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Abstract
Key message We identified marker-trait associations for key faba bean agronomic traits and genomic signatures of 
selection within a global germplasm collection.
Abstract Faba bean (Vicia faba L.) is a high-protein grain legume crop with great potential for sustainable protein production. 
However, little is known about the genetics underlying trait diversity. In this study, we used 21,345 high-quality SNP mark-
ers to genetically characterize 2678 faba bean genotypes. We performed genome-wide association studies of key agronomic 
traits using a seven-parent-MAGIC population and detected 238 significant marker-trait associations linked to 12 traits of 
agronomic importance. Sixty-five of these were stable across multiple environments. Using a non-redundant diversity panel 
of 685 accessions from 52 countries, we identified three subpopulations differentiated by geographical origin and 33 genomic 
regions subjected to strong diversifying selection between subpopulations. We found that SNP markers associated with the 
differentiation of northern and southern accessions explained a significant proportion of agronomic trait variance in the seven-
parent-MAGIC population, suggesting that some of these traits were targets of selection during breeding. Our findings point 
to genomic regions associated with important agronomic traits and selection, facilitating faba bean genomics-based breeding.
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Introduction

Faba bean (Vicia faba L.) is an important cool-season grain 
legume (pulse) crop grown worldwide for its high seed-
protein content that is of great interest for the production of 
animal feed and food for human consumption. Faba bean has 
a high yield potential and an average crude protein content 
of 29%. In addition, it is one of the most efficient nitrogen 
fixers and is grown with little or no applied inorganic nitro-
gen fertilizer (Singh et al. 2013; Griffiths and Lawes 1978; 
Baddeley et al. 2013). This provides major benefits for crop-
ping systems and supports sustainable agricultural practices.

In 2020, the total worldwide production of faba bean was 
5.7 million tonnes, which represents an increase of approxi-
mately 55% since 2000 (FAOSTAT 2022). Despite the mul-
tiple advantages of growing faba bean, the global produc-
tion is still surpassed by other pulses such as common bean 
(Phaseolus vulgaris L.), chickpea (Cicer arietinum L.), field 
pea (Pisum sativum L.), cowpea (Vigna unguiculata L.), and 
lentil (Lens culinaris Medik.) (Adhikari et al. 2021).

In general, faba bean thrives in the cool and moist con-
ditions found in temperate climates, but it is cultivated in 
various climate zones from boreal to subtropical and warm 
temperate areas, where it is grown as a winter crop (Singh 
et al. 2013; O’Sullivan and Angra 2016). Its history of 
cultivation has been traced back to the Stone Age, making 
faba bean one of the earliest domesticated crops (Duc et al. 
2010). The Middle East is popularly considered the center 
of origin, although other studies point toward Central Asia 
(Cubero 1974; Ladizinsky 1975). Interestingly, no wild 
faba bean progenitor has been found, and Vicia faba is 
not cross-compatible with other Vicia species, meaning 
that all existing faba bean genetic diversity is maintained 
in germplasm collections and in local populations kept 
by farmers (Duc et al. 2010). This situation, combined 
with the current lack of effective transgenic technologies 
for faba bean, means that ongoing breeding programs rely 
highly on the exploitation of existing genetic diversity.

For optimal crop improvement, it is crucial to obtain a 
better understanding of population structure and genetic 
diversity in the accessible faba bean germplasm. To date, 
the genetic relationships and diversity of faba bean germ-
plasm have been examined in various studies using different 
types of molecular markers and germplasm collections (e.g., 
Torres et al. 1993; Link et al. 1995; Terzopoulos and Bebeli 
2008; Oliveira et al. 2016; Kaur et al. 2014a; Sallam et al. 
2016a, b; Wang et al. 2012; Mulugeta et al. 2021). Although 
these studies have found genetic distinctions between germ-
plasm belonging to different geographic origins, the underly-
ing selection signatures remain poorly understood. This is 
mainly due to the large and complex genome of faba bean 
(approx. 13 Gbp) (Khazaei et al. 2021).

The identification of genomic regions differentiated 
between subpopulations of faba bean with different geo-
graphic origins will be an important factor in addressing 
the challenges associated with the frequent climatic fluc-
tuations and future climate change. Signatures of selection 
have been identified in multiple important crops such as 
maize (Zea mays L.), rice (Oryza sativa L.), alfalfa (Med-
icago sativa L.), and soybean (Glycine max (L.) Merr.) by 
comparing subgroups with different geographical origins 
(Xu et al. 2022; Bouchet et al. 2013; Xie et al. 2015; Chen 
et al. 2021; Saleem et al. 2021). This is typically done 
using statistical methods that rely on differences in allele 
frequencies between subpopulations (Luu et  al. 2017; 
Chen et al. 2010; Tajima 1989; Foll and Gaggiotti 2008). 
Meanwhile, genome-wide association studies (GWAS) 
have consistently proven to be a powerful tool for detecting 
candidate genes for agronomically important traits (Huang 
et al. 2010; Sonah et al. 2015). By looking for overlaps 
of genomic regions under selection and quantitative trait 
loci (QTLs) identified by GWAS studies, it is possible to 
study traits under selection. However, traits under selec-
tion during breeding are typically strongly correlated with 
population structure, posing a challenge to GWAS. GWAS 
models correcting for population structure will cause many 
false negatives, and ultimately QTLs associated with traits 
under selection might not be identified. In contrast, a naïve 
GWAS model with no population structure adjustment will 
yield too many false-positive signals, since it is not able to 
distinguish genetic regions associated with overall popu-
lation structure from causal genes associated with traits 
under selection (Zhao et al. 2011). A way to overcome this 
problem is to combine selection signatures of a diversity 
panel with GWAS results from independent populations. 
This is especially straightforward for well-studied crops 
such as maize and rice, where a large number of functional 
genes and loci associated with traits have already been 
identified and published (Xu et al. 2022; Xie et al. 2015). 
For an orphan crop such as faba bean, however, most QTLs 
associated with agronomic important traits have yet to be 
identified (Adhikari et al. 2021).

In view of the above, the objectives of the present study 
were to: (1) analyze the genetic diversity, population struc-
ture, and linkage disequilibrium (LD) of a global faba bean 
panel of 2678 accessions using high-quality SNP data; 
(2) use a mapping population to identify markers associ-
ated with key agronomic traits; and (3) select a large, 
non-redundant diversity panel to study faba bean genetic 
diversity and inter-population selection signatures. Under-
standing the genetic diversity and structure of these acces-
sions lays a foundation for future genome-wide association 
studies (GWAS) or genomic selection (GS) and will aid in 
the utilization of these materials in future faba bean breed-
ing programs.
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Materials and methods

Plant materials and panels

The data studied consist of 2682 faba bean accessions 
belonging to eight different international panels developed in 
different projects. The panels are referred to, respectively, as: 
EUCLEG, Göttingen Winter Bean (GWB), four-way-cross, 
seven-parent-MAGIC, Northern Faba (NORFAB), ProFaba, 
Reading Spring Bean Panel (RSBP) and Virtual Irish Cen-
tre for Crop Improvement (VICCI). The panels differed in 
size, type, allelic diversity included, and crossing strategies 
(Table 1). Extensive descriptions of the panels and passport 
information on the individual accessions can be found in 
Supplementary File 1.

Phenotyping and field trials of seven‑parent‑MAGIC 
lines

The seven-parent-MAGIC lines were grown in field trials at 
two locations in Denmark during 2020 and 2021. The first 
location was Sejet Plant Breeding, Sejet (55.82°N, 9.94°E) 
and the second Nordic Seed, Dyngby (55.96°N, 10.25°E). 
The experimental design for field trials was an alpha design 
with three replicates. Plants were grown in plots made up of 
6 rows with 14–15 seeds sown per row. Each plot contained 
two entries and therefore consisted of two inbred lines, each 
contributing three rows. To minimize neighbor effects, every 
other plot between the 6-rowed plots consisted of commer-
cial cultivars; Kontu at both field trials during 2020 (Sej20 
and Dyn20) and Taifun and Daisy at both field trials during 
2021 (Sej21 and Dyn21). For the field trials at Sejet, the 
sowing dates were 9 April 2020 and 19 April 2021, and the 
harvest dates were 10–12 September 2020 and 31 August 
to 1 September 2021. For field trials at Dyngby, the sowing 
dates were 2 April 2020 and 8 April 2021, and the harvest 
dates were 24 August 2020 and 21 August 2021.

Trials were rain-fed and treated with herbicides and insec-
ticides. Furthermore, the field trials in Dyngby had fertilizer 

(NPK 0-8-23) applied. More details on the treatments can be 
seen in Supplementary Table 1.

To minimize border effects, all traits were scored in the 
middle row of the three rows per inbred line. Plants were 
phenotyped for the following 17 traits: disease susceptibility 
to chocolate spot (caused by Botrytis fabae), rust (caused 
by Uromyces viciae-fabae), and downy mildew (caused by 
Peronospora viciae); herbicide damage; branching; plant 
height; number of ovules per plant; sterile tillers per plant; 
lodging; maturation date; earliness, end, and duration of 
flowering; thousand grain weight (TGW); and seed area, 
length, and width. The description of each trait and scoring 
methods appears in Supplementary File 2.

DNA extraction and SNP genotyping

Genomic DNA was extracted from fresh leaf tissue using a 
DNeasy Plant Mini Kit (QIAGEN Ltd, UK) for the EUCLEG 
panel, a NucleoSpin Plant II kit (Macherey–Nagel) for the 
seven-parent-MAGIC and NORFAB panels, and a DNeasy 
96 Plant Kit (QIAGEN Ltd, UK) for the remaining panels. 
DNA quality was assessed on agarose gel electrophoresis, 
while concentration was assessed using a Quant-iT Pico-
Green dsDNA Assay Kit (ThermoFisher Scientific, UK) 
following the manufacturer’s guidelines.

