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Abstract
Key message Novel sources of genetic resistance to tan spot in Australia have been discovered using one-step GWAS 
and genomic prediction models that accounts for additive and non-additive genetic variation.
Abstract Tan spot is a foliar disease in wheat caused by the fungal pathogen Pyrenophora tritici-repentis (Ptr) and has been reported to 
generate up to 50% yield losses under favourable disease conditions. Although farming management practices are available to reduce 
disease, the most economically sustainable approach is establishing genetic resistance through plant breeding. To further understand 
the genetic basis for disease resistance, we conducted a phenotypic and genetic analysis study using an international diversity panel 
of 192 wheat lines from the Maize and Wheat Improvement Centre (CIMMYT), the International Centre for Agriculture in the Dry 
Areas (ICARDA) and Australian (AUS) wheat research programmes. The panel was evaluated using Australian Ptr isolates in 12 
experiments conducted in three Australian locations over two years, with assessment for tan spot symptoms at various plant develop-
ment stages. Phenotypic modelling indicated high heritability for nearly all tan spot traits with ICARDA lines displaying the greatest 
average resistance. We then conducted a one-step whole-genome analysis of each trait using a high-density SNP array, revealing a 
large number of highly significant QTL exhibiting a distinct lack of repeatability across the traits. To better summarise the genetic 
resistance of the lines, a one-step genomic prediction of each tan spot trait was conducted by combining the additive and non-additive 
predicted genetic effects of the lines. This revealed multiple CIMMYT lines with broad genetic resistance across the developmental 
stages of the plant which can be utilised in Australian wheat breeding programmes to improve tan spot disease resistance.

Introduction

Tan spot or ‘yellow leaf spot’ is a foliar disease of 
wheat (Triticum aestivum L.) caused by the necro-
trophic fungal pathogen Pyrenophora tritici-repentis 
(Ptr) of the order Pleosporales. It may cause substan-
tial yield losses by decreasing both kernel weight and 
numbers of grain per head (Shabeer and Bockus 1988). 
In Australia, the reduction in annual gross wheat yield 
attributed to losses by tan spot has been estimated as 
high as 3% (Murray and Brennan 2009) with more 
recent research suggesting losses may be as high as 
4.5–6% in North and South American wheat growing 
regions (Savary et al. 2019). These gross yield reduc-
tions translate to over a billion dollars in annual rev-
enue losses globally.

Within local cropping systems, yield losses can be inten-
sified by a combination of farm management practices such 
as stubble retention or minimum tillage and the cultivation 
of tan spot susceptible wheat varieties (Rees and Platz 1983; 
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Carignano et al. 2008). With infected wheat residues present 
in a newly sown field, germinating seedlings can be exposed 
to early disease pressure. Upon occurrence of significant 
rainfall events the disease can progress rapidly and signifi-
cant yield losses of up to 50% are possible (Rees and Platz 
1983; Bhathal et al. 2003; Carignano et al. 2008). Thus, the 
development and use of tan spot resistant varieties to cir-
cumvent these ongoing issues offers a long-term approach.

The tan spot host–pathogen interaction is complex. The 
pathogen is known to secrete three effectors (host-selective 
toxins), Ptr ToxA, Ptr ToxB and Ptr ToxC, that interact with 
host specific sensitivity genes to cause necrosis or chloro-
sis (Lamari and Bernier 1989; Lamari et al. 2005; Kamel 
et. al 2019). Triggering of plant susceptibility through the 
interaction of the host with any combination of these effec-
tors is known as the inverse gene-for-gene model (Fenton 
et al. 2009) due to the pathogen recognition of host sig-
nals. Numerous host sensitivity loci have been previously 
identified and directly affect effector sensitivity (Faris 1996; 
Effertz et al. 2002; Friesen and Faris 2004; Tadesse et al. 
2006a, 2006b; Singh et al. 2009). Wheat lines harbouring 
the major host sensitivity gene Tsn1 on chromosome 5BL 
are sensitive to Ptr ToxA and exhibit strong necrosis follow-
ing infection with ToxA-producing Ptr isolates (Faris 1996), 
while the chlorotic effects induced by Ptr ToxB and Ptr ToxC 
are observed in wheat lines possessing the Tsc2 and Tsc1 
loci on chromosomes 2B and 1A, respectively (Effertz et al. 
2002; Friesen and Faris 2004; Corsi et al. 2020). Other 
useful non-race specific quantitative trait loci (QTL) have 
also been reported and may, in combination with known 
genes, be useful for breeding more durably resistant varieties 
(Shankar et al. 2017; Dinglasan et al. 2018; Liu et al. 2020; 
Phuke et al. 2020).

In the exploration for novel sources of genetic resistance 
to tan spot, historical wheat diversity panels have been 
phenotypically screened using various pathogen isolates 
and Ptr effector bioassays (Abdullah et al. 2017; Dingla-
san et al. 2018). Abdullah et al. (2017) conducted research 
using the Ptr race 1 isolate from USA and, as expected, 
the majority of wheat cultivars or genotypes developed 
before the 1950s green revolution showed susceptibility. 
Dinglasan et al. (2018) focussed on evaluating the Vavilov 
collection using a mixture of Australian Ptr isolates where 
the race of the individual isolates was not determined but 
the presence of ToxA gene and the absence of ToxB was 
confirmed in these isolates. Although they found diverse 
reactions across landraces in the panel, including enhanced 
level of resistance observed for all growth stages, they are 
not well suited for commercial breeding due to the lack of 
adaptability to high input agriculture. For those studies 
in which genotyping information was available, genome 
wide association studies (GWAS) have been conducted to 
determine significant genomic regions linked to tan spot 

