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Abstract
Key message Qwdv.ifa-6A on chromosomes 6AL and Qwdv.ifa-1B on chromosome 1B are highly effective against 
wheat dwarf virus and act additively when combined.
Abstract Wheat dwarf virus (WDV) is among the most damaging viral pathogens. Its prevalence has increased substantially 
in recent years, and it is predicted to increase even further due to global warming. There are limited options to control the 
virus. Growing resistant cultivars would safeguard crops, but most current wheat cultivars are highly susceptible. Thus, the 
aim of this study was to dissect the genetic architecture of WDV resistance in resistant germplasm and to identify quantita-
tive trait loci (QTL) to support resistance breeding. QTL mapping was conducted using four related populations comprising 
168, 105, 99 and 130 recombinant inbred lines. Populations were evaluated under field conditions for three years. Natural 
infestation was provoked by early autumn sowing. WDV symptom severity was visually assessed at two time points in spring. 
QTL analysis revealed two highly significant QTL with the major QTL Qwdv.ifa-6A mapping to the long arm of chromo-
some 6A between markers Tdurum_contig75700_411 (601,412,152 bp) and AX-95197581 (605,868,853 bp). Qwdv.ifa-6A 
descends from the Dutch experimental line SVP-72017 and was of high effect in all populations, explaining up to 73.9% of 
the phenotypic variance. The second QTL, Qwdv.ifa-1B, mapped to chromosome 1B and is putatively associated with the 
1RS.1BL translocation, which was contributed by the CIMMYT line CM-82036. Qwdv.ifa-1B explained up to 15.8% of 
the phenotypic variance. Qwdv.ifa-6A and Qwdv.ifa-1B are among the first identified highly effective resistance QTL and 
represent valuable resources for improving WDV resistance in wheat.

Introduction

Wheat dwarf virus (WDV) disease was first documented 
in Europe in the former Czechoslovakia during the 1960s 
(Vacke 1961) but may have been the cause of severe damage 
in wheat in Sweden as early as 1912 (Lindsten and Lind-
sten 1999). After the 1960s wheat dwarf (WD) became a 
problematic disease in many European countries (Mish-
chenko et al. 2022; Schubert et al. 2014; Trzmiel 2020) and 
was also reported in the Middle-East (Köklü et al. 2007), 

Iran (Behjatnia et al. 2011; Parizipour et al. 2017), Africa 
(Kapooria and Ndunguru 2004), Western-Asia (Ekzayez 
et al. 2011) and Asia (Xie et al. 2007). Infection with WDV 
manifests in dwarfism of varying degrees, reduced winter 
hardiness, streaky to blotchy lightening or yellowing of 
leaves and reduced or no heading. WDV may even lead to 
premature plant death and drastic yield losses (Lindblad and 
Waern 2002; Lindsten and Lindsten 1999; Vacke 1961).

WDV is a DNA virus species of the genus Mastrevirus 
belonging to the family Geminiviridae (Fauquet and Stanley 
2003). The virus uses the leafhopper Psammotettix alienus 
(Homoptera: Cicadellidae) as its vector (Lindsten and Lind-
sten 1999; Vacke 1961). WDV is transmitted to its host in 
a persistent-circulative non-propagative manner (Lindblad 
and Sigvald 2004) meaning that the virus has a short, latent 
period, and the leafhoppers remain infectious throughout 
their lifetime, the virus does not multiply within the insect 
and cannot be passed on to offspring (Nault 1997). Hence, 
new populations of virus-bearing leafhoppers will be gener-
ated every spring by nymphs feeding on infected host plants. 

Communicated by Lingrang Kong.

Maria Buerstmayr and Hermann Buerstmayr have contributed 
equally to this work.

 * Hermann Buerstmayr 
 hermann.buerstmayr@boku.ac.at

1 Institute of Biotechnology in Plant Production, University 
of Natural Resources and Life Sciences, Vienna, Konrad 
Lorenz Straße 20, 3430 Tulln, Austria

http://crossmark.crossref.org/dialog/?doi=10.1007/s00122-023-04349-3&domain=pdf
http://orcid.org/0000-0002-7389-5074
http://orcid.org/0000-0002-0748-2351