Individuals were genotyped for SNPs using the Vfaba_v2 
Axiom SNP array containing approximately 60 K probes 
(Khazaei et al. 2021; O’Sullivan et al. 2019). Genotype data 
were filtered following the ‘best practices workflow’ from 
the Affymetrix Axiom Analysis Suite which excluded mark-
ers with a call rate < 97%. Further, only markers that the 
software classified as “PolyHighResolution” (high quality 
and polymorphic) were kept. The flanking sequences of the 
resulting 24,599 SNPs were aligned to the Vicia faba refer-
ence sequence (Jayakodi et al. 2022) using the blastn appli-
cation of the NCBI BLAST + suite of programs (v2.12.0+) 
with an e-value of 1e−8 as the significance threshold. The 
significance threshold for the blast analysis had been deter-
mined by aligning the first 1000 flanking sequences to the 
reference genome without a threshold, selecting the best 

Table 1  Summary of panels

a The number of accessions after each panel was filtered for genetic redundancy. The numbers in parentheses refer to the number of accessions 
before the individual panels were filtered for genetic redundancy

EUCLEG NORFAB ProFaba GWB RSBP VICCI Seven-
parent-
MAGIC

Four-way-cross

Number of  accessionsa 358 (358) 195 (196) 234 (234) 268 (268) 160 (162) 563 (564) 255 (255) 645 (645)
Population type Diversity Diversity Diversity Mapping Mapping Outcrossing Mapping Mapping
Number of founders – – – 11 21 22 7 4
Number of polymorphic markers 21,286 21,254 21,335 20,722 19,328 20,681 17,352 14,893
Number of markers with MAF ≥ 5% 19,509 19,599 19,630 16,840 16,888 17,307 16,228 13,822
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alignments per sequence from the results by maximal bit-
score and taking the highest e-value among the best hits 
rounded to the next higher full figure as significance thresh-
old. The SNP position in the reference sequence was deter-
mined based on the “Blast trace-back operations” (BTOP) 
string of the alignments, counting upwards from subject start 
to the SNP position in the query sequence when the align-
ment was on the plus strand and downwards when it was on 
the minus strand. Markers that did not align to a unique chro-
mosomal position in the genome were removed. This gave 
a set of 21,345 high-quality quality markers. Analyses were 
performed on this set of markers, unless otherwise specified.

Note that chromosome 1 was split into two parts 
(Chr1S and Chr1L) at position 1,574,527,093 by the faba 
bean genome consortium to facilitate data analysis.

Functional annotation was done using eggNOG-map-
per v. 2.7.2 with the eggNOG eukaryotic database (Buch-
fink et al. 2015; Huerta-Cepas et al. 2017, 2019).

Using the 8423 markers for which both a genetic and 
physical position (Supplementary File 3, https:// proje 
cts. au. dk/ fabag enome/ genom ics- data) were available, 
we modeled, in the R package cobs, genetic position as a 
smooth, strongly monotonic function of physical position, 
and then, using this function, we estimated genetic posi-
tions for all SNPs (Ng and Maechler 2007). These genetic 
positions were used for imputation of missing genotypes 
using Beagle v. 5.2 with windows of 60 cM and 3 cM 
steps (Browning et al. 2018). Prior to this imputation, 
all markers and individuals showed missingness < 5% 
and < 8%, respectively.

Redundancy filtering

Genetic identities (GI) between accessions were calcu-
lated as the fraction of shared alleles by applying the fol-
lowing equation to the VCF file using a custom R-script 
(1):

where  GIij is the genetic identity between the ith and jth sam-
ple, n is the number of markers where none of the two sam-
ples show missingness, Sxij is the number of shared alleles 
between sample i and j at marker x and therefore takes values 
of 0, 1, and 2.

When two samples showed GI ≥ 94%, the sample with 
the largest proportion of genetic missingness or the least 
information in terms of geographic origin (diversity panel) 
was removed. The threshold was set so that we excluded 
most accessions that we knew were present in duplicates and 
avoided discarding too many genetically close lines.

(1)GIij =
1

2n

n
∑

x=1

Sxij

Genetic variation and diversity

The site-frequency spectrums were based on the panel-
wise polymorphic SNPs (Table 1). The alternative allele 
counts and resulting plots were made using a custom 
R-script. Nucleotide diversity was calculated by applying 
“-site-pi” in VCFtools v. 0.1.16 (Danecek et al. 2011). 
Observed and expected levels of heterozygosity were cal-
culated in R using the inbreedR and adegenet packages, 
respectively (Stoffel et al. 2016; Jombart 2008). SNP den-
sities were calculated chromosome wise using ‘–SNP den-
sity’ with a distance of 1 M base pairs (bp) in VCFtools v. 
0.1.16 (Danecek et al. 2011).

Population structure and phylogeny

To infer population structure and phylogeny of the diver-
sity panel, a minor allele frequency (MAF) filter at 1% was 
applied, leaving 21,116 markers. The software ADMIX-
TURE was run with K ranging from 2 to 20 (Alexander 
et al. 2009). A tenfold cross-validation (CV) scheme was 
repeated 10 times for each value of K. The admixture pro-
portions were graphically displayed using R.

Principal component analysis (PCA) was performed 
on all accessions across panels and within the diversity 
panel using the markers that passed a minor allele fre-
quency (MAF) threshold ≥ 1%, that is 21,077 and 21,116 
markers, respectively. All PCAs in this study were made 
by using PLINK v. 1.9 setting the number of principal 
components (PCs) to the number of samples (Purcell et al. 
2007). The resulting eigenvectors were plotted in R using 
ggplot2 (Wickham 2016). Accessions were assigned to a 
subpopulation if they showed ancestry proportions ≥ 0.50.

A phylogenetic tree was constructed using MEGA X v. 
10.2.6 to generate a neighbor-joining tree, applying a boot-
strap method with 1000 replications and default param-
eters (Kumar et al. 2018). The tree was visualized with the 
R-package ggtree (Yu et al. 2017).

Population differentiations were investigated by calcu-
lating fixation indices (FST) between pairs of subpopula-
tions as identified by ADMIXTURE. For this purpose, the 
‘–weir-fst-pop’ in VCFtools v. 0.1.16 was used (Danecek 
et al. 2011). Additionally, analysis of molecular variance 
(AMOVA) was performed using the adegenet package in 
R (Jombart 2008). Both FST and AMOVA analyses were 
based on markers that passed a MAF filter at 1%.

Statistical significance of differential allele frequen-
cies between pairwise populations was calculated using a 
Fisher’s exact test in R.

https://projects.au.dk/fabagenome/genomics-data
https://projects.au.dk/fabagenome/genomics-data
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Linkage disequilibrium

Linkage disequilibrium (LD) was estimated individually for 
each panel using PLINK v. 1.9 to compute the squared cor-
relation coefficients (R2) chromosome-wise for each pairwise 
combination of markers (Purcell et al. 2007). Before LD cal-
culations, a MAF filter was applied at 5% in individual panels 
and 1% in the diversity panel. For each panel, the resulting LD 
data were merged across chromosomes, subsequently sorted 
according to SNP distance, and binned into groups of 1000 
data points. For each bin, the average R2 was plotted against 
the average distance (bp) and a smooth curve was fitted using 
the loess function with a 10% smoothing span in R. There were 
5000 bins plotted for the seven-parent-MAGIC and four-way-
cross populations where the LD decayed slowly, whereas 1000 
bins were plotted for the remaining populations. The LD decay 
was estimated per panel as the point where the fitted curve 
reached half of its maximum value.

Identification of SNPs under selection

To detect SNPs showing signatures of selection, we employed 
three methods of outlier detection that differ in their statistical 
approaches. All aim to identify extreme differences in allele 
frequency between populations. We used the software pack-
age Ohana with the number of ancestry components set to 3 
(Cheng et al. 2022), the R-package pcadapt with K = 3 (Luu 
et al. 2017) and the software BayeScan v. 2.1 with default 
settings (Foll and Gaggiotti 2008). In contrast to Ohana and 
pcadapt, BayeScan requires grouping into populations. For this 
purpose, we used the population memberships assigned by 
ADMIXTURE.

For candidate markers under selection, we focused on 
markers found by at least two of the methods. All methods 
were applied to the markers that passed a MAF filter at 1%.

Statistical models and genome‑wide association 
studies

Prior to GWAS, the phenotype scores were filtered for outli-
ers and lines with many off-types were also discarded. This 
left between 188 and 234 seven-parent-MAGIC accessions 
for GWAS.

Phenotypic data analyses were performed for each trait in 
individual field trials and for all environments (envs) com-
bined, using the lme4 package in R (Bates et al. 2015). For 
analysis of variance (ANOVA) and to get adjusted genotype 
means for GWAS inputs, we fitted the following mixed model 
to all traits (Eq. 2):

(2)yijk = � + Gi + Ej + GixEj + R(E)jk + �ijk

where yijk denotes the phenotypic value of the ith inbred line 
in the jth environment (year x location combination) in the 
kth replication, µ is the overall trait mean, Gi is the genetic 
effect of the ith line, Ej is the environmental effect of the 
jth environment, Gi × Ej denotes the genotype environment 
interaction of the ith line in the jth environment, R(E)jk is the 
effect of the kth replicate within the jth environment, and �ijk 
is the residual error. All effects except the overall mean were 
treated as random. If a trait was scored on two separate dates 
within a field trial, each date was modeled as a separate envi-
ronment. All random effects in the model were tested one 
at a time for statistical significance by using the ‘ANOVA’ 
function in R to compare the log-likelihood of a model with 
and without the random effect. When testing the significance 
of main effects, the interaction effects were excluded from 
the full model before the main effect was dropped. If the 
removal of an effect was associated with a p value > 0.05, 
inclusion of the effect was not considered to improve the 
model. To extract best linear unbiased estimators (BLUEs) 
for each trait, statistically insignificant terms are excluded 
from Eq. 2, which was then refitted with genotypes as a fixed 
effect. For the trait x environment combinations where Gi 
and �ijk were the only significant effects, the average pheno-
type value of each genotype was used for GWAS.