resistance (Gurung et al. 2014; Kollers et al. 2014; Dingla-
san et al. 2018; Juliana et al. 2018; Phuke et al. 2020; 
Lozano-Ramírez et al. 2022). Gurung et al. (2014), Juliana 
et al. (2018), Phuke et al. (2020) and Lozano-Ramírez et al. 
(2022) reported small numbers of moderately significant 
loci based on disease assessment of tan spot on seedlings 
grown in controlled environments, whereas Dinglasan 
et al. (2018) conducted GWAS of tan spot traits collected 
at seedling and adult growth stages in multiple glasshouse 
and field experiments. Although some novel QTL have 
been identified, most of the studies have demonstrated the 
highly polygenic nature of tan spot disease in wheat across 
varying environments.

For wheat traits that are known to be highly polygenic, 
genomic prediction has been proven to provide a more 
complete measure of the genetic performance of the popu-
lation (Norman et al. 2017; Tsai et al. 2020). In the context 
of crop disease, Poland and Rutkoski (2016) recognised 
the potential of genomic prediction for breeding quanti-
tative disease resistance in tandem with other industry 
relevant traits such as yield. In tan spot disease research, 
studies are now starting to emerge that focus on genomic 
prediction of disease severity to understand genetic resist-
ance across varying environments (Poland and Rutkoski 
2016; Juliana et al. 2017; Muqaddasi et al. 2021). How-
ever, these initial studies have focussed on determining 
an appropriate prediction modelling approach that pro-
vides the greatest accuracy for genomic selection purposes 
rather than interpreting the overall prediction results for 
useful line selection.

In this study, we assembled an international wheat diver-
sity (IWD) panel with varying levels of tan spot resistance 
consisting of bread wheat lines from the International Maize 
and Wheat Improvement Centre (CIMMYT), the Interna-
tional Centre for Agriculture in the Dry Areas (ICARDA) 
and Australia (AUS). These lines were then screened for 
tan spot severity using Australian Ptr isolates in various 
controlled environment and field locations around Aus-
tralia, with disease assessment conducted at various stages 
of plant development. Experiments were repeated over two 
consecutive years. In addition, the IWD panel was screened 
for sensitivity to Ptr ToxA and Ptr ToxB using purified effec-
tor proteins in plant bioassays and assessed for necrosis and 
chlorosis. Unfortunately, screening for Ptr ToxC sensitivity 
using plant bioassay was not possible in this study as the 
structure of Ptr ToxC has yet to be elucidated. The IWD 
panel was then genotyped using the 90 K Illumina iSe-
lect SNP array designed for wheat (Wang et al. 2014). For 
each of the tan spot traits, a GWAS was conducted using 
an efficient one-step analysis approach to ensure all genetic 
and non-genetic sources of variation were accounted for 
simultaneously. This allowed for the rapid identification of 
significant loci associated with multiple tan spot traits and 
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also identified many singleton QTL. To further understand 
whether individual lines exhibited broad resistance to tan 
spot in Australia, we also conducted a genomic prediction 
of the tan spot traits. From this analysis, we focussed on pro-
viding a useful summary of the IWD panel line predictions 
to allow easy selection of lines for future use in Australian 
wheat breeding programmes.

Material and methods

Plant material

The IWD panel of 192 lines used in this research was cho-
sen from a larger set of 1000 lines screened for tan spot 
resistance against a mixture of contemporary local Ptr iso-
lates from 2010 to 2014 at various growth stages and envi-
ronments at South Perth. The IWD panel was specifically 
selected to contain several region specific sub-populations 
where the lines within each region represented a range of 
resistance levels and pedigree diversity. The sub-populations 
of the panel consisted of: 47 Australian (AUS) lines (AUS-1 
to AUS-47), including 23 Australian commercial wheat vari-
eties with varying levels of tan spot resistance, 121 lines 
from the CIMMYT bread wheat breeding programme (CI-1 
to CI-121) and 24 lines from the ICARDA bread wheat 
breeding programme (IC-1 to IC-24). Full names of each 
line from each sub-population region are given in Supple-
mentary Table S1.

The IWD panel was phenotyped for resistance against 
a mixture of local isolates at various growth stages and 
environments in 2015 and 2016 at South Perth, Western 
Australia (S31°59.20’, E115°53.13’); at Horsham, Victoria 
(S36°44.61’, E142°6.68’); and at Toowoomba, Queensland 
(S27° 32.00’, E151° 56.15’). Additionally, the IWD panel 
was screened for sensitivity to Ptr ToxA and Ptr ToxB at 
South Perth, Western Australia (S31°59.20’, E115°53.13’).

Experimental designs

For all controlled environment, glasshouse and field trials 
conducted in this research, experimental designs were gen-
erated as spatially optimal row-column designs with layout 
configurations defined in Table 1. In each experiment, the 
experimental units within a Block were allocated a combina-
tion of the complete set of IWD panel lines with additional 
spread of local control or filler varieties to generate a rec-
tangular grid arrangement.