 Theoretical and Applied Genetics (2023) 136:103

1 3

103 Page 2 of 11

WDV has a wide range of monocotyledonous hosts, includ-
ing economically important cereals such as wheat, barley, 
oat, rye and triticale and some wild grasses (Vacke 1972). 
The main virus sources are infected field stands and self-
sown ‘volunteer’ cereal plants in lay fields (Manurung et al. 
2004; Mehner et al. 2003), while infected wild grasses are 
less important but may act as long-term reservoir for the 
virus (Ramsell et al. 2008; Yazdkhasti et al. 2021). Primary 
infection of winter wheat occurs in autumn when infected 
adult leafhoppers transfer the virus into newly sown crops. 
Secondary infection occurs in spring and early summer via 
newly hatched nymphs that absorb and spread the virus 
from WDV infested plants (Lindblad and Sigvald 2004; 
Lindblad and Waern 2002). Plants are most susceptible to 
WDV when infection occurs during the one to three leave 
stage (Vacke 1972), while milder symptoms occur when 
infection occurs at later development stages. Wheat plants 
become resistant when first nodes are detectable (Lindblad 
and Sigvald 2004; Lindblad and Waern 2002; Lindsten and 
Lindsten 1999). Leaf hoppers are highly mobile provided 
daily maximum temperatures exceed 15 °C, whereas their 
activity slows down and finally stops at temperatures below 
10 °C (Lindblad and Sigvald 2004). Warm weather dur-
ing autumn results in both, higher density of WD diseased 
plants and greater probability for eggs to overwinter on virus 
contaminated leaves (Lindblad and Arenö 2002). Conse-
quenctly, winter wheat from fields sown in early autumn 
suffers more from WDV than wheat from fields sown in late 
autumn (Lindblad and Waern 2002). It is predicted that the 
prevalence of viral diseases will increase, and their control 
will become more difficult due to climatic instability result-
ing from global warming (Jones 2021; Roos et al. 2011; 
Trebicki 2020). Global warming together with new cultiva-
tion practices, such as early sowing, reduced tillage, and 
incorporation of fallow in the crop rotation can have strong 
effects on leaf hopper populations and WDV epidemiology, 
thereby increasing the risk of severe disease outbreaks with 
yield losses up to 90% (Lindblad and Sigvald 2004; Lind-
blad and Waern 2002; Lindsten and Lindsten 1999).

Currently, no approved insecticide against P. alienus is 
available in the European Union (Pfrieme et al. 2022). More-
over, effectiveness of chemical control measures would be 
limited due to the high mobility of the leaf hoppers. Remov-
ing plant residues, ploughing after harvesting, elimination of 
volunteer cereals and late sowing of winter cereals or early 
sowing of spring cereals are currently the only agronomic 
measures for controlling this disease. However, late sowing 
in autumn may not be an option when the bunts are a prob-
lem, since late sowing increases infectivity of the common 
bunt (Tilletia caries and T. laevis) and dwarf bunt (T. contro-
versa) pathogens, as germinating seedlings are particularly 
receptive to Tilletia spp. infection under cool temperature 
conditions (Goates 1996). Genetic resistance would be the 

preferred cost-efficient and environmentally friendly alter-
native, but most current wheat cultivars are susceptible or 
highly susceptible to WDV (Pfrieme et al. 2022; Sirlova 
et al. 2005; Vacke and Cibulka 2000). Nonetheless, there 
is variation in the wild and domesticated wheat gene pool 
(Nygren et al. 2015; Pfrieme et al. 2022) and to date the 
Hungarian cultivars ‘Mv Vekni’ and ‘Mv Dalma’ (Benko-
vics et al. 2010), genebank accession ‘PI 245511’ and the 
Russian winter wheat cultivar ‘Fisht’ showed moderate to 
high partial resistance to WDV (Pfrieme et al. 2022). Very 
little is known about the genetic control of WDV. The only 
QTL analysis published so far was Pfrieme et al. (2022) who 
conducted a genome-wide association study (GWAS) using 
250 winter wheat accessions and identified 35 putative QTL, 
of which 14 were confirmed in bi-parental populations, sug-
gesting quantitative regulation of resistance to WDV.

By monitoring early and late sown winter wheat trials 
in our Fusarium head blight (FHB) nurseries we repeatedly 
observed that some of the early sown wheat lines devel-
oped severe WDV symptoms, whereas a few lines remained 
almost unaffected. From this material, two lines with repeat-
edly low WDV severity were selected and crossed with sus-
ceptible winter wheat cultivars/lines to develop four related 
mapping populations. Using early sowing and relying on 
natural infections, we evaluated these populations for WDV 
severity in three consecutive years allowing us to discover, 
validate and compare efficacy of the identified WDV resist-
ance QTL.

