CRISPR-Cas9 editing. If LLK1 is demonstrated to be 
the causal gene for SrTm4, then the inversion itself will be 
the basis for the origin of SrTm4.

Conclusions and practical implications

SrTm4 is a broad-spectrum resistance gene and confers 
resistance to widely virulent Pgt races recently identified 
in the United States, Kenya, Yemen, and China (Table S1). 
Since SrTm4 only confers intermediate levels of resistance 
when present alone, it would be necessary to combine it 
with other Sr genes to provide commercially useful levels 
of resistance. Pyramids of recessive and dominant resistance 
genes are expected to be an effective strategy for incorpo-
rating resistance (Pradhan et al. 2015). A combination of 
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recessive and dominant R genes for resistance breeding has 
been reported in rice against bacterial blight pathogen (Li 
et al. 2001), in wild Arachis species against Meloidogyne 
arenaria (Church et al. 2005), in barley against leaf blotch 
(Garvin et al. 1997), and in pigeon pea against podfly and 
podborer (Verulkar et al. 1997).

Since the resistance genes Sr21 (resistant haplotype R2 
in PI 306540) and SrTm4 are on the same chromosome 
arm located ~ 35 cM apart (Briggs et al. 2015; Chen et al. 
2018b), it should be possible to introgress a T. monococcum 
chromosome segment carrying both genes into hexaploid 
wheat through the use of the ph1b mutation (Dubcovsky 
et al. 1995; Sears 1977). However, additional studies will be 
needed to test if the large introgressed T. monococcum seg-
ment with both Sr genes carries any undesirable genes. Even 
if SrTm4 was successfully introgressed into hexaploid wheat, 
it may be required to also knock out the B- and D-genome 
homeologs to confer resistance given the recessive nature 
of SrTm4.

In summary, SrTm4 recessive nature and its broad-spec-
trum resistance can make this gene a valuable component of 
gene pyramids combining different types of Sr genes. The 
high-density map of SrTm4 and the tightly linked molecular 
markers identified in this study are useful tools to facilitate 
the cloning of this gene.
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