All experimental designs were computationally gener-
ated using the model-based optimal design R package odw 
(Butler 2021). To achieve this an initial design data frame 
was generated that contained Row, Range and Block factors 
with a Variety factor that includes each replicate set of lines 
exclusively placed in individual design blocks. All of the 
factors of the design frame were then specified as an additive 
set of random model terms in the main function call of the 
package. The call also specifies that permuting of the rows 
of the initial design data frame is restricted to unique geno-
type swaps within block levels specified in the Block factor. 
We used the inbuilt Tabu search algorithm for conducting 

Table 1  Summary of the spatially optimal row-column designs conducted at each experimental location in each year

#R represents the number of replicates of the IWD panel (AUS, CI, IC); the number of blocks (#B); the number of controls and fillers within 
each block (#CB); the number of rows in each Block (#BR); the number of columns in each Block (#BC); the number of total experimental units 
(#EU)

Exp. type Location Year Environ. type Inoc.type #R #B #CB #BR #BC #EU

Tan Spot Sev Horsham, VIC 2015 Glasshouse Isolate 4 4 11 7 29 812
Field Isolate 3 3 28 10 22 660

2016 Glasshouse Isolate 3 3 32 14 16 672
Field Isolate 3 3 28 10 22 660

South Perth, WA 2015 Cont. Env Isolate 3 3 4 7 28 588
Field Isolate 3 3 8 10 20 600

2016 Cont. Env Isolate 3 3 4 7 28 588
Field Isolate 3 3 8 10 20 600

Toowoomba, QLD 2015 Cont. Env Isolate 2 2 16 18 12 432
Field Isolate 3 3 – 12 16 576

2016 Cont. Env Isolate 2 2 16 18 12 432
Field Isolate 2.5 3 16 11 16 528

Bioassay South Perth, WA 2019 Contr. Env ToxA Effector 3 3 24 6 36 648
ToxB Effector 3 3 24 6 36 648
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swaps within a localised neighbourhood and assessment of 
objective function improvement. An important feature of the 
design specification was the inclusion of spatial optimality 
or minimisation of line allocations across the row and ranges 
of the experiment to provide protection against reduction in 
accuracy of line effects if environmental trends were pre-
sent across the experiment. This was achieved by fixing the 
numerical variances of the Row and Range terms to a sub-
stantially large number to force the optimisation algorithm 
to favour designs where allocation of the replicates of the 
same variety were evenly ameliorated in both directions of 
the experimental layout.

Tan spot phenotyping trials

A complete description of the protocols relating to the phe-
notyping experiments conducted in 2015 and 2016 at each 
location is given in the proceeding sections, and the col-
lated summary of these protocols, as well as information 
about numerical and analytical aspects of the resulting tan 
spot severity traits, is given in Table 2. The final column in 
Table 2 indicates each resulting tan spot severity trait has 
been given a unique alphanumeric code and these codes are 
used in the proceeding text, graphics and other tables to 
provide consistency throughout the article.

South Perth, Western Australia

The IWD panel was assessed at the seedling and adult plant 
stages under controlled environment conditions and at the 
adult plant stage in an irrigated field nursery in both years. 
For all trials, an equal mix of the following ten contem-
porary isolates obtained from the Western Australian Plant 
Pathology Reference Culture Collection (WAC) was used 
for inoculation: WAC13611, WAC13614, WAC13769, 
WAC13651, WAC13767, WAC13768, WAC13770, 
WAC13772, WAC13774 and WAC13793. Inoculum was 
prepared as described by Shankar et al. (2017). The conidial 
suspension concentration was adjusted to 3000 spores/ml in 
0.5% gelatine solution for all inoculations.

For the controlled environment experiments in both 
years, experimental design blocks were arranged on separate 
benches. Lines were grown in a controlled environment with 
24/22 °C day/night temperatures and 12 h of natural day 
light. Four seeds per line were sown within each 120 mm 
diameter pot containing a sand-loam mix with 1 g of Osmo-
cote (slow-release fertiliser). At Zadoks growth stage 12.5 
(Zadoks et al. 1974) seedlings were spray-inoculated to 
run-off with the conidial suspension as described above. 
Inoculated plants were incubated for 24 h in a humidi-
fier with 95–100% relative humidity while maintaining 
the same block structure and row by column layout. Nine 
days after inoculation, leaves that had been fully emerged 

at inoculation were rated for severity on a 0–5 scale in 0.5 
increments, where 0 is no disease and 5 is high disease. The 
severity scale uses a combination of lesion type (Lamari and 
Bernier 1989), lesion size, and percentage leaf area diseased 
relative to the response of susceptible controls. Immediately 
after the initial disease rating, plants were provided with a 
20 h photoperiod consisting of 12 h of natural day light and 
8 h of high-pressure sodium light with an active radiation of 
400–500 μmol  m−2  s−1. Plants were fertilised with soluble 
all-purpose Thrive N/P/K 25:5:8.8 (Yates Australia, Padstow 
NSW) at a concentration of 0.8 g/L and a rate of 60 mL/pot 
on a weekly basis and with a trace element solution of Lib-
eral BMX (BASF) at a concentration of 0.5 g/L and a rate 
of 30 ml/pot on a fortnightly basis. At heading (Zadoks 55), 
flag leaves of individual plants in each pot were inoculated 
as described above. Fourteen days after this inoculation, 
percentage leaf area diseased (PLAD) was visually scored 
on the flag leaves and PLAD values were averaged over the 
sampled leaves for each pot to ensure a single numerical tan 
spot symptom severity value was attributed to each experi-
mental unit.