Materials and methods

Plant materials

Recombinant inbred line (RIL) populations descending 
from the reciprocal crosses Capo/SVP-72017 and SVP-
72017/Capo were initially used to study the inheritance 
of resistance to FHB (Buerstmayr et al. 2000). As a side 
effect, constant and clear variation in WDV severity was 
observed between lines within these populations in early 
autumn-sown field experiments, whereas the same materi-
als remained unaffected in later sown field trials. Among 
these, line A39 (Capo/SVP-72017) and A40 (SVP-72017/
Capo) was selected for their low expression of WDV symp-
toms and used as resistance donors in the following four 
bi-parental populations Midas/A40 (abbreviated to MI/A40), 
Mulan/A40 (abbreviated to MU/A40), P1314/A40, and A39/
P1314. Single seed descents of the crosses were advanced 
to the  F4 generation without selection. Head-rows in the  F4:6 
generation were bulk harvested and served as seed source 
for evaluating resistance to WDV in field tests. Populations 
MI/A40, MU/A40, P1314/A40 and A39/P1314 consisted of 
168, 105, 99 and 130  F4:6 RILs, respectively.
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The winter wheat cultivars Midas, released by Saatzucht 
Donau GmbH & CoKG (Austria) in 2008, and Mulan, 
released by NORDSAAT Saatzuchtgesellschaft (Germany) 
in 2006, and the experimental line P1314 are all highly 
susceptible to WDV. SVP-72017-17-5-10 (abbreviated to 
SVP-72017) and P1314 (pedigree: 20812/Hermann) are 
both semi-dwarf wheat genotypes carrying the Rht-B1b 
allele and have excellent FHB resistance. The breeding line 
‘20812’ was selected from the FHB nursery program at IFA 
Tulln. It descends from a cross with the highly FHB resist-
ant CIMMYT line CM-82036-1TP-10Y-OST-10Y-OM-OFC 
(abbreviated to CM-82036, pedigree: Sumai-3/Thornbird-
S) that is donor of the major FHB resistance QTL Fhb1 
and Qfhs.ifa-5A resistance alleles as well as the 1RS.1BL 
translocation (Buerstmayr et al. 2002, 2003; Samad-Zamini 
et al. 2017). P1314 has Fhb1, Qfhs.ifa-5A and the 1RS.1BL 

translocation. Different accessions with the translocation 
should have an unchanged 1RS chromosome arm, but the 
1BL should recombine, apart from any linkage drag in the 
centromere region.

The experimental line SVP-72017, selected at CPRO-
DLO Wageningen, The Netherlands (now Wageningen Uni-
versity and Research) during the 1980s, has the pedigree 
Marzotto//Dippes Triumph/Mironovskaja 808 and possesses 
a high level of quantitative resistance to FHB (Buerstmayr 
et al. 2000; Snijders 1990). SVP-72017 expresses a similar 
response to WDV as its progenies A39 and A40 (Table 1).

Field experiments and disease assessment

RILs of all four populations, including parents and several 
control lines, were tested in the field at the experimental 

Table 1  Best linear unbiased estimator (BLUE), standard deviation (sd), range and line mean heritability coefficient (H2) of wheat dwarf virus 
response for populations and parental lines

1 Not available

Population MI/A40 MU/A40 P1314/A40 A39/P1314

Experiment
2019
BLUE 6.02 5.11 5.57 5.17
sd 1.31 1.29 1.48 1.53
min 2.65 2.35 2.06 1.66
max 8.57 8.07 8.41 8.09
2020
BLUE 6.68 5.55 5.81 5.90
sd 1.65 1.59 1.64 1.96
min 2.69 2.59 2.11 1.71
max 9.18 8.29 8.78 9.04
2021
BLUE 6.58 5.50 6.73 5.68
sd 1.60 1.08 1.43 1.81
min 2.55 2.48 3.22 1.41
max 9.43 7.81 9.16 9.66
Across years
BLUE 6.42 5.39 6.03 5.59
sd 1.33 1.16 1.4 1.59
min 3.43 3.19 2.49 2.06
max 8.49 7.93 8.39 8.55
H2 0.86 0.86 0.92 0.92

Experiment 2019 2020 2021 Across years

Parents
SVP-72017 3.23 3.19 5.24 3.89
A39 4.07 3.68 3.00 3.60
A40 5.00 3.88 4.40 4.45
Midas 6.38 6.30 7.67 6.90
Mulan 5.47 5.92 NA1 5.77
P1314 6.20 4.10 6.60 6.10
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station of the Department of Agrobiotechnology, Tulln, Aus-
tria (latitude 48°18′20ʺN, longitude 16°02′40ʺE, altitude 
178 m) in growing seasons 2018/19, 2019/20 and 2020/21. 
Field trials were arranged as randomized complete block 
designs with two blocks. Plots consisted of three 1 m rows 
in 2018/19 and 2019/20 and of six 1 m rows in 2020/21 with 
20 cm row spacing. Sowing time was 14th of September in 
2018, and 17th of September in 2019 and 2020, approxi-
mately four to five weeks earlier compared to usual sowing 
dates for winter wheat in this region. These early sowing 
dates resulted in post sowing periods of 50, 41, and 32 days 
with mean temperatures above 10 °C (Fig. S1), when leaf 
hoppers are still active allowing for natural infestation of 
young plants with the virus before winter.