Broad sense heritabilities were calculated on a line mean 
basis from the estimated variances of Eq. 2 (Eq. 3):

where �2

G
 , �2

GE
 , and �2

�
 are the estimated variances of the 

genetic effects, genotype x environment interactions and 
residual effects, respectively; nE and nR are the number of 
environments and replications, respectively; and s is a con-
stant taking the value 0 if only one environment is included 
in Eq. 2 and otherwise taking the value 1. It should be noted 
that when s = 0, H2 is strictly speaking a measure of line 
repeatability and not line heritability.

GWAS was performed on the generated BLUEs using the 
fixed and random model Circulating Probability Unification 
(FarmCPU) method integrated in the GAPIT v. 3 library 
in R with a MAF filter of 5% (Liu et al. 2016; Wang and 
Zhang 2021). To avoid signals originating from population 
stratification, the first three PCs were included as covariates 
in the GWAS models. Finally, we verified the absence of 
confounding effects by checking for inflation of p values by 
examination of Q–Q plots and calculation of genomic infla-
tion factors ( � ). For traits where �-values were not between 
0.9 and 1.1, p values were divided by � . To avoid the high 
penalty of Bonferroni correction, which assumes all markers 
are uncorrelated, we calculated the effective number of inde-
pendent tests (Mef) using the SimpleM method (Gao et al. 

(3)H2 =
�2

G

�2

G
+ s

�2

GE

nE
+

�2

�

nEnR
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2010). The significance threshold was then estimated as 
0.05/Mef with Mef being 4790 for the seven-parent-MAGIC 
panel.

The phenotypic variance explained (PVE) by SNPs were 
estimated for all traits as proposed by Martinez et al. (2018) 
(Eq. 4):

where yi is the phenotypic value of the ith observation (not 
corrected for any effects as included in Eq. 1) and ŷi is the 
predicted value of the ith observation when phenotypes are 
fitted as a linear regression of the genotype of the significant 
SNP(s); n is the total number of observations.

Syntenic alignment plots

The QTL from the present study (dataset name: Skovb-
jerg_2022), together with sequence-based markers (dataset 
name: Vfaba_hedin_v1.Vfaba_v2.physical) were mapped to 
the faba bean genome and loaded into Pulses Pretzel (https:// 
pulses. plant infor matics. io/). In addition, the Medicago trun-
catula genome (MedtrA17_4.0, accession GCA_000219495) 
and its annotation was loaded, with the flowering time genes 
from Yeoh et al. (2013) defined. To establish syntenic align-
ments between genomes, CDS sequences from Medicago 
truncatula were mapped with BLAST 2.11.0 against the faba 
bean genome, requiring more than 70% coverage. Pulses 
Pretzel was used to visualize all the available data for flow-
ering time into a single plot. Singleton, long-range cross-
overs in the synteny alignment were removed from the plot 
to increase the clarity of the projection. The plots can be 
recreated following the instructions given in Supplementary 
Note 1.

Results

Quality filtering and genomic distribution of SNPs

After quality control, a total of 2,682 accessions from eight 
different panels were genotyped for 21,345 high-quality 
SNP markers. Since 6 accessions appeared twice by name 
within a panel, we checked for genetic identity between 
these expected duplicates using a threshold of ≥ 94% (Eq. 1). 
This removed a total of four accessions, leaving a final set 
of 2678 accessions (Table 1). SNPs were well-distributed 
across chromosomes, and the average SNP density was 1.9 
SNPs/Mbp (Table 2). The average distance between two 
adjacent SNPs was 542.8 kbp.

(4)r2 =
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Characterization of individual panels

Most inbred panels showed average observed heterozygo-
sity equal to or below 0.06. An exception was the EUCLEG 
panel, which comprised a group of accessions with higher 
heterozygosity. The outcrossing VICCI panel showed higher 
average heterozygosity than the other panels. As expected, 
all inbred panels had an average observed heterozygosity 
(Ho) which was considerably lower than the expected het-
erozygosity (He) (Supplementary Fig. 1).

To compare the genetic diversity captured within each 
individual panel, we investigated the distribution of minor 
allele counts (MACs) and calculated nucleotide diversi-
ties (π). The nucleotide diversity was highest for the broad 
diversity panels, EUCLEG, ProFaba and NORFAB (0.32), 
whereas the remaining panels, which were all established 
from a limited number of founder lines, had lower π-values 

(0.26–0.30) (Table 2). The distribution of MACs was very 
similar for EUCLEG, NORFAB, and ProFaba, which 
showed a close-to-uniform distribution with a small over-
representation of intermediate frequencies. For the remain-
ing panels, we observed an excess of low-frequency variants. 
The distribution of MACs for the mapping panels, seven-
parent-MAGIC and four-way-cross, was multimodal and 
reflected the numbers of founder alleles present, e.g., MACs 
of ~ 75 (1/7), ~ 150 (2/7), and ~ 220 (3/7) for the seven-par-
ent-MAGIC population (Fig. 1A).

For the EUCLEG, NORFAB, and ProFaba panels, LD 
dropped to half of its maximum at values close to the aver-
age distance between SNPs—that is, 681.7 Kbp, 676.6 
Kbp, and 672.9 Kbp, respectively. LD decayed over larger 
distances for the GWB (1.4 Mbp), VICCI (4.8 Mbp), and 
RSBP (7.8 Mbp) panels, consistent with the lower number 
of recombinations represented in the respective panels. The 

Fig. 1  Genetic structure of individual panels. A Folded size fre-
quency spectrums of the eight panels show the panel-wise distribu-
tion of minor allele counts (MAC). B Panel-wise LD decay plots. 
Y-axis displays the average squared correlation coefficient (R2) 
between markers when sorted after the average distance and binned 

into groups of 1000 or 5000 seven-parent-MAGIC and four-way-
cross). For each bin, the x-axis displays the average distance in Mbp 
between two SNPs. The green line is the fitted loess curve with half 
its maximum R2 indicated by the dashed line
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seven-parent-MAGIC and four-way-cross panels showed 
much larger LD blocks with average decay values of 68.4 
Mbp and 77.6 Mbp, respectively (Fig. 1B).

Key agronomic traits in the seven‑parent‑MAGIC 
population

To get a better understanding of the genetic basis of key 
agronomic traits in faba bean, the seven-parent-MAGIC 
panel was phenotyped for a wide range of traits during the 
two years of field trials at two locations in Denmark (Sup-
plementary Fig. 2, Table 3). In the multi-environmental 
ANOVA models, all traits had a statistically significant 
contribution from the genotypic variance to the overall 
phenotypic variance (p < 0.05). Additionally, we found that 
the replicate variance, the environmental variance, and the 
GxE interaction were significant (p < 0.05) for all traits, 
except susceptibility to downy mildew as measured in per-
centage (Supplementary File 4). Seed traits showed rela-
tively little environmental influence and high heritabilities 
of 0.96–0.98 (Supplementary Fig. 3, Supplementary File 
4). When including data from multiple environments, we 
found low heritabilities for disease resistance to chocolate 
spot as measured in percentage (0.21) and rust (0.28–0.30) 
(Supplementary File 4). When considering environments 
separately, however, heritabilities above 0.50 could be found 
for at least one of the environments scored for these traits 
(Supplementary File 4). Because of this, and the significant 
GxE interactions for almost all traits, we performed GWAS 
for each environment separately and by using the BLUEs of 
combined environments.

Genome‑wide association studies for key agronomic 
traits

GWAS was performed using FarmCPU and the Q-Q-plots 
associated with the GWAS results raised no concerns regard-
ing genomic inflation (Supplementary Fig. 4). We identified 
238 (177 unique) markers associated with statistically signif-
icant signals for the following traits: earliness of flowering; 
plant height; lodging; sterile tillers; seed length, width, and 
area; TGW; herbicide damage; and susceptibility to choco-
late spot, rust, and downy mildew (Supplementary File 5). 
Manhattan plots for multi-environmental traits—that is, sus-
ceptibility to chocolate spot, rust, and downy mildew; plant 
height; lodging; earliness of flowering; TGW; seed area, 
length, and width—are shown in Fig. 2. Manhattan plots 
for the remaining traits can be seen in Supplementary Fig. 5.

Of the 238 marker-trait associations, 230 originated from 
multi-environmental traits. Of these, 65 were stable across 
all environments and the associated markers explained 
between 0.03% (TGW) and 21.8% (seed width) of the overall 
trait variation (Table 4). Although only 10 of these markers 

point to major-effect QTLs (PVE(%) > 10%), they are, due to 
their stability, considered to report reliable trait-associated 
loci. In addition to single stable markers across environ-
ments, overlaying the Manhattan plots resulting from GWAS 
of multiple environments of the same trait allowed us to 
identify broad genetic regions (peaks) made up of clusters 
of markers associated with multiple environments and/or 
measurements of the same trait. Such peak-contributing 
genomic regions were also considered to be highly reliable 
candidates in identifying stable QTLs associated with traits 
(Fig. 2, Supplementary File 5).

For the disease susceptibility traits, 58 marker-trait asso-
ciations were identified, of which 22 were stable across 
environments (chocolate spot: 3/8, rust: 5/15, downy mil-
dew: 14/35). All stable markers had a minor effect on trait 
variation (PVE(%) < 10%). Broader peaks were found for 
susceptibility to rust at Chr1L 609,902,557–635,636,923 
(~ 26 Mbp) and for susceptibility to downy mildew at the 
following genomic locations: Chr2 26,807,439–42,451,531 
(~ 16 Mbp) and 839,256,282–880,296,875 (~ 41 Mbp) 
(Fig. 2A–C, Supplementary File 5). For plant height, 18 
marker-trait associations were significant. Six of the asso-
ciations were stable across environments and individually 
explained up to 10.8% of all trait variance (Fig. 2D). Lodg-
ing gave rise to ten significant associations, four of which 
were stable across environments. All of the markers asso-
ciated with lodging had relatively small effects (Fig. 2E). 
For earliness of flowering, 21 significant associations 
were identified of which 4—located on chromosomes 1S, 
3, and 5—were stable across environments. Additionally, 
a region at chromosome 1S 1,352,951,752–1,362,763,661 
(~ 10 Mbp) seemed to be associated with the trait in mul-
tiple environments (Fig. 2F). A total of 123 (83 unique) 
significant markers were identified for traits related to seed 
size—that is, seed area, seed width, seed length, and TGW 
(Fig. 2G). Interestingly, we identified genomic regions that 
were associated with multiple seed size-related traits and 
were stable across many environments; therefore, these 
can be regarded as highly reliable loci for controlling seed 
size. The most remarkable of these was a 26 Mbp region at 
chromosome 1L (1,049,955,413–1,075,870,570) that con-
sists of 13 significant marker-trait associations and spans 
101 genes. Additional stable regions associated with seed 
size were found at Chr1S 1,318,461–1,347,658,420 (~ 29 
Mbp); Chr3 479,473,217–484,841,073 (~ 5 Mbp), Chr3 
1,012,848,106–1,140,401,114 (~ 128 Mbp), and Chr4 
269,654,967–299,822,811 (~ 30 Mbp) (Fig. 2G).