Field experiments were conducted using methods that 
mitigated possible confounding effects of plant maturity 
and height on disease expression at the adult plant stage as 
described by Shankar et al. (2017). Plots consisted of two 
10 cm rows 10 cm apart, with up to 10 seeds sown per row 
and with 30 cm between adjacent plots. Plots were fertilised 
with a mixture of superphosphate, urea and potash (6:4:1) 
at a rate of 100 kg/ha at planting and at 8 weeks after sow-
ing. Plots were protected from powdery mildew infection, 
caused by Blumeria graminis f. Sp. tritici, with 250 g/ha 
of Quinoxyfen and 125 g/ha Bupirimate applied at 4-week 
intervals for 12 weeks. Individual plots were inoculated at 
different times as they reached heading (Zadoks 55), by 
spraying flag leaves with the conidial suspension to run-
off. High humidity was ensured by watering the site just 
before inoculation and by using plastic bags secured over 
PVC rings (15 cm high, 30 cm diameter) to cover indi-
vidual plots for 48 h after inoculation. Before being used to 
cover the plots, the plastic bags were misted internally with 
water. To shade the inoculated plants from direct sunlight, 
the plastic bags themselves were covered with shade-cloth 
bags (84–90% cover factor). At 390 °C thermal days (sum 
of mean daily temperatures) after inoculation, PLAD was 
scored on the flag leaves of five individual plants selected 
randomly in each plot and averaged to ensure a single 
numerical tan spot symptom severity value was attributed 
to each experimental unit.

Horsham, Victoria

The IWD panel was assessed at the seedling stage in the 
glasshouse and at the adult plant stage in an irrigated field 
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nursery in both years. For glasshouse experiments, inoculum 
was prepared using a slightly modified method as described 
by Shankar et al. (2017). During 2015, an equal mix of six 
(WAC13438, 13–190, 13–198, 13–202, 14–006, 14–073) 
virulent isolates were used and during 2016 an equal mix 
of ten (Ptr15-079, Ptr15-080, Ptr15-085, Ptr15-088, Ptr15-
092, Ptr15-101, Ptr15-102, Ptr15-108, Ptr15-109, Ptr15-
110) were used. All isolates were obtained from the culture 
collection of Agriculture Victoria, Horsham. Isolates were 
grown on potato dextrose agar under white fluorescent and 
gro-lux lights at 24 ± 2 °C for 7 days. Two 3  mm2 plugs of 
each cultured isolate were then sub-cultured onto clarified 
V8 juice agar plates and incubated in darkness at 22 ºC for 
5 days, after which the hyphal growth was flattened using 
a sterile metal rod. Plates were then incubated under white 
fluorescent and gro-lux lights at 24 °C for 24 h, and then 
in darkness at 16 °C for 24 h to produce conidia. Inocu-
lum was prepared by scraping conidia from the surface of 
the plates using a spatula and then suspended in microfil-
tered sterile water. Two seeds of each line were sown into 
5 cm deep pots containing potting mixture, fertiliser and 
trace elements. Experimental design blocks were arranged 
across four trays in a 2 by 2 arrangement. The experiments 
were conducted under natural light at 20 ± 2 ºC, and seed-
lings were inoculated at the two–three leaf stage (Zadoks 
12–13) with the conidial suspension with concentration 
of ~ 3,500 spores/ml. Inoculated plants were incubated at 
95–100% relative humidity in total darkness at 20 ± 1 ºC for 
24 h while maintaining the same block structure and row by 
column layout. Inoculated seedlings were then returned to 
a glasshouse for 7 days to allow for symptom development. 
At this point, leaves that had been fully emerged at inocula-
tion were assessed for symptom severity using a 1–9 scale 
in increments of 1, where 1 was low disease severity and 9 is 
high disease severity (Dinglasan et al. 2016). The scale uses 
a combination of lesion type (Lamari and Bernier 1989), 
lesion size, and percentage leaf area diseased relative to the 
response of susceptible controls. Assessed leaves symptom 
severity was then averaged to ensure a single tan spot symp-
tom severity value for each of the experimental units.

Field design blocks aligned with pre-watered irrigation 
field bays and plants were sown in May. Each experimental 
unit consisted of a 50-cm row in which approximately 20 
seeds were sown. Rows were 30 cm apart. At planting plots 
were fertilised with mono-ammonium phosphate fertiliser 
(70 kg/ha) treated with flutriafol fungicide (75 g /ha) to sup-
press stripe rust (Puccinia striiformis) and septoria tritici 
blotch (Zymoseptoria tritici) development. Infection was 
established by spreading approximately 0.5 t/ha of wheat 
stubble naturally infected with locally occurring Ptr from 
the previous year during June in both years. The infected 
stubble was sourced from a block of wheat planted to a 
variety highly susceptible to yellow spot but resistant to 

other important diseases. This block was also managed 
with flutriafol as described above. Also, during the 2016 
experiment, the site received a foliar spray of a conidial sus-
pension (~ 3,700 spores/ml) of an equal mix of eight viru-
lent isolates (Ptr15-080, Ptr15-085, Ptr15-088, Ptr15-092, 
Ptr15-101, Ptr15-102, Ptr15-108, Ptr15-110). No supple-
mentary irrigation was applied during either year as there 
was sufficient in-crop rainfall. Disease severity was rated 
using the 1–9 scale described above. During 2015, assess-
ments were conducted when most lines were at late stem 
elongation (Zadoks 36) and booting (Zadoks 45), while dur-
ing 2016, assessments were made when most plants were 
at early stem elongation (Zadoks 32), late stem elongation 
to early booting (Zadoks 39–41), late booting (Zadoks 49) 
and anthesis (Zadoks 61 to 65). Middle leaf layers were 
randomly assessed in most cases. For assessments made at 
late anthesis, the top 4 leaf layers were randomly assessed. 
At each assessment stage, the symptom severity across 
sampled leaves was averaged to ensure a single tan spot 
symptom severity value was attributed to each of the experi-
mental units.