Disease symptoms were visually assessed at heading 
(BBCH 55) (Lancashire et al. 1991) and at early milk stage 
(BBCH 73) using a scoring scale from 1 (no or very low dis-
ease severity) to 9 (very high severity or dead plants) scale 
(Table S1). In each year, virus symptomatic leaves of the 
susceptible control cultivar ‘Capo’ were collected at head-
ing (BBCH 55) and stored at − 80 °C. Leaf samples were 
analyzed at the JKI Quedlinburg for presence or absence of 
WDV and barley yellow dwarf virus (BYDV) using sand-
wich enzyme-linked immunosorbent assay (DAS-ELISA) 
with polyclonal WDV and BYDV specific antibodies (Clark 
and Adams 1977).

Statistical analysis

Statistical analyses were performed in R version 4.0.5 
(R Core Team 2020) and were done for each population 
separately.

Field data

Analysis of variance (ANOVA) was conducted for individual 
years and across years using the R package lme4 (Bates et al. 
2015) by applying following linear mixed effects models for 
single experiments (1) and across years (2).

(1) Piklmn = µ + gi + bk + rl(b)k + cm(b)k + εiklm, where Piklmn 
denotes the observed phenotypic value, µ the population 
mean, gi the effect of genotype i, bk the effect of the block 
k, rl(b)k the effect of the row l nested in the block k, cm(b)k 
the effect of the column m nested in the block k, and εiklm is 
the residual.

(2) Pijklmn = µ  + gi + yj + gyij + bk(yj)  + rl[by]jk  + 
cm[by]jk + εijklm, where Pijklmn is the phenotypic observation, 
µ is the grand population mean, gi the effect of genotype i, 
yj the effect of year j, gyij the interaction between genotype 
i and year j, bk(yj) the effect of the block k nested in the year 
j, rl[by]jk the effect of the row l nested in the block k of year 
j, cm[by]jk the effect of the column m nested in the block k of 
year j, εijklm is the residual. The effects of the genotypes were 

treated as fixed to derive best linear unbiased estimators 
(BLUEs), while all other effects were modelled as random.

Line mean heritability coefficients were estimated from 
the variance components of the across year model assum-
ing a random effects model with the equation H2 = σ2

G/
(σ2

G + σ2
GxY/y + σ2

E/yr), where σ2
G is the genotypic variance, 

σ2
GxY the genotype-by-year interaction variance, σ2

E the 
residual variance, y the number of years, and r the number 
of replications (Nyquist and Baker 1991). Pearson correla-
tion coefficients between BLUEs of individual years were 
calculated.

Molecular marker analysis and map construction

Genomic DNA was extracted from pooled samples of young 
leaves (ten plants per RIL and parental line) according to 
a modified cetyl-trimethyl-ammonium-bromid protocol 
(Saghai-Maroof et al. 1984). DNA samples were adjusted 
to a DNA concentration of 50 ng µl−1 and genotyping was 
performed using the 7 K wheat SNP array offered by Trait-
Genetics GmbH (Gatersleben, Germany, http:// www. trait 
genet ics. com). Marker data and genotypes were quality 
checked prior to map construction for missing data points, 
segregation distortion, genotypic duplicates and co-locating 
markers. RILs sharing more than 95% of markers similarity 
were combined, markers that showed significant segregation 
distortion (p < 0.001) and more than 20% missing values 
were excluded from map construction. Genetic maps were 
calculated using the Minimum Spanning Tree (MST) algo-
rithm (Wu et al. 2008) included in the R package ASMap 
v0.4 (Taylor and Butler 2017). A p value threshold of 
1 ×  10−9 was used to separate markers into linkage groups. 
Within linkage groups, markers were reordered at a less 
stringent threshold and recombination frequencies between 
markers were converted into centiMorgans (cM) using the 
Kosambi mapping function. To retrieve maximum informa-
tion on marker data, linkage maps were obtained including 
co-locating markers, however, for QTL analysis for each 
co-locating set one marker was chosen as the representative 
marker and the remaining markers were excluded. Collinear-
ity of linkage groups among the individual populations was 
checked and markers order were compared with the Wheat 
IWGSC RefSeq v2.0 (Alaux et al. 2018). Graphical repre-
sentations of linkage groups and QTL positions were drawn 
with MapChart 2.2 (Voorrips 2002).