A panel capturing the global faba bean diversity

To investigate the genetic characteristics of the eight pan-
els, a PCA plot was generated based on the 2678 studied 
accessions (Fig. 3A). Given the high number of accessions, 
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Table 3  Descriptive statistics of 
the GWAS traits

Trait Dyn20 Sej20 Dyn21 Sej21

Susc. to cs
Mean (CV%) 3.6 (72.2) 13.9 (74.1) – –
Range 0.2–15.0 1.0–75.0 – –
Susc. to rust cha
Mean (CV%) – – 2.8 (32.1) 0.2 (300)
Range – – 0–6 0–5
Susc. to rust %
Mean (CV%) 5.1 (72.5) 4.5 (84.4) – –
Range 0.0–20.0 0.0–25.0 – –
Susc. to rust dm cha
Mean (CV%) – – 1.5 (66.7) 1.1 (81.8)
Range – – 0–5 0–5
Susc. to rust dm%
Mean (CV%) 4.5 (68.9)/4.8 (64.6) – – –
Range 0.2–20.0/0.5–25.0 – – –
Herbicide damage
Mean (CV%) – – 0.5 (120) –
Range – – 0–3 –
Branching
Mean (CV%) 1.3 (23.1) – – –
Range 0.4–3.1 – – –
Plant height
Mean (CV%) 96.3 (13.9) 82.2 (12.7) 90.1 (13.3)
Range 55.0–145.0 58.0–130.0 50.0–140.0
Sterile tillers
Mean (CV%) 0.4 (125.0) – – –
Range 0.0–4.1 – – –
Number of ovules
Mean (CV%) 3.3 (15.2) – – –
Range 2.0–5.0 – – –
Lodging
Mean (CV%) 4.3 (41.9) – 1.2 (141.7) 3.8 (50.0)
Range 0–9 – 0–9 0–9
Maturation
Mean (CV%) 136.4 (1.5) – – –
Range 133–151 – – –
Earliness of flowering
Mean (CV%) 71.9 (3.2) 68.6 (4.1) 70.2 (2.8) 63.8 (2.4)
Range 66–77 63–80 67–77 60–70
End of flowering
Mean (CV%) 88.0 (9.4) – – –
Range 77–116 – – –
Duration of flowering
Mean (CV%) 15.2 (26.3) – – –
Range 4–32 – – –
TGW 
Mean (CV%) 554.9 (26.1) 430 (26.7) 491 (21.2) 487.5 (23.1)
Range 238.2–1346.7 86.8–839.4 266.0–900.5 212.0–827.0
Seed area
Mean (CV%) 91.3 (21.1) 74.2 (21.8) 86.1 (19.3) 81.7 (20.8)
Range 46.8–158.5 32.2–124.6 50.2–140.7 40.3–131.8
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the first two PCs explained a noticeable share of the overall 
genetic variance (10.1%). We found that the plot showed a 
clear panel structure. Most obvious was the four-way-cross 
accessions, which formed a tight cluster clearly separated 
from the remaining panels. Additionally, the GWB acces-
sions formed a tight cluster, suggesting relatively large 
genetic differences between winter and spring varieties.

To establish a diversity panel of inbred lines, we removed 
the populations that were outbred (VICCI) or generated from 
a limited number of founders (seven-parent-MAGIC, four-
way-cross, RSBP, GWB). This left us with 787 combined 
accessions from the EUCLEG, NORFAB, and ProFaba 
panels (Fig. 3B). The accessions mixed well in the PCA, 
showing no underlying panel structure. The resulting diver-
sity panel was then filtered for redundancy at a 94% genetic 
identity level. This removed 102 samples and resulted in a 
large diversity panel of 685 non-redundant lines. For all sub-
sequent analyses of the diversity panel, except the nucleotide 
diversity of genetic subpopulations, a 1% MAF filter was 
applied to the genotype data, leaving 21,116 markers.

Passport information for the diversity panel is included in 
Supplementary File 1. The lines have a wide range of geo-
graphic origins representing 52 countries. In addition, they 
exhibit large seed variation, with seeds ranging widely in 
their size, color, and morphology, as exemplified in Fig. 3C. 
The genetic characteristics of the diversity panel were very 
similar to those of the individual EUCLEG, NORFAB, 
and ProFaba panels. The average chromosomal LD decay 
dropped to half of its maximum at 1.0 Mbp and the folded 
site frequency spectrum showed a similar pattern to the 
MAC distributions of EUCLEG, NORFAB, and ProFaba 
(Figs. 1, 3D, E).

Population structure of the diversity panel

ADMIXTURE runs were performed with K ranging from 2 
to 20. After plotting the average CV error as a function of 
K, we found that the local minimum was reached at K = 15, 
but that the relative reduction of the CV error when going 

from K to K + 1 was significantly smaller (less than 1%) after 
K = 4 (Supplementary Fig. 6A, B). With this in mind, and 
for interpretation reasons, we considered the best value of 
K to be between 2 and 4. The optimal number of K was 
chosen as the value where genetic subpopulations reflected 
geographic subpopulations to the highest degree. At K = 3, 
we found a clear correlation between the coarse geographic 
origin of accessions and their ancestral proportions (Fig. 4A, 
B). The correlation was not further resolved by setting K = 4 
(Supplementary Fig. 6C–E). For the geographic groups, 
“North” covers Northern and Central Europe, Canada and 
Russia; “South” includes Southern Europe, South America, 
Africa and Australia; “Middle East” represents the Middle 
East; and “Asia” predominantly covers Central and East 
Asia. Based on membership coefficients, accessions were 
assigned to a subpopulation (SP). A PCA analysis of the 
genotypes separated accessions from different SPs by using 
the first two PCs. PC1 distinguished SP1 from SP2 and SP3, 
whereas PC2 further distinguished SP2 and SP3 (Fig. 4C). 
The three subpopulations were mostly reproduced in a phy-
logenetic analysis. However, SP3 gave rise to two different 
clades—one highly genetic distinct group that consisted 
of the Chinese germplasm (SP3a) and one containing the 
remaining SP3 accessions (SP3b) (Fig. 4G). The split of 
SP3 into SP3a and SP3b was not supported by the PCA 
and Admixture results (Fig. 4C, Supplementary Fig. 6). To 
further characterize the three inferred SPs, we looked at the 
exact distribution of SPs per country represented in the data 
(Fig. 4D–F). Supplementary File 1 includes information on 
geographic origin on 406 of the lines.

SP1 contains 301 accessions. Of these, 178 had a known 
geographic origin, and 75% of those were associated with 
the geographical group “North”. Among the 35 accessions 
associated with the geographical group “South”, 23 were 
French. In addition to France, the most highly represented 
countries/regions of origin in SP1 were Scandinavia (43), 
Finland (24), Germany (18), and Great Britain (12).

SP2 was made up of 304 accessions, of which 161 had 
a known geographic origin. The vast majority (133) was 

Two rows are dedicated to each trait-environment combination. The first row states the phenotypic mean 
followed by a parentheses which contains the coefficient of variation in percentage. The second row reports 
the phenotypic range as given by an interval of the minimum and maximum observed values. cha. Charac-
ter, CV coefficient of variation, cs chocolate spot, dm downy mildew, Dyn20 Dyngby 2020, Dyn21 Dyngby 
2021, Sej20 Sejet 2020, Sej21 Sejet 2021, susc. Susceptibility, TGW  thousand grain weight

Table 3  (continued) Trait Dyn20 Sej20 Dyn21 Sej21

Seed length
Mean (CV%) 12.5 (11.2) 11.5 (11.3) 12.1 (9.9) 11.9 (10.9)
Range 8.8–16.3 7.4–15.2 9.1–15.7 8.2–15.1
Seed width
Mean (CV%) 9.5 (10.5) 8.6 (10.5) 9.2 (9.8) 9.1 (9.9)
Range 6.7–12.9 5.7–11.2 7.1–11.6 6.5–11.8
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associated with the geographical group “South”. Of these 
accessions, 66 originate in Spain, but SP2 also includes most 
South American and African lines, as well as 24 Middle 
Eastern lines.

The smallest subgroup is SP3. It consists of 49 acces-
sions, where the vast majority (46) have a geographic ori-
gin in Central and East Asia, predominantly China (23) and 
Afghanistan (12).

The remaining 31 accessions were considered admixed 
and were therefore not assigned to any population.