Toowoomba, Queensland

The IWD panel was assessed at the seedling and adult plant 
stages under controlled environment and in an irrigated field 
nursery in both years. Controlled environment and field 
experiments were conducted using methods described by 
Shankar et al. (2017). Lines were assessed in a controlled 
environment room at 23 ± 1 °C with each lighting fixture 
containing both sodium vapour and metal halide bulbs emit-
ting PAR at 400–500 μmol  m−2  s−1. Prior to seedling rating 
plants were grown with 14 h day and 10 h night and post-
rating were switched to 20 h day and 4 h night to reduce the 
time to head emergence. Plants were grown in 55 mm Square 
Native Tube pots, 160 mm high (Garden City Plastics, Mon-
bulk Vic), containing Searles Native Mix potting soil (Sear-
les Pty Ltd Kilcoy QLD). Seeds were pre-germinated at 5 °C 
and four seeds per line were planted in each pot. Experi-
mental design blocks were aligned with separate benches. 
For all the experiments conducted in Toowoomba, a mix-
ture of ten contemporary Ptr isolates (GR2015-1, GR2015-2, 
GR2015-4, GR2015-5, GR2015-7, GR2015-8, GR2015-9, 
GR2015-10, GR2015-11, GR2015-12) was used. Inoculum 
was prepared as described by Shankar et al. (2017). For 
both seedling and adult screening, spore concentration was 
adjusted to 120 ± 30 spores/ml and at growth stage Zadoks 
12.5 the top 2–3 seedling leaves were inoculated with 1 ml 
of spore suspension. Inoculated plants were incubated in the 
dark for about 24 h with a humidifier operating at 95–100% 
relative humidity for 30 min on and 30 min off. The block 
structure and row by column layout was maintained during 
the incubation period. When known susceptible and resistant 
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varieties exhibited expected disease reactions (at around 
nine days after inoculation), disease was assessed on the 
1–9 scale described above on the leaves that had been fully 
emerged at inoculation. Immediately after rating, plants were 
returned to the growth room and foliar and soil fertilised 
with half strength soluble Thrive fertiliser (Yates Australia, 
Padstow NSW), on a weekly basis. When individual plants 
had reached growth stage Zadoks 55, flag and flag minus 
one leaves of individual plants per pot were inoculated as 
above with approximately 3 ml of spore suspension and an 
average rating was determined 14 days later using the 1–9 
scale described above The average rating ensured a single 
numerical tan spot symptom severity value was attributed 
to each experimental unit.

Lines were also sown into a field nursery under shade 
cloth. In 2015, the field trial layout was an RCBD with 
three replicates where the set of lines within each replicate 
was randomly allocated to positions within a 12 row by 
16 column configuration. To enhance pathogen sporulation 
and infection, humidity was increased two or three times 
weekly, as necessary, at sunset using rainwater supplied 
micro misters for 30 to 60 min. Each plot was a 20 cm long 
single row with 20 cm between plots. To avoid drought 
stress, plants were irrigated approximately fortnightly 
using drip irrigation. Infection was established by spread-
ing between rows, infected stubble from the previous year. 
Stubble was collected and stored over summer from plots 
which were inoculated in previous seasons with a suite of 
isolates collected to represent the variation in the region. 
This was augmented by inoculation during the season with 
isolates previously collected from the regions to represent 
existing variability. Impact of other diseases like rusts was 
minimal as trials were conducted in a series of dry years in 
a region where rust resistance is the highest priority. Tan 
spot symptom severity was assessed on a 1–9 scale when 
most plants were at early tillering (Zadoks 22) and anthesis 
(Zadoks 61–65). Whole plants were assessed at the early 
tillering stage while the top two layers were assessed at 
anthesis and averaged to ensure ratings were attributed to 
experimental units.

Ptr ToxA and Ptr ToxB plant bioassays

The Ptr effector proteins Ptr ToxA and Ptr ToxB were het-
erologously expressed in E. coli SHuffle and purified using 
affinity chromatography (IMAC) as described by See et al. 
(2019). For the plant bioassays, seeds were sown in ver-
miculite in seedling trays, fertilised during sowing with 
soluble all-purpose Thrive N/P/K 25:5:8.8 (Yates Aus-
tralia, Padstow NSW) at the concentration of 1 g/L and the 
plants were grown at 22 °C under a 12-h photoperiod in 
a controlled growth chamber (Conviron). Fully expanded 
leaves of two-week old plants were infiltrated with purified 

effector protein using a needleless 1 mL syringe on the 
adaxial surface of the leaf, at the concentration of 10 ng/µl 
for Ptr ToxA and 200 ng/µl for Ptr ToxB. Leaves were evalu-
ated at 7 (Ptr ToxA) and 10 days (Ptr ToxB) post-infiltration 
for symptoms of Ptr ToxA-induced necrosis (presence or 
absence) and Ptr ToxB-induced chlorosis (See et al. 2019). 
Ptr ToxA-infiltrated plants were scored as either sensitive = 1 
or insensitive = 0, while Ptr ToxB-induced symptoms were 
scored from 0 to 5 scale, with increments of 1 where 0 = no 
symptoms and 5 = necrosis.