QTL analysis

QTL analyses were run on R version 4.0.5 using the pack-
age R/qtl 1.50 (Broman et al. 2003). Analyses were done 
for each year and on BLUEs across years of the averaged 
WDV scores of both scoring dates. Analyses were conducted 
for each population separately using the population specific 

http://www.traitgenetics.com
http://www.traitgenetics.com


Theoretical and Applied Genetics (2023) 136:103 

1 3

Page 5 of 11 103

linkage maps. Missing genotypic information was imputed 
according to the multiple imputation method of Sen and 
Churchill (2001). Interval mapping was performed to iden-
tify main effect QTL and possible epistatic QTL interac-
tions via a genome wide single and two-dimensional QTL 
scan, respectively, using the Haley–Knott regression method 
(Haley and Knott 1992). Significance of identified QTL per 
experiment and population was confirmed by running 1000 
permutations for type I error rates at α < 0.1 and α < 0.05. 
Finally, multiple QTL models (MQM) were fitted includ-
ing identified QTL. MQM models were explored for the 
presence of further QTL using addqtl and addint functions. 
The overall fit of the full model against the null model was 
tested by ANOVA. The effect of the individual QTL was 
determined by comparing the full model and the model with 
the respective term omitted. LOD scores, estimated additive 
effects and percentage of the phenotypic variance explained 
by the QTL were obtained from the ANOVA table of the 
MQM analysis. QTL confidence intervals were determined 
by a decrease of 1.5-LOD from the position of the LOD 
peak. QTL identified in individual populations with over-
lapping intervals were considered identical. Physical Mbp 
positions of the QTL flanking markers were derived from the 
IWGSC RefSeq v2.0 (Alaux et al. 2018). RILs were grouped 
by their QTL combination and the Tukey`s multiple range 
test was used to compare WDV resistance between groups.

Results

Variation in WDV severity

DAS-ELISA tests confirmed infection with WDV and did 
not identify BYDV. This provided confidence that WDV 
was the principal pathogen in the field experiments. WDV 
symptoms were assessed at heading and approximately three 
weeks later at the early milk stage. Correlation coefficients 
between WDV severities at the two scoring dates were very 
high. Coefficients ranged from 0.70 to 0.96 within individual 

years and from 0.94 to 0.96 for the BLUEs across years 
(Table S2). We thus combined the information of both WD 
scoring dates and used the average score as the basis for 
further analyses and QTL mapping.

All populations showed continuous variation in WDV 
symptom severity (example image Fig. S2) with a bimodal 
frequency distribution in populations MI/A40, MU/A40 
and A39/P1314 (Fig. 1), suggesting the presence of a major 
gene. No fully resistant, symptomless wheat line was iden-
tified (Table 1). Resistant parents had, on average, a two 
points lower severity score than susceptible parents on a 
scale of 1 to 9. Correlation coefficients between years ranged 
from 0.59 to 0.77, and were lowest in population MU/A40 
between years 2019 and 2021 and highest in population A39/
P1314 between years 2019 and 2020 (Table S3). Variance 
components for genotypes were high compared to genotype-
by-year interaction (Table S4) resulting in high line mean 
heritability coefficients with H2 = 0.86 in population MI/A40 
and MU/A40 and H2 = 0.92 in populations P1314/A40 and 
A39/P1314 (Table 1).

Linkage maps

After quality filtering, 2006, 2466, 2423 and 2216 markers 
remained for map construction of population MI/A40, MU/
A40, P1314/A40 and A39/P1314, respectively. The resulting 
genetic linkage maps comprised 34, 45, 47 and 40 linkage 
groups of total lengths 2935, 2838, 2881 and 3100 cM rep-
resenting all 21 wheat chromosomes (Tables S5, S6). Three 
hundred and eighty-four markers were polymorphic in all 
four populations; additionally, 1063 and 1381 polymorphic 
markers were shared between three and two populations, 
respectively, whereas 1624 markers showed population 
specific polymorphism (Fig. S3; Table S5). Distributions 
of recombination events yielded 574, 619, 629 and 659 
recombination points (loci) with average bin sizes of 5.1, 
4.6, 4.6 and 4.7 cM within maps MI/A40, MU/A40, P1314/
A40 and A39/P1314, respectively (Table S6). Comparison 
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Fig. 1  Frequency distributions of wheat dwarf virus (WDV) severity 
for RIL populations derived from crosses MI/A40, MU/A40, P1314/
A40 and A39/P1314. WDV scoring was done on a scale from 1 (no 

or very weak symptoms) to 9 (severe symptoms or dead plants). Val-
ues for the parents are indicated by arrows
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of marker alignments with the IWGSC RefSeq v2.0 showed 
high agreement between physical and genetic maps.