Genetic differentiation of subpopulations

The genome-wide genetic differentiation between the three 
subpopulations was quantified by calculating pairwise FST 
values. SP2 was closely related to both SP1 and SP3, show-
ing overall FST values of 0.06 and 0.07, respectively. SP1 
and SP3 showed the highest degree of genetic differentia-
tion with an FST value of 0.12 (Table 5). These results are 
consistent with the ability of the PC1 to completely separate 
accessions assigned to SP1 and SP3 (Fig. 4C). AMOVA 
analysis of the SPs found that 5.5% of the genetic variation 
was due to differences between SPs, while the remaining 
94.5% of the variation was found within SPs (Table 6). To 
examine the amount of genetic diversity contained within 
each SP, we calculated their levels of expected and observed 
heterozygosity and genome-wide nucleotide diversity (π). 
We found that SP3 exhibited a lower level of observed het-
erozygosity (Ho = 0.03), expected heterozygosity (He = 0.26) 
and nucleotide diversity (π = 0.26) than the remaining SPs 
(Table 5). To ensure that the lower genetic diversity in SP3 
was not due to its low sample size as compared to SP1 and 
SP2, we calculated π for 1000 subsets of 49 samples from 
SP1 and SP2 and used those in an FDR-based approach. We 
never observed a π-value as small as SP3 for the subsamples 
of SP1 and SP2 (FDR = 0) (Supplementary Fig. 7).

Candidate loci for population divergence

To explore whether the three geographically and geneti-
cally distinct SPs are under differential selection pressures 
and to identify genetic regions under selection, three dif-
ferent methods for outlier detection were applied (Fig. 5A, 
Supplementary File 6). BayeScan identified a total of 18 
markers with q-values < 0.05, which show a substantial to 
decisive probability (0.89–1.00) of being under diversifying 
selection. The number of outliers detected by the other two 
methods were higher, with pcadapt identifying 339 signifi-
cant outliers (q-value < 0.05) and Ohana finding 1596 SNPs 
with a likelihood ratio ≥ 2. Although the overlap between 
the methods was small, five markers were identified by all 
methods, giving rise to a confident set of markers pointing to 
direct targets of diversifying selection. In total, 35 markers 

were considered outliers by at least two of the three methods 
(Table 7). SNPs with a distance less than the average LD 
decay (1 Mbp) were considered a single genomic region, 
meaning that the analyses identified 30 genomic regions 
under selection, with three of the five high-confidence mark-
ers representing a single genomic region at chromosome 1S 
17,355,793–18,116,022 bp.

To get a better understanding of the characteristics of 
the outlier SNPs, we visualized their segregation between 
subpopulations (Fig. 5B) and quantified the magnitudes 
of their FST signals when subpopulations were compared 
in a pairwise manner (Supplementary Fig. 8). We found 
that the 35 selection markers showed extreme differentia-
tion between subpopulations, as compared to 35 randomly 
chosen markers (Supplementary Fig. 9). The vast majority 
of outlier SNPs, including two of the five high-confidence 
SNPs (AX-416737096 and AX-416745027), were related to 
divergence of SP3 from SP1 and SP2.

With the coarse geographical distinction of the SPs in 
mind, this clearly suggests that these markers could be asso-
ciated with breeding preferences in Central and Eastern Asia 
(Figs. 4, 5B, Supplementary Fig. 8). Interestingly, we found 
that the remaining three (AX-416824401, AX-416760427, 
AX-416791399) of the five high-confidence markers cov-
ering the 760 kbp genetic region at chromosome 1S were 
associated with the differentiation of SP1 from the remain-
ing subpopulations. The FST values of these markers were 
especially large for SP1 versus SP2 when compared to the 
background signal (0.52–0.71), reflecting what could be pat-
terns of selection during breeding in Nordic environments 
(Figs. 5B, 6D). Although SP2 did not show large differentia-
tion from either SP1 or SP3 (Table 5), we found one SNP on 
chromosome 4 (AX-181165197) that clearly separated SP2 
from both remaining SPs (Figs. 5B, 6D).

Candidate traits under selection

To get a better understanding of the selection markers and 
how they have been important in the global selection dur-
ing breeding of faba bean, we investigated their pairwise 
LD in the diversity panel (Fig. 6A). We then compared the 
observed patterns with the pairwise LD in the seven-par-
ent-MAGIC panel (Fig. 6B) where we were able to iden-
tify broad genetic regions associated with traits of interest 
(Fig. 2, Supplementary Fig. 5). As allele frequencies were 
different between the two panels, only 25 out of the 35 selec-
tion markers were included in the analyses. We found that 
all markers showing strong differentiation between northern 
and southern accessions—that is, between SP1 versus SP2 
and SP3 or SP2 versus SP1 and SP3—showed unusual LD 
patterns in the diversity panel (blue boxes, Fig. 6A). This 
group of markers (referred to as ‘LD group 1’) consists of 
the three adjacent high-confidence markers at chromosome 
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1S, which due to their physical proximity are fully linked in 
the seven-parent-MAGIC panel, as well as the four remain-
ing markers, which give rise to long-range LD, since they are 
located on chromosomes 4, 5, and 6 and consequently lose 
their LD in the seven-parent-MAGIC (Fig. 6A, B). In addi-
tion, we found another group of selection markers showing 
long-range LD in the diversity panel (green boxes, Fig. 6A). 
This group, referred to as LD group 2, was associated with 
the differentiation of Asian lines—that is, SP3 versus SP1 
and SP2 (Fig. 5, 6A). After recombination in the seven-
parent-MAGIC panel, the adjacent markers of LD group 2 
showed full LD, whereas long-range LD was broken down.

To investigate possible links between the genomic regions 
under selection and specific traits, we resorted to the seven-
parent-MAGIC panel. For each trait subjected to GWAS in 
the seven-parent-MAGIC panel, we calculated the propor-
tion of phenotypic variance explained by each marker and 
LD groups under selection in the diversity panel (Fig. 6C). 
For comparison, we tested how large a fraction of the trait 
variation could be explained by all 25 selection markers and 
the top 20 most significant GWAS markers. We used top 20 
markers because the 25 selection markers, when consider-
ing LD in the seven-parent-MAGIC population, behave as 
20 markers (Fig. 6B).

Most of the selection markers did not explain a statisti-
cally significant proportion of variance for any of the traits. 
However, four of the selection markers in LD group 1 indi-
vidually explained a proportion of the variance for one or 
more traits. Most remarkable were the three adjacent mark-
ers at chromosome 1S covering a 760 kbp genetic region, 
which explained a statistically significant proportion of 
the phenotypic variance of traits related to seed size, plant 
height, end of flowering, lodging, sterile tillers, and disease 
resistance to downy mildew and chocolate spot (Fig. 6C). 
These markers were among the most differentiated for SP1 
and SP2 (Fig. 6D and Supplementary Fig. 8). The fourth 
marker was located at chromosome 4 and explained a sig-
nificant proportion of variance for seed length (Fig. 6C). 
Expanding the single markers to the entire LD group 1, sig-
nificant variance was also explained for: susceptibility to rust 
and several additional traits related to seed size traits. All 
traits that could be explained by selection markers were bet-
ter explained by top GWAS markers that generally explained 
a large proportion of the overall trait variance. An exception 

to this is susceptibility to rust, where top GWAS markers did 
not explain a significant part of the trait variation, while LD 
group 1 markers did (Fig. 6C).

To better disentangle the traits significantly explained by 
the selection markers associated with SP1 versus SP2 dif-
ferentiation (LD group 1), we looked at correlations between 
genetic values of the traits (as used in GWAS) (Supplemen-
tary Fig. 10, Supplementary File 7). Traits related to seed 
size were correlated with the following four types of traits 
that showed no correlations with each other: end of flower-
ing (negative), susceptibility to rust (negative), sterile tillers 
(positive), and lodging (positive). Additionally, susceptibil-
ity to chocolate spot had a positive correlation with sterile 
tillers and lodging. Plant height and susceptibility to downy 
mildew show no correlation with any of the other meas-
ured traits (Supplementary Fig. 10, Supplementary File 7). 
From the results, it seems likely that multiple traits might 
have been co-selected during breeding for different market 
types or environments. This was further supported by the 
geographically distinct SPs having different proportions of 
allele frequencies for the 65 stable QTLs MTAs identified 
in GWAS (Supplementary File 5, Supplementary Fig. 11).

Discussion

Characterization of individual panels

Using 21,345 genome-wide high-quality SNPs, we per-
formed genetic analyses on a large collection of faba bean 
germplasm. Our results revealed genetic diversity reflecting 
the underlying panel structure. Most strikingly, GWB, a pop-
ulation derived from 11 winter-type founders, was clearly 
genetically distinguishable from the remaining panels. As 
the remaining panels predominantly consisted of spring-type 
germplasms, this suggests that winter-type and spring-type 
cultivars are highly genetically distinct. A similar distinc-
tion between winter and spring-types has been described in 
Chinese germplasm (Zong et al. 2009; Wang et al. 2012).

The site frequency spectrum of the diversity panels 
revealed a relatively uniform distribution with a slight 
overrepresentation of markers with intermediate allele fre-
quencies (~ 0.1–0.3). This pattern is expected because of 
the ascertainment bias of the Axiom SNP array, which is 
caused by using only 12 individuals for SNP discovery, with 
preference given to alleles of intermediate frequency with a 
high polymorphism information content (Albrechtsen et al. 
2010).