Genotyping and physical map

A 90 K custom designed Illumina SNP chip (Wang et al. 
2014) was used for genotyping of the 192 IWD panel 
lines. The complete genetic marker set initially consisted 
of 51,851 unique SNP assays. This marker set was initially 
reduced by removing monomorphic markers and markers 
that contained less than 50% of observed alleles across the 
192 lines. The sequences for the remaining 42,266 markers 
were then aligned to the Triticum aestivum IWGSC RefSeq 
V2.1 reference genome assembly (Zhu et al. 2021) with the 
purpose of building a physical map to be used for the down-
stream whole-genome analyses. To ensure high congruency 
between the 90 K consensus map and physical map, where 
possible, consensus map chromosomes were assigned to 
physical markers if their sequences were strongly aligned to 
the matching reference chromosome. For cases where the 
marker sequences aligned equally well on multiple genomic 
regions of the same chromosome, the relative consensus map 
position of the marker was used to choose the most appro-
priate physical position. Physical markers that could not be 
initially aligned using the consensus map were given a chro-
mosome and physical position based on the best alignment 
to the reference assembly. This set of markers along with 
the physical map was then used to create a genetic object 
compatible for use in the qtl package (Broman and Wu 2019) 
and ASMap package (Taylor and Butler 2017) available in 
the R statistical computing environment (R Core Team, 
2021). The functionality of these packages was then used 
to further diagnostically assess the quality attributes of the 
markers as well as the IWD lines. Specifically, it is well 
known the minor allele frequency (MAF) of the markers 
can have a dramatic impact on downstream analyses such 
as imputation of missing allele calls within the genetic map 
(Rutkoski et al. 2013) and population structure inference 
(Linck and Battey 2018). MAF is also known to be linked 
to the frequency of false positives obtained from conduct-
ing GWAS (Tabangin et al. 2009). In this research, we have 
removed markers if they had less than 16 observed instances 
of the minor allele (MAF: 8.5%) and this reduced the physi-
cal map to 27,822 polymorphic markers. Missing alleles 
were then imputed using the k-nearest neighbour (k-NN) 
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algorithm (Troyanskaya et al. 2001; Rutkoski et al. 2013). 
To reduce the complexity of the algorithm and localise the 
nearest neighbours, the imputation was conducted within 
each chromosome individually. For each marker contain-
ing missing values, the algorithm was instructed to use its 
six nearest neighbours. Imputation was computationally 
conducted using the pedicure R package (Butler 2019). To 
finalise the physical map for analysis, if a group of mark-
ers were numerically equivalent, then a single marker from 
each group was chosen and this reduced the physical map to 
20,519 unique markers.

Tan spot phenotypic modelling

Initially, for each tan spot severity trait defined from a single 
row of Table 2, a linear mixed model (LMM) was used to 
partition and estimate genetic and non-genetic variation. For 
the purpose of satisfying modelling assumptions, percent-
age leaf area diseased traits were initially logit transformed 
and considered to be the new response to be analysed. Let 
y =

(

y
1
,… , yn

)

 be a n length response vector attributed to 
a single tan spot severity trait then the LMM had the form

where X� is the fixed component of the LMM. This con-
tained a term to capture the average expression of the trait 
for the different sub-populations within the IWD panel as 
well as average expression for each of the local controls. 
The fixed component of the LMM was also used to capture 
linear trends that may have existed across the rows or col-
umns of the experiment. The random term Zu was used to 
capture extraneous variation from structures associated 
with the design of the experiment such as benches or trays 
in controlled environments or complete blocks in the field. 
The number of the terms varied according to the type of 
experiment and its design. Where appropriate, terms were 
added to this random component of the LMM to account 
for broad nonlinear trends across the row or column layout 
of the experiment (Gilmour et al. 1997). The residual error 
term, e , was used to account for correlation between obser-
vations due to adjacency of the pots in the glasshouse, con-
trolled environment or plots in the field experiments. We 
assume a more general distribution of the form e ∼ N(0,R) 
where R = ⊕m

i=1
 Ri was a multi-section direct sum structure 

with Ri = �ic ⊗ �ir containing a parameterisation for a 
separable AR1 × AR1 (AR1 = autoregressive process of 
order 1) correlation process that adequately captures the 
similarity of the observations across separated column and 
row components of the experimental design, respectively. 
This more general form for the residuals caters for experi-
mental layouts that are spread across m  non-abutting 
benches in a controlled environment. For rectangular 

(1)y = X� + Zu + Zgg + e

experimental layouts, m = 1 . The final term on the right 
hand side of (1), Zgg , contained a vector g of length r to 
capture the total genetic trait variation of the IWD panel 
sub-populations around their average expression. The dis-
tribution of the genetic effects is assumed to be 
g ∼ N

(

0, �2

g
Ir

)

 where �2

g
 is the genetic variance and Ir is 

the identity matrix.
For each of the fitted LMMs, model residuals were found 

to satisfy modelling assumptions of homoscedasticity and 
negligible outlier influence. From each of the fitted mod-
els for the traits, empirical best linear unbiased estimators 
(eBLUEs) of the IWD panel sub-populations as well as 
empirical best linear unbiased predictions (eBLUPs) of the 
individual IWD panel lines were extracted for numerical and 
graphical summary. A generalised broad sense heritability 
was calculated using the formula developed by Cullis et al. 
(2006), namely,

where PEVa(g̃, g̃) is the average pairwise prediction error 
variance of the eBLUPs and �̂2

g
 is the residual maximum 

likelihood (Patterson and Thompson 1971) estimate of the 
genetic variance for the IWD panel.