QTL analysis

QTL analysis identified two QTL: Qwdv.ifa-6A on the long 
arm of chromosomes 6A and Qwdv.ifa-1B on chromosome 
1B. Qwdv.ifa-6A had a strong effect in all experiments of all 
populations, and explained on average 45.5, 59.8, 64.4 and 
73.9% of the phenotypic variance in the individual mapping 
populations (Table 2). The QTL mapped in all populations to 

the same region that covered a genetic distance of 5, 10, 12 
and 6 cM in population MI/A40, MU/A40, P1314/A40 and 
A39/P1314, respectively (Fig. 2). Taking the information 
for all four maps and the physical positions of markers in 
IWGSC RefSeq v2.0 the QTL became a ~ 6.5 Mbp interval 
limited by markers TGWA25K-TG0301 (599,366,272 bp) 
and AX-95197581 (605,868,853 bp) with Tdurum_con-
tig75700_411 (601,412,152 bp) as the marker closest to the 
QTL peak.

Haplotype comparison revealed a unique common hap-
lotype for A40, A39 and SVP-72017 across the 6A QTL 

Table 2  Location and estimates of QTL for BLUEs of wheat dwarf virus (WDV) resistance in single years and across years using multiple QTL 
mapping

a Mega base pair position according IWGSC RefSeq V2.0
b LOD (logarithm of the odds)
c Percentage of phenotypic variance explained by the QTL
d Positive additive effect denote resistance improving effect by the A40 or A39 alleles; additive effects were estimated as half the difference 
between phenotype averages for the homozygote
e  *** significant at p < 0.001

Population
Experiment

QTL Peak interval Flanking markers

Chrom cM cM Upper Mbpa Lower Mbpa LODb PV%c addd signe 

MIxA40
Across years 6A 76 75–80 TGWA25K-TG0301 599.37 AX-95197581 605.87 48.9 73.9 1.12 ***
2019 6A 76 74–80 TGWA25K-TG0301 599.37 AX-95197581 605.87 28.1 53.8 0.95 ***
2020 6A 76 74–80 TGWA25K-TG0301 599.37 AX-95197581 605.87 36.6 63.3 1.30 ***
2021 6A 76 73–80 TGWA25K-TG0301 599.37 AX-95197581 605.87 23.5 47.5 1.11 ***
MUxA40
Across years 6A 96 92–102 Tdurum_contig75700_411 601.41 AX-95197581 605.87 20.6 59.8 0.91 ***
2019 6A 98 90–104 Tdurum_contig75700_411 601.41 AX-95197581 605.87 12.9 43.4 0.88 ***
2020 6A 96 90–102 Tdurum_contig75700_411 601.41 AX-95197581 605.87 16.7 52.3 1.18 ***
2021 6A 93 92–100 Tdurum_contig75700_411 601.41 AX-95197581 605.87 12.0 41.3 0.71 ***
P1314xA40
Across years 6A 88 80–92 TGWA25K-TG0301 599.37 AX-89595830 607.34 15.4 45.5 0.96 ***
2019 6A 84 76–94 TGWA25K-TG0301 599.37 AX-89595830 607.34 12.4 40.4 0.96 ***
2020 6A 88 78–94 TGWA25K-TG0301 599.37 AX-89595830 607.34 11.1 34.6 1.02 ***
2021 6A 88 82–94 TGWA25K-TG0301 599.37 AX-89595830 607.34 10.2 35.0 0.86 ***
P1314xA39
Across years 6A 68 66–72 TGWA25K-TG0301 599.37 AX-95197581 605.87 30.8 64.4 1.27 ***
2019 6A 68 66–72 TGWA25K-TG0301 599.37 AX-95197581 605.87 24.0 58.9 1.48 ***
2020 6A 68 66–72 TGWA25K-TG0301 599.37 AX-95197581 605.87 21.2 54.0 1.35 ***
2021 6A 69 66–72 TGWA25K-TG0301 599.37 AX-95197581 605.87 17.5 43.6 1.01 ***
P1314xA40
Across years 1B 0 0–10 BS00050522_51 1.4217 GENE-3626_308 458.69 4.99 11.3  − 0.47 ***
2019 1B 0 0–14 BS00050522_51 1.4217 CAP12_c1129_220 542.41 2.85 7.3  − 0.41 ***
2020 1B 0 0–8 BS00050522_51 1.4217 GENE-3626_308 458.69 5.59 15.1  − 0.65 ***
P1314xA39
Across years 1B 0 1–4 TGWA25K-TG0025 151.76 Tdurum_contig70304_781 453.29 11.7 15.8  − 0.61 ***
2019 1B 0 1–8 TGWA25K-TG0025 151.76 Tdurum_contig70304_781 453.29 8.96 18.5  − 0.67 ***
2020 1B 0 1–4 TGWA25K-TG0025 151.76 Tdurum_contig70304_781 453.29 5.91 9.73  − 0.57 ***
2021 1B 0 1–4 TGWA25K-TG0025 151.76 Tdurum_contig70304_781 453.29 5.35 9.65  − 0.57 ***
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interval (Table S7), suggesting that WDV resistance origi-
nated from the SVP-72017 ancestral line.