The nucleotide diversity of the individual panels ranged 
from 0.26 to 0.32. As expected, the lowest genetic diver-
sity was found for populations established from a limited 
number of founders, with the four-way-cross being the most 
extreme. The highest nucleotide diversities were found for 

Fig. 2  Manhattan plots of selected GWAS results in the 7-Parent-
MAGIC panel. A–C Disease susceptibility to chocolate spot (A), rust 
(B), and downy mildew (C). D Plant height. E Lodging. F Earliness 
of flowering. G Seed size traits, i.e., thousand grain weight, seed area, 
seed width, and seed length. The dashed horizontal line indicates 
the SimpleM-corrected threshold for significance. The dashed verti-
cal lines display broad genetic regions (peaks) made up of relatively 
close markers associated with multiple environments and/or measure-
ments of the same trait

◂
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Table 4  Stable genome-wide significant markers

Trait SNP ID Chromosome Position P value Phenotypic vari-
ance explained 
(%)

Susceptibility to chocolate spot AX-416788629 1S 1,126,488,632 1.10E−06 2.4
AX-181482207 1S 189,966,542 1.89E−06 1.4
AX-416797900 5 512,151,958 2.63E−06 0.5

Susceptibility to rust cha AX-416816373 1L 609,902,557 2.84E−09 0.3
AX-181482848 2 623,662,818 1.15E−07 1.5
AX-416763140 2 890,099,195 3.73E−07 0.3
AX-416742669 3 23,188,621 1.63E−07 0.1
AX-181153730 3 266,769,997 1.62E−07 0.2

Susceptibility to downy mildew cha AX-416819177 1L 1,030,914,144 7.63E−07 4.4
AX-181159680 1L 1,502,215,608 2.67E−06 2.8
AX-416747244 2 42,451,531 4.52E−19 1.0
AX-416820991 2 1,683,844,226 1.05E−05 7.3
AX-416728514 4 1,527,172,136 8.96E−08 2.9
AX-181460581 5 1,255,992,674 7.70E−08 3.2
AX-181193226 6 560,591,980 6.32E−06 1.2

Susceptibility to downy mildew % AX-181484321 1S 64,917,771 7.51E−11 2.8
AX-181463708 1L 1,703,280,330 1.98E−06 6.3
AX-416817171 2 26,807,439 3.26E−06 0.9
AX-181189191 2 880,296,875 3.79E−10 5.1
AX-181191536 3 1,387,296,802 6.13E−07 6.5
AX-416735217 5 602,985,248 4.01E−07 7.6
AX-181175083 6 1,399,261,027 6.30E−07 1.0

Plant height AX-416796020 1S 23,533,826 1.94E−08 10.8
AX-181446054 1L 1,404,134,788 2.90E−08 6.0
AX-181187562 2 441,935,150 7.67E−07 2.2
AX-416787239 5 605,128,659 3.09E−08 2.1
AX-416813291 5 801,083,781 7.66E−06 6.0
AX-416777072 6 163,296,259 2.12E−08 0.2

Lodging AX-416775708 1S 455,314,558 9.75E−06 2.4
AX-181197227 2 480,659,904 2.81E−06 0.1
AX-416757116 5 13,131,678 1.07E−07 1.2
AX-416803185 5 162,933,615 7.75E−06 4.4

Earliness of flowering AX-416722153 1S 922,704,193 6.56E−07 6.1
AX-416722950 3 235,822,590 6.19E−07 0.1
AX-416824308 3 1,567,679,832 1.24E−09 1.0
AX-181153171 5 91,387,301 3.27E−08 1.0

TGW AX-416754977 1S 1,016,983,171 3.51E−06 11.0
AX-416726585 1L 1,060,752,872 9.51E−14 2.9
AX-181462618 2 452,735,554 5.21E−06 16.7
AX-181483910 4 1,216,173,552 1.61E−06 9.1
AX-416747467 5 782,853,817 1.22E−06 1.0
AX-416811554 6 1,348,503,534 8.30E−06 0.0
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the diversity panels (π = 0.32) and the outbreeding popula-
tion (VICCI, π = 0.30). The nucleotide diversity in the com-
bined diversity panel (n = 685) was 0.31. These values are 
similar to those reported using SNP data in inbred panels of 
maize, where values between 0.27 and 0.39 have been esti-
mated (Hamblin et al. 2007; Lu et al. 2009; Van Inghelandt 
et al. 2010; Yang et al. 2011; Bouchet et al. 2013; Shu et al. 
2021). The highest genetic diversity (0.39) stems from a 
population of 527 inbred maize lines with very broad origins 
(Yang et al. 2011).

Mapping of agronomic traits

Few studies have been performed to identify QTLs of 
agronomically important traits in faba bean (Khazaei et al. 
2021). Although a couple of recent studies have performed 
GWAS on unrelated and diverse faba bean germplasm 
(Maalouf et al. 2022; Abou-Khater et al. 2022), most of 
the published studies have relied on biparental popula-
tions, limiting the amount of genetic variation studied as 
compared to a MAGIC population. Here, we use GWAS to 

identify 238 significant marker-trait associations linked to 
12 agronomic important traits. Of these marker-trait asso-
ciations, 65 (27%) were stable across multiple environ-
ments, pointing to high-confidence candidate regions for 
harboring genes associated with plant height, stem lodg-
ing, earliness of flowering, seed size, and resistance to 
chocolate spot, downy mildew, and rust. Furthermore, all 
traits scored in multiple environments gave rise to stable 
QTLs. Among these we found major QTLs (PVE > 10%) 
for TGW (11.0–16.8%), seed width (13.0–21.8%), seed 
length (16.4–19.2%), seed area (13.5–14.3%), and plant 
height (10.8%). As these QTLs have major effects and 
are associated with 3–4 different Danish environments, 
they provide valuable information for future breeding 
programs.

Especially striking is the tall peak identified at chromo-
some 1L position 1,049,955,413–1,075,870,570 bp, which 
consists of markers significantly associated with multiple 
traits related to seed size (TGW, area, length, width) scored 
in multiple environments. Markers here explained between 
0.1 and 15.8% of phenotypic variation.

cha. character, TGW  thousand grain weight

Table 4  (continued)

Trait SNP ID Chromosome Position P value Phenotypic vari-
ance explained 
(%)

Seed area AX-181481959 1S 1,318,697,535 3.95E−07 13.5

AX-416722749 1L 1,014,586,839 7.14E−06 0.1

AX-181487107 1L 1,439,666,414 1.43E−06 8.3

AX-181193698 3 484,841,073 5.76E−09 4.7

AX-181487700 4 299,822,811 8.65E−08 2.8

AX-181483910 4 1,216,173,552 1.33E−05 14.2

AX-181182248 4 1,281,997,173 5.24E−07 2.1
Seed length AX-416754977 1S 1,016,983,171 4.31E−10 6.0

AX-181194033 1L 1,001,211,223 6.24E−09 2.3
AX-416780606 1L 1,075,870,570 6.01E−10 0.8
AX-181178807 3 479,477,926 1.69E−06 19.2
AX-181487700 4 299,822,811 5.29E−13 3.2
AX-416747267 4 1,177,761,830 8.92E−07 16.5
AX-416789448 4 1,526,450,873 9.10E−06 6.5

Seed width AX-181481959 1S 1,318,697,535 1.66E−06 18.8
AX-181170911 1L 1,049,955,413 4.59E−07 0.2
AX-181487107 1L 1,439,666,414 8.50E−07 21.8
AX-416796690 2 1,056,170,084 1.70E−08 3.8
AX-181193698 3 484,841,073 1.81E−06 2.9
AX-181487700 4 299,822,811 5.44E−09 2.8
AX-416814129 4 444,381,662 4.97E−07 13.0
AX-181483910 4 1,216,173,552 3.32E−06 0.4
AX-181182248 4 1,281,997,173 9.84E−09 1.3
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Fig. 3  Characterization of the diversity panel. A, B The genetic struc-
ture of the data, as indicated by the first and second principal compo-
nents and color-coded by panel membership A All panels, n = 2678. 
B The inbred EUCLEG, ProFaba, and NORFAB diversity panels, 
n = 787. C An image-based representation of the large phenotypic 
variation of seeds in the diversity panel. I) GPID_00080, II) EUC_
VF_131, III) GPID_00162, IV) GPID_00176, V) GPID_00163, 
VI) GPID_00119, VII) GPID_00004), VIII) EUC_VF_272, IX) 

GPID_00042. D LD decay plot for the diversity panel. Y-axis dis-
plays the average squared correlation coefficient (R2) between mark-
ers when sorted after the average distance and binned into groups of 
1000. For each bin, the x-axis displays the average distance in Mbp 
between two SNPs. The green line is the fitted loess curve with half 
its maximum R2 indicated by the dotted line. E Folded site-frequency 
spectrum of non-monomorphic SNPs in the diversity panel. The 
x-axis reports the minor allele counts (color figure online)
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Earlier studies have identified several stable QTLs asso-
ciated with seed size on chromosomes 2, 4, 5, and 6 in 
faba bean (Khazaei et al. 2014; Ávila et al. 2017). Here, 
we found traits related to seed size to be highly polygenic 
with stable signals on all chromosomes. We checked the 
location of the seed weight QTLs on chromosomes 2 and 
4 reported in Khazaei et al. (2014) against our QTLs for 
yield component traits (seed area, seed width, seed length, 
TGW) and found seed width (Sej21), seed area (Sej20) 
and TGW (Sej20) to be within the region defined by their 
flanking markers on chromosome 2 (Vf_Mt3g070310_001 
and Vf_Mt3g065190_001). The TGW (Dyn21), seed 
length (Sej21) and seed width (Sej21) QTLs were within 
the region defined by their flanking markers on chromo-
some 4 (CNGC4 and Vf_Mt7g038120_001) (Supplemen-
tary Fig. 12).

Plant height is another important trait related to faba bean 
yield. Previous studies have performed QTL mapping of 
plant height but have not identified any stable QTLs across 
environments (Ávila 2017). In this study, we detected six 
QTLs that were stable across three Danish environments 
for plant height. The stable markers individually explained 
between 0.2 and 10.8% of phenotypic variation.

None of our stable flowering-related QTLs were esti-
mated to explain a large proportion (> 10%) of the trait 
variation. On the contrary, our findings suggest a relatively 
polygenic nature of flowering, with multiple QTLs specific 
to environments. A major stable flowering time QTL was 
previously found on chromosome 5 (Cruz-Izquierdo et al. 
2012; Catt et al. 2017). Interestingly, the region did not only 
have a large effect on the trait but is also highly conserved in 
multiple legumes, including Lotus japonicus (Gondo et al. 
2007), Medicago truncatula (Pierre et al. 2008), chickpea 
(Cobos et al. 2009), narrow-leafed lupin (Nelson et al. 2006), 
and alfalfa (Robins et al. 2007). The region on chromosome 
5 from approximately 489 Mb to 602 Mb (comprising 244 
genes) contains four of the peak markers identified for 
flowering time in this study, the QTL for flowering time 
identified from a bi-parental cross by Catt et al. 2017, as 
well as the peak markers identified in Cruz-Izquierdo et al. 
(2012) and Aguilar-Benitez et al. (2021). The region is syn-
tenic to the region of Medicago truncatula chromosome 
7 that harbors five flowering time genes and the spring1 
locus (Yeoh et al. 2013; Supplementary Fig. 13). Inspecting 
protein alignments between Medicago truncatula and faba 
bean, we found three (MtFTa1, MtFTa2, MtFTc) of the five 
flowering time genes in the identified region of Medicago 
truncatula chromosome 7 to have putative orthologs in the 
corresponding region on faba bean chromosome 5 (Supple-
mentary Fig. 13).