Ptr ToxA and Ptr ToxB phenotypic modelling

Ptr ToxA-induced necrosis and Ptr ToxB-induced chlorosis 
were mostly consistent across the replicates of each line in 
the IWD panel of the plant bioassays. The lack of replicate 
variation indicated a single numerical value for each line 
may be better suited in the analysis approaches that follow. 
These collapsed traits could then be considered a proxy for 
total genetic effects of the Ptr ToxA or Ptr ToxB effectors 
across the population. To ensure these traits could be used 
in the whole-genome analyses that follow a simple effector 
placeholder LMM required developing. Let t be a vector of 
collapsed Ptr ToxA or Ptr ToxB sensitivity values, then the 
effector baseline LMM was of the form

where � is the grand mean, gt are random total genetic 
effects for the IWD lines with distribution gt ∼ N

(

0, �2

g
Ir

)

 
and et are model residuals distributed et ∼ N(0, �2

t
Ir) where 

�2

t
 is fixed at a very small positive value. This ensures all 

between variety variation will be appropriately attributed to 
gt.

To determine the association strength of the Ptr ToxA and 
Ptr ToxB effectors with the complete set of tan spot sever-
ity traits defined in Table 2, the LMM defined in (1) was 
extended by incorporating the collapsed Ptr ToxA and Ptr 

H2 = 1 −
PEVa(g̃, g̃)

2�̂
2

g

,

(2)t = 1r� + gt + et,
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ToxB sensitivity traits as centred numerical covariates into 
the fixed component of the model, namely

where X∗
�
∗ = X� + Σ

2

i=1
ti�i, and ti is the i th column of ZgT 

where T is an (r × 2 ) matrix containing the centred Ptr ToxA 
and Ptr ToxB covariates and �i is the effect size for the i th 
covariate. All other terms have been defined previously. This 
extended model will be referred to as the baseline LMM for 
an individual tan spot severity trait. From each of the fitted 
trait models, estimates of the Ptr ToxA and Ptr ToxB effects 
and their standard errors were extracted and the significance 
of the association with the tan spot trait was summarised 
using a Logarithm of Odds (LOD) scores derived from a 
simple asymptotic Taylor series expansion of a likelihood 
function with covariate parameter, �i say, expanded around 
zero, namely,

where �2

�i
 is the variance of the covariate effect. In practice, 

estimates  �̂i and �̂2

�̂
i

 are extracted from the model results to 
form the empirical LOD scores. An identical approach to 
calculation of LOD scores occurs in the whole-genome aver-
age interval mapping (WGAIM) software (Taylor and Verb-
yla 2011) discussed in more detail in the next section.

One‑step whole‑genome analyses

Let M be an (r × m) matrix of whole-genome marker-based 
information for the IWD panel. To conduct an efficient 
one-step whole-genome analysis of each tan spot severity 
trait and effector trait, a modified whole-genome average 
interval mapping (WGAIM) approach (Verbyla et al. 2007, 
2012) was adopted. In what follows, we focus on develop-
ing the extension for the baseline tan spot severity LMM 
in (3) with recognition this extension also applies, without 
loss of generality, to the simplified effector baseline LMM 
in (2). This required extending the LMMs defined by (3) by 
considering a partition of the random total genetic effects, 
namely

where a is a vector of additive genetic line effects that are 
distributed a ∼ N(0, �2

a
Ga∕c) with Ga = MMT representing 

an (r × r) additive relationship matrix reflecting the marker 
based relationships between the lines and c = trace(Ga)∕r 
(Forni et al. 2011). The final term on the right-hand side was 
the residual or non-additive polygenic effects and were 
assumed to have a distribution p ∼ N

(

0, �2

p
Ir

)

.

(3)y = X∗
�
∗ + Zu + Zgg + e,

(4)LOD�i
=

1

2
log

10
[exp(�2

i
∕�2

�i
)]

(5)g = a + p,

Substituting (5) into (3) the initial whole-genome analysis 
LMM becomes

Note the inclusion of the term X∗
�
∗ ensures the Ptr 

ToxA and Ptr ToxB scores for the IWD panel are included 
as covariates to nullify their associated genomic effect in the 
whole-genome analyses. After this initial fit, the significance 
of the additive genetic variance, �2

a
 is assessed using a simple 

likelihood ratio test (LRT) between LMMs (6) and (3). If 
significant at an alpha level of 0.05, the BLUPs of the addi-
tive genetic effects, ã , were extracted from the fitted LMM 
of (6) and the predicted marker effects and their variances 
are calculated through back transformation (Norman et al. 
2017) using

where PEV
(

ã, ã
)

 is the prediction error variance of the addi-
tive genetic line effects. Marker-based outlier statistics 
(Verbyla et. al, 2007) are then calculated for the j th marker 
as q̃2

j
∕var(q̃j) where q̃j is the predicted effect of the j th 

marker and var(q̃j) is the j th diagonal element of (7). The 
marker with the largest outlier statistic across the whole 
genome is then said to be linked to a putative QTL. This 
marker is then removed from M in the model and placed as 
an additive random covariate in the baseline LMM (3) as 
well as the whole-genome analysis LMM (6). Both models 
are re-estimated and the process of finding a significant 
marker is then repeated. An informative flow diagram of 
how the WGAIM algorithm proceeds can be found in Verb-
yla et al. (2012). This process is halted if the LRT of the 
additive variance parameter, �2

a
 , is found to be non-signifi-

cant. For t putative QTL, the final LMM is then

where mi is the column of  ZgM associated with the i th 
selected marker and a−t ∼ N(0, �2

a
M−tM

T

−t
∕c) where M−t 

is the marker matrix M with the t  markers removed. The 
retaining of the marker based additive relationship matrix 
containing markers not selected by the algorithm ensures 
selected marker effects are tested at the appropriate level 
in the structural hierarchy of the final LMM. Each of the 
markers selected is then summarised with their effect size 
and LOD score defined in (4), as well as an approximate 
contribution of each marker to the overall genetic vari-
ance. Further details of these calculations can be found in 
Verbyla et al. (2012). To understand the pairwise linkage 