The second QTL mapped to chromosome 1B. The 
resistance-improving allele derived from the susceptible 
parent P1314; hence, the QTL was identified only in popu-
lation P1314/A40 and A39/P1314. It was identified in all 

years in population A39/P1314, explaining between 9.6 
and 18.5% of the phenotypic variance (Table 2). Qwdv.
ifa-1B was less constant in population P1314/A40; it was 
detected in year 2019, 2020 and in the mean across all 
experiments and contributed between 7.3 and 15.1% to 
the phenotypic variance. Qwdv.ifa-1B covered a genetic 
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distance of 10 cM in population P1314/A40 and 4 cM in 
A39/P1314 (Fig. 3; Table 2). ‘P1314’ and ‘20812’ had 
the same haplotype across the Qwdv.ifa-1B support inter-
val encompassing the entire short arm and the pericen-
tromeric region of the long arm up to AX-94433968 at 
bp position 339,560,059, suggesting that the WDV resist-
ance originated from experimental line 20812. The highly 
FHB resistant CIMMYT line CM-82036 (parental line 
of 20812) and 20812 share the same haplotype on 1BS 
until marker AX-110366212 (bp position 295,069,625) 
(Table S8). CM-82036 contains the 1RS.1BL translo-
cation (Samad-Zamini et  al. 2017). The SNP marker 
TGWA25K-TG0025 was developed by TraitGenetics 
GmbH and detects the 1RS.1BL translocation (personal 
communication). P1314 and 20812 as well as CM-82036 
share the same SNP haplotype for the TGWA25K-TG0025 
marker, confirming the presence of the rye chromatin in 
these lines. Qwdv.ifa-1B may therefore be associated with 
the wheat/rye translocation.

Qwdv.ifa-6A and Qwdv.ifa-1B acted additively, no 
epistatic interactions were observed (Fig. 4). Both QTL 
combined explained 58.9 and 73.5% of the phenotypic 
variance for the mean across experiments in populations 
P1314/A40 and A39/P1314, respectively. Comparing RILs 
grouped by their QTL status showed significant and strong 
differences between QTL groups in all populations. RILs 
having the QTL combined were most resistant, followed 
by lines carrying the Qwdv.ifa-6A resistance. Qwdv.ifa-
6A was significantly more effective than Qwdv.ifa-1B, and 
RILs with no resistance QTL were most diseased. The 
effect of Qwdv.ifa-6A was particularly strong in the A40/

MI and A40/MU populations, where Qwdv.ifa-6A was the 
only detected QTL.

Discussion

Using early autumn sowing for natural WDV 
infection revealed highly reproducible phenotypic 
data

In our study, natural WDV infestation was provoked by 
sowing four to five weeks earlier than routinely practiced 
in the test region. This mimicked unusually long periods 
of warm autumn temperature that are predicted to occur 
more frequently in the future due to climate change. Dates 
of sowing resulted in five to seven-week periods post sowing 
with mean temperatures above 10 °C. This facilitated seed 
germination and first leaf development when the leafhop-
per vector were still active. In this scenario leaf hoppers 
that have already acquired WDV from infected plants during 
the summer season can infect young plants when they are 
most susceptible making early sowing a simple and efficient 
alternative to artificial WDV inoculation. Sowing in early 
autumn has indeed proven to be very reliable, since infection 
levels were high and uniform across experiments, evidenced 
by high correlation coefficients between years (Table S3), 
low variance components for the year-by-genotype interac-
tions (Table S4) and high heritability coefficients (Table 1). 
Examining symptomatic plants for presence of WDV and 
BYDV using ELISA tests revealed that WDV was the causal 
pathogen in each season.
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There is a great lack of knowledge regarding sources and 
genetic basis of WDV resistance in wheat. No completely 
resistant genotype has been identified so far, most wheat 
cultivars are highly susceptible and only a few cultivars have 
moderate to high partial resistance to WDV (Benkovics et al. 
2010; Nygren et al. 2015; Pfrieme et al. 2022). Similarly, we 
observed continuous variation in WDV severity, but could 
not identify a fully resistant genotype among parents and the 
more than 500 RILs tested (Fig. 1; Table 1).