Stable QTLs for number of ovules and branching (number 
of branches with flower) has previously been reported on 
chromosomes 3 and 6, respectively (Ávila et al. 2017), but 

here we report no QTLs related to these traits. This could 
indicate a high genetic complexity of these traits.

One of the main threats for the global production of faba 
bean is foliar diseases such as rust (caused by Uromyces 
viciae-fabae), chocolate spot (caused by Botrytis fabae), 
and downy mildew (caused by Peronospora viciae). Due to 
environmental and economic reasons, breeding for disease 
resistance is preferred over treating crops with fungicides 
(Stoddard et al. 2010). Still, the genetic basis of faba bean 
disease resistance is to a large extent unknown.

Here, we identified several genomic regions associated 
with resistance toward all three fungal diseases. We espe-
cially obtained many stable marker-trait associations (14) 
for downy mildew, where we found very strong peaks on 
chromosome 2, at positions 26,807,439–42,451,531 bp and 
839,256,282–880,296,875. This is of great interest, as no 
QTLs for this trait have, to our knowledge, yet been pub-
lished for faba bean. Similar to recent studies, we found that 
chromosome 1 harbors QTLs associated with resistance to 
chocolate spot (Gela et al. 2022). For rust resistance, we 
found five stable markers located at chromosomes 1L, 2, 
and 3. Two genes associated with rust resistance in faba 
bean, Uvf2 and Uvf3, have successfully been identified and 
mapped to chromosomes 3 and 5, respectively, using KASP 
markers (Ijaz et al. 2021). By mapping the KASP markers 
to our reference genome, we did not observe any overlap 
between the genetic regions associated with Uvf2 and Uvf3 
and our peaks for rust resistance. This is most likely due to 
differences in experimental designs and genetic material.

Although we detected many high-confidence QTLs asso-
ciated with key agronomic traits, the low resolution in the 
seven-parent-MAGIC population complicates the search for 
underlying candidate genes. As compared to the diversity 
panels, where almost no LD were detected between neigh-
boring SNPs, larger LD blocks were observed for the seven-
parent-MAGIC population. For this reason, the GWAS is 
expected to cover close to all genome-wide QTLs. However, 
this is accompanied by a poor mapping resolution when it 
comes to identifying genes associated with traits of interest. 
As the average genome-wide distance between annotated 
genes is 307,734 bp and the LD-decay in the population 
is ~ 68 Mbp, each marker-trait association is expected to 
report a region representing hundreds of genes. With this in 
mind, the presented GWAS results are useful in associating 
traits with mapped but relatively broad underlying genetic 
regions. For this reason, we suggest that future studies take 
advantage of the diversity panel for fine-mapping of the 
QTLs.

Faba bean diversity and genetic differentiation

With a long history of cultivation and widespread adap-
tation, faba bean provides excellent material for studying 
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global genetic diversity. In order to understand the genetic 
differentiation related to different geographic regions, we 
established a diversity panel using genetically non-redun-
dant accessions from the described EUCLEG, NORFAB and 
ProFaba panels. In the process we removed 102 lines that 
we found to be genetically redundant (GI ≥ 94%). Although 
some accessions were present in duplicates because of 
their inclusion in more than one of the initial project-based 
diversity panels, many were also found to be genetically 
redundant within these panels. In general, earlier studies 
have reported that germplasm collections both within and 
between genebanks suffer from the presence of genetically 
redundant lines, which do not contribute to genetic diver-
sity and complicates the genetic analyses (Song et al. 2015; 
Milner et al. 2019).

We divided the diversity panels into three subpopulations 
with different coarse geographic origins: SP1, consisting of 
germplasm originating mostly from Northern and Central 
Europe but also including all Canadian lines; SP2, which 
mostly consists of Spanish germplasm but also includes 
African, South American, and Middle Eastern varieties; and 
SP3, which has a narrower geographic origin, mostly con-
sisting of Central and East countries of Asia, predominantly 
China and Afghanistan.

Consistent with previous studies, our analyses revealed 
that the genetic diversity of faba beans was highly associ-
ated with geographical origin (Kaur et al. 2014b; Wang 
et al. 2012; Zong et al. 2010; El-Esawi 2017). Outcomes 
of our PCA and FST studies identified the northern acces-
sions (SP1) and Central and East Asian accessions (SP3) as 

genetically distinct subpopulations with southern accessions 
(SP2) located in between. This is also demonstrated by very 
few accessions showing a high degree of admixture between 
SP1 and SP3 and close to no geographical overlap between 
SP1 and SP3. Geographically, our findings fit well with the 
proposed routes of migration for faba bean cultivation, sug-
gesting that different routes radiated from the Middle East 
(SP2). One progressed eastwards to Asia (SP3), whereas two 
different routes are proposed for the European cultivation—
One toward the Iberian Peninsula (SP2) via the Mediterra-
nean coast of Africa, and a second toward Northern Europe 
(SP1) via the Mediterranean regions of Southern Europe 
(SP2) (Cubero 1974).

Consistent with our findings, previous studies have 
reported that Asian, or specifically Chinese, germplasm is 
highly distinct from other germplasm (Kaur et al. 2014b; 
Wang et al. 2012; Zeid et al. 2003). Our findings agree with 
those of Zeid et al. (2003), who reported a close genetic 
relationship between Northern African lines and South 
European lines, which support the observed grouping of 
African and Southern European lines in SP2. Furthermore, 
Zong et al. (2010) reported genetic support of a subdivision 
of European lines into those originating from Spain versus 
those from Northern Europe. Other studies, however, have 
found that germplasm from both Southern and Northern 
Europe cluster together and are genetically distinct to the 
group formed by Asian and African germplasm (Göl et al. 
2017).

The level of genetic diversity was lowest for SP3, which 
includes most of the Central and East Asian accessions. This 
is in contrast to the findings published by Zong et al. (2009), 
where Asian lines (excluding Chinese) showed higher 

Fig. 4  Population structure and subpopulations of the diversity panel. 
A, B ADMIXTURE plots at K = 3. Each vertical bar represents a 
single accession colored by its ancestry proportions. Accessions are 
grouped according to their subpopulation membership (A) or by their 
geographic origin (B). C Principal component analysis (PCA) based 
on genotypes. The ADMIXTURE subpopulations at K = 3 are rep-
resented by colors and geographic origin is represented by shapes. 
The distinction of the two phylogenetic groups of SP3 is indicated 
by filled (SP3a) or open points (SP3b). D–F Geographical origins of 
accessions belonging to SP1 (D), SP2 (E), and SP3 (F). Countries are 
colored by the number of SP accessions originating from the given 
country, as indicated by the scale at the bottom. For simplicity, eight 
lines with a geographic origin in ‘Scandinavia’ are plotted in Sweden. 
G A neighbor-joining tree of the accessions. The tips are colored by 
the subpopulation memberships of accessions (color figure online)

◂

Table 5  FST analysis, nucleotide 
diversity and heterozygosity of 
subpopulations

Ho observed heterozygosity, He expected heterozygosity

FST π (nucleotide diver-
sity)

Ho He

SP1 SP2 SP3

SP1 – – – 0.31 0.09 0.31
SP2 0.06 – – 0.31 0.16 0.31
SP3 0.12 0.07 – 0.26 0.03 0.26

Table 6  AMOVA analysis

df degrees of freedom, SSD sum of squared deviation, MSD mean 
squared deviation

Source of variation df SSD MSD Percentage 
of variation

Among populations 2 482,764.7 241,382.4 5.5
Within populations 651 8,367,111.2 12,852.7 94.5
Total 653 8,849,875.9 13,552.6 100.0



 Theoretical and Applied Genetics (2023) 136:114

1 3

114 Page 20 of 27



Theoretical and Applied Genetics (2023) 136:114 

1 3

Page 21 of 27 114

genetic diversity than either the African or European lines. 
As our findings did not seem to be a direct consequence 
of the low sample size of SP3 (n = 49), we speculate that 
it might be a consequence of SP3 mostly originating from 
two countries (China and Afghanistan), thereby representing 
what might be expected to be a low effective population size 
compared to the remaining subpopulations.

AMOVA results revealed a higher genetic diversity within 
than between the three subpopulations. This is in agreement 
with what has earlier been found for faba bean (Göl et al. 