QTL analysis identifies two major WDV resistance 
QTL

Resistance to WDV was controlled by the highly effective 
QTL Qwdv.ifa-6A and the moderately to highly effective 
QTL Qwdv.ifa-1B (Figs. 2, 3, 4; Table 2). Qwdv.ifa-6A 
had a strong effect in all experiments and was mapped to 
chromosome 6AL to an interval of approximately 6.5 Mbp 
with Tdurum_contig75700_411 (601.4 Mbp) as the peak 
marker. The favorable allele traced back to the experimen-
tal line SVP-72017 (Table S7). GWAS revealed a QTL 
for BYDV resistance in a similar region, with the closest 
marker, IWB69770, 4.2 Mbp proximal to the peak marker 
identified in our study (Choudhury et al. 2019). Whether this 
coincidence is due to two closely linked QTL or to a single 
QTL that has a pleiotropic effect on several viral pathogens 
remains unclear.

The second QTL Qwdv.ifa-1B mapped to chromosome 
1B and its resistance derived from the susceptible parent 
P1314. Because of the 1RS.1BL translocation in P1314 no 
recombinants occurred on the short arm, resulting in a large 
discrepancy between genetic and physical distances. The 
relatively short QTL support interval of 4 to 10 cM involved 
the entire short arm and part of the pericentromeric region 
of the long arm (Fig. 3; Table 2). The Qwdv.ifa-1B support 
interval overlaps with the 1RS.1BL translocation suggest-
ing that WDV resistance is most likely conferred by the rye 
chromatin of this translocation. The 1RS.1BL chromosome 
has been widely used in wheat breeding for its potential 
to improve adaptability, stability, yield and disease resist-
ance (Rabinovich 1998; Villareal et al. 2006). Many dis-
ease resistance genes, e.g. genes for resistance to leaf rust 
(Lr26), stripe rust (Yr9), stem rust (Sr31) and powdery mil-
dew (Pm8) were transferred into wheat through the 1RS.1BL 
translocation. Unfortunately, since the widespread use of this 
translocation, virulent isolates of the powdery mildew and 
rust pathogens have evolved. The 1RS.1BL rye chromatin 
segment was reported to be effective against wheat streak 
mosaic virus; its presence caused delayed symptom devel-
opment and reduced spread of the virus (Li et al. 2007); 
however, no evidence that the same gene causes resistance to 
WDV and wheat streak mosaic virus has been reported yet.

The GWAS study conducted by Pfrieme et al. (2022) 
identified 35 significant marker trait associations on 10 dif-
ferent chromosomes, suggesting a polygenic regulation of 
WDV resistance. For validation of the identified associa-
tions, four populations were generated using the Russian 
wheat cultivar ‘Fisht’ as resistant parent and 14 significant 
effects were confirmed. Interestingly, five of the significant 
QTL mapped to the short arm of chromosome 1B and thus 
overlapped with Qwdv.ifa-1B identified in our study. Fisht 
has the favorable allele on chromosome 1B, but there is no 
information regarding presence or absence of the 1RS.1BL 
translocation. It is therefore unclear, whether Fisht and 
P1314 (resistance donor for Qwdv.ifa-1B) share the same 
resistance gene. There is a clear additivity of Qwdv.ifa-6A 
and Qwdv.ifa-1B (Fig. 4). This suggests that pyramiding 
resistance QTL will increase both durability and degree 
of resistance. The ancestral grandparent lines SVP-72017 
and 20812 are both highly resistant to FHB. Currently, the 
populations are being tested for FHB resistance with the 
aim to identify RILs that are highly resistant to both WDV 
and FHB. Such RILs would be of great value as parents for 
WDV and FHB resistance breeding.

Conclusion

Relying on late sowing for controlling WDV will not be 
effective if long periods of warm temperatures persist dur-
ing late autumn and early winter. Moreover, late sowing 
causes serious problems in organic farming, where the 
bunts are a significant problem. Resistant cultivars would 
be the preferred management strategy, but most current 
wheat cultivars are susceptible or highly susceptible to 
WDV. Therefore, improving resistance to WDV in winter 
wheat is of great importance. We report here two effective 
resistance QTL that can be integrated in breeding pro-
grams by means of marker-assisted selection. In addition, 
we demonstrate that provocation of natural infection by 
early sowing provides a uniform infection pressure allow-
ing reproducible and reliable WDV phenotyping. Thus, it 
is a simple and efficient alternative to tedious and time-
consuming artificial infection with WDV-bearing leaf-
hoppers or nymphs and is readily applicable in breeding 
programs.
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