Fig. 5  Markers under selection. A UpSet plot of methods used for 
outlier detection, showing the overlapping results of BayeScan, 
Ohana, and pcadapt. B Segregation of markers under selection. Each 
horizontal plot shows the segregation pattern of one of the 35 SNPs 
that shows evidence of selection. Markers are ordered according to 
genomic position. Each vertical line represents an accession and is 
colored by genotype for a specific marker. Genotype coloring scheme 
is as follows: green, reference homozygote; pink, heterozygote; blue, 
alternative homozygote. The five high-confidence markers identified 
by all outlier detection methods are marked by red asterisks (color 
figure online)

◂

Table 7  Markers under selection

a  Annotation of closest gene if the marker is intergenic

SNP and genetic information Rank

Marker Chr Pos MAF Gene  annotationa pcadapt Ohana BayeScan

AX-416824401 Chr1S 17,355,793 0.34 Protein NRT1 PTR FAMILY 261 36 8
AX-416760427 Chr1S 17,684,368 0.45 Transaldolase/Fructose-6-phosphate aldolase 120 540 3
AX-416791399 Chr1S 18,116,022 0.45 Peptidyl-prolyl cis–trans isomerase 32 559 1
AX-416723873 Chr1S 244,272,085 0.19 Alpha-L-fucosidase 147 775 79
AX-416737096 Chr1S 245,221,411 0.24 Transcription factor 241 153 18
AX-416776470 Chr1S 1,189,800,874 0.18 Chaperone protein 134 1453 249
AX-181492359 Chr1S 1,375,226,525 0.18 Ubiquitin carboxyl-terminal hydrolase 140 1124 196
AX-416745027 Chr1S 1,376,463,514 0.18 Tobamovirus multiplication protein 38 919 4
AX-416819371 Chr1S 1,470,291,451 0.19 Receptor-like cytosolic serine threonine-protein kinase 326 992 3740
AX-416741889 Chr1L 1,210,905,827 0.16 Multiple C2 and transmembrane domain-containing protein 1 179 20,357 15
AX-181188041 Chr1L 1,727,444,242 0.20 SNF2 family N-terminal domain 108 709 1541
AX-181482613 Chr1L 1,727,749,638 0.18 SNF2 family N-terminal domain 76 1153 8595
AX-416771656 Chr1L 1,727,750,681 0.18 Glucose-induced degradation protein 8 homolog 78 1137 5621
AX-416765862 Chr1L 1,747,192,973 0.19 Sphingolipid transporter spinster homologue 166 871 6059
AX-181440418 Chr1L 1,801,916,585 0.29 Ras-related protein 176 159 5020
AX-181487950 Chr2 228,005,888 0.21 No annotation 131 456 15,934
AX-181175939 Chr2 1,160,381,636 0.21 ATPase B chain family 234 522 18,858
AX-181486832 Chr2 1,511,910,898 0.21 Involved in mitochondrial genome maintenance 302 797 2867
AX-181194098 Chr3 1,465,379,679 0.31 Pentatricopeptide repeat-containing protein 211 1039 16,108
AX-416747475 Chr3 1,549,101,456 0.18 phosphatidylglycerol acyl-chain remodeling 328 1541 9514
AX-416778737 Chr4 203,422,818 0.21 Brefeldin A-inhibited guanine nucleotide-exchange protein 254 429 7697
AX-416724016 Chr4 218,146,604 0.46 GPI mannosyltransferase 285 441 11,366
AX-416761735 Chr4 349,618,738 0.22 TIFY 10B-like 174 232 12,567
AX-181496895 Chr4 370,017,390 0.21 Protein of unknown function (DUF1296) 297 442 1259
AX-416722420 Chr4 889,829,096 0.21 Telomere repeat-binding factor 251 1423 10,805
AX-181165197 Chr4 1,086,134,085 0.49 Aldehyde dehydrogenase family 307 536 20,320
AX-416775196 Chr4 1,241,304,815 0.24 Ubiquitin carboxyl-terminal hydrolase 259 114 9265
AX-416783057 Chr5 448,641,887 0.44 Pentatricopeptide repeat-containing protein 191 590 9273
AX-416763147 Chr5 939,720,483 0.19 Nuclear transcription factor Y subunit 249 839 11,704
AX-416779502 Chr5 1,140,044,946 0.29 Pectinesterase 291 10 16,148
AX-416767699 Chr6 219,883,438 0.18 E3 SUMO-protein ligase 198 1558 19,473
AX-181158030 Chr6 265,567,017 0.27 Copper transporter 336 1283 9116
AX-181497981 Chr6 620,182,068 0.50 Zinc-RING finger domain 151 740 15,494
AX-416738786 Chr6 1,033,478,650 0.21 Cytochrome c biogenesis protein 220 1191 20,040
AX-181155942 Chr6 1,300,142,339 0.26 Ribosomal protein S1-like RNA-binding domain 288 43 8995
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2017; Wang et al. 2012; Oliveira et al. 2016). In our find-
ings, the low degree of genetic variability observed between 
subpopulations is most likely both a result of overlapping 
geographical regions of SP2 and the remaining SPs, as well 
as an indication of global exchange of germplasm. The high 
degree of within-population variability is most likely due 
to the reproductive nature of faba bean, which is partially 
outcrossing (Göl et al. 2017; Brünjes and Link 2021).

Signatures of selection

Of the total markers, 35 (0.2%) were identified to be under 
selection by at least two of the three outlier detection 
methods. In general, there was low agreement between 
the results of the different methods, most likely due to 
the different assumptions and estimation methods of the 
models. This helped us limit the selection signatures to a 
few highly confident markers that show strong differentia-
tion between the different subpopulations. Most (26) of 
these markers were associated with differentiation of SP3 
from SP1 and SP2, whereas only 6 markers (from four 
genetic regions) were associated with SP1 differentiation 

from SP2 and SP3. This further supports the differentia-
tion of northern (SP1) and asian germplasm (SP3), with 
the southern germplasm (SP2) being located somewhere in 
between. Especially interesting were five selection markers 
that were identified by all three methods. These markers, 
representing three regions at chromosome 1S (approxi-
mately at 17.4–18.1 Mbp, 245.2 Mbp, and 1376.5 Mbp), 
show very strong selection signatures and have very likely 
played an important role in the geographical differentiation 
of faba bean.

To couple the selection signatures with their associ-
ated traits, we took advantage of the seven-parent-MAGIC 
panel, where we tested the amount of trait variance that 
markers under selections could explain compared to ran-
dom markers. Interestingly, we mainly found selection 
markers associated with the differentiation of northern 
(SP1) versus southern (SP2) germplasm to explain a sig-
nificant proportion of trait variances. With a key influence 
of the strongly differentiated region at chromosome 1S 
position 17.4–18.1 Mbp, the selection signatures of north-
ern and southern accessions explained variance related 
to disease resistance, end of flowering, seed size, plant 
height, and lodging. This is in line with studies of selec-
tion in other domesticated crops such as chickpea (Varsh-
ney et al. 2019), soybean (Saleem et al. 2021), and maize 
(Bouchet et al. 2013), which found that genes underlying 
selection signatures are often associated with flowering or 
disease resistance.

Our results indicate that one or more of these traits 
could have played a role in selection for different market 
types or climatic conditions. Because of the large extent of 
LD in the seven-parent-MAGIC panel, however, we are not 
able to pinpoint specific causal trait(s) at this stage. With 
comprehensive phenotyping, the better mapping resolution 
of the diversity panel could help to clarify this question 
in future studies.

Conclusions

This study provides valuable insights into the genetic diver-
sity, geographical differentiation and the underlying genomic 
regions of key agronomic traits in faba bean. Genome-wide 
association studies in a MAGIC population provided high-
confidence candidate genomic regions associated with seed 
size, flowering time, plant height, lodging and disease resist-
ance to downy mildew, rust and chocolate spot. Our identi-
fied QTLs confirmed both previous studies and provided 
novel QTLs for key agronomic traits in faba bean. However, 
the extent of LD in the MAGIC population complicated can-
didate gene discovery.

Genetic analysis of a large sample of global faba bean 
germplasm allowed establishment of a non-redundant faba 

Fig. 6  Trait variance explained by markers under selection. A, B 
Heatmap of LD between selection markers in the diversity panel (A) 
or the seven-parent-MAGIC panel (B). Markers (numerical code) 
are ordered according to positions in the genome. C Proportion of 
variance explained (PVE) by selection markers for all traits. PVE is 
calculated by all selection markers individually (the large panel), all 
selection markers collectively (fourth column from left), top 20 most 
significant GWAS markers (first column from left), all markers of LD 
group 2 (second column from left), and all markers of LD group 1 
(third column from left). At the top of the heatmap, markers are anno-
tated by which chromosome they are located on and which SPs they 
differentiate: purple, differentiation of SP1 from SP2 and SP3; yel-
low, differentiation of SP2 from SP1 and SP3; teal, differentiation of 
SP3 from SP1 and SP2; grey, differentiation of SP2 from SP3. Sig-
nificance of PVE explained by different methods is calculated using 
an FDR-approach, where the fraction of times an obtained PVE-
value was larger than what we would get from 1000 rounds of one 
random selected marker or different size-appropriate groups of ran-
dom markers. **0.005 < FDR < 0.01; ***FDR < 0.005. D Genome-
wide distribution of FST values for SP1 versus SP2. The FST values 
of each SNP throughout a chromosome are displayed as grey dots. 
The green dots report the 35 SNPs under selection identified in the 
outlier scans. The numbers next to the green dots serve as a marker 
code. Selection markers in panel A–D are denoted by a numeri-
cal code: 1: AX-416824401, 2: AX-416760427, 3: AX-416791399, 
4: AX-416723873, 5: AX-416737096, 6: AX-416776470, 7: 
AX-181492359, 8: AX-416745027, 9: AX-416819371, 10: 
AX-416741889, 11: AX-181188041, 12: AX-181482613, 13: 
AX-416771656, 14: AX-416765862, 15: AX-181440418, 16: 
AX-181487950, 17: AX-181175939, 18: AX-181486832, 19: 
AX-181194098, 20: AX-416747475, 21: AX-416778737, 22: 
AX-416724016, 23: AX-416761735, 24: AX-181496895, 25: 
AX-416722420, 26: AX-181165197, 27: AX-416775196, 28: 
AX-416783057, 29: AX-416763147, 30: AX-416779502, 31: 
AX-416767699, 32: AX-181158030, 33: AX-181497981, 34: 
AX-416738786, 35: AX-181155942. Markers in LD group 1 are 
highlighted in blue (color figure online)

◂
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bean diversity panel representing 52 countries. Accessions 
in the diversity panel could be divided into three subpopu-
lations, which showed clear genetic divergence related to 
their geographical origin. The largest genetic differentia-
tion was observed between SP1, which mostly consisted of 
Northern European accessions, and SP3 comprising lines 
from Central and East Asia, predominantly China. The lat-
ter also showed lower genetic diversity than the remaining 
subpopulations. In addition to its role in describing global 
diversity in faba bean, the diversity panel constitutes a 
valuable resource for future breeding and high-resolution 
gene mapping, including candidate gene discovery for the 
wide genomic regions covered by the QTLs identified in the 
MAGIC population.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00122- 023- 04360-8.
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