(6)y = X∗
�
∗ + Zu + Zga + Zgp + e.

q̃ = MTG−1
a
ã∕c

(7)var(q̃) = MTG−1
a
(�2

a
Ga∕c − PEV(ã, ã))G−1

a
M∕c2

y = X∗
�
∗ +

t
∑

i=1

miqi + Zu + Zga−t + Zgp + e
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disequilibrium between detected markers, the Pearson’s 
correlation was used and graphical summaries were pre-
sented using the R package corrplot (Wei and Simko 
2021).

Tan spot genomic prediction

For each of the tan spot severity traits, we used 
genomic prediction to assess the relative total genetic 
performance of the lines under disease pressure from 
Ptr. The genomic prediction was conducted using 
the initial one-step whole-genome analysis LMM 
defined in (6) which is similarly defined in Norman 
et al. (2017). Key elements of this genomic prediction 
LMM include the incorporation of terms to account for 
extraneous non-genetic sources of variation. Addition-
ally, the inclusion of Ptr ToxA and Ptr ToxB covari-
ates ensured their genomic effects are removed and the 
prediction is focusing on the cumulative effects from 
the remaining genomic regions. Lastly, model (6) con-
tains a partitioning of the total genetic effects using (5) 
that incorporate additive line genetic effects, a, from 
a whole-genome marker-based relationship matrix 
and non-additive residual genetic effects, p . In most 
genomic prediction studies, the focus is on accurately 
predicting a breeding value based on additive genetic 
effects only. In this research, we used the genomic 
prediction

where �̂i is the eBLUE of the i th sub-population and ãij and 
p̃ij are the eBLUPs of the additive and non-additive genetic 
effects for the j th line within the i th sub-population. This 
calculation was preferred in this research as it predicts the 
total genetic value of the lines across the different sub-pop-
ulations, providing the most accurate representation of the 
genetic resistance of the lines to Ptr. To calculate prediction 
accuracy we used the model based formula derived in Mrode 
(2014) where, for the j th line within the i th sub-population, 
the reliability of the prediction is calculated using

where PEV
(

g̃, g̃
)

ij
 is the prediction error variance of the j th 

line within the i th sub-population and �ij is the associated 
diagonal element of � = �2

a
Ga∕c + �2

p
Ir . The overall 

genomic prediction accuracy is the square root of � =
∑

ij�ij
/r. This method closely matches method 7 outlined in 
Estaghvirou et al. (2013) and provides an approach to calcu-
lating genomic prediction accuracy that does not require 
cross-validation.

g̃ij = �̂i + ãij + p̃ij

�ij = 1 − PEV
(

g̃, g̃
)

ij
∕�ij

Computations

All phenotypic models discussed in this research were fit-
ted using version 4 of the linear mixed modelling software 
ASReml-R (Butler et al. 2018) bundled as an R package 
for use in the R statistical computing environment (R Core 
Team, 2021). The ASReml-R package contains a suite of 
functionality for fitting and diagnosing complex LMMs 
and uses the residual maximum likelihood (REML) algo-
rithm of Patterson and Thompson (1971) to estimate model 
parameters. The package is available to download from VSN 
International (https:// www. vsni. co. uk/). Diagnostic assess-
ment of models was conducted using ASReml-R func-
tions as well as functions from the linear mixed modelling 
post-processing package ASExtras available for download 
from https:// mmade. org/. All whole-genome analyses were 
conducted using minor modifications of the WGAIM V2 R 
package (Taylor and Verbyla 2011) available in the R statis-
tical computing environment. The WGAIM package depends 
on ASReml-R for all its LMM fitting, and this requires a 
licensed version of the ASReml-R software to be installed.

Results

Physical map

A graphical and tabular summary of the 20,519 genetic 
markers aligned to the physical map is provided in Supple-
mentary Figure S1. The figure indicates a tight density of 
markers for most A and B chromosomes. As expected, the 
marker density was reduced for the D chromosomes, with 
reduced density across the centromeric regions of each of 
the chromosomes. The physical alignments of the markers 
were also assessed against the 90 K consensus map derived 
in Wang et al. (2014) (Supplementary Figure S2.). The fig-
ure indicates a strong monotonic relationship between the 
consensus map positions and the physical positions of the 
markers within each of the chromosomes. The strength of 
these relationships was reduced amongst some of the D 
chromosomes.

Tan spot phenotypic analyses

Generalised broad sense heritability ranged from 0.123 to 
0.899 (Table 2). Heritabilities calculated from South Perth 
controlled and field experiments were consistently higher 
than those from the other two locations. For the seedling 
and adult tan spot traits in the controlled environment and 
field experiments at Toowoomba in 2016, a lower heritabil-
ity was observed. This reduced heritability aligns with the 
lower number of IWD line replicates used in these experi-
ments. For each of the tan spot severity trait, the genetic 

https://www.vsni.co.uk/
https://mmade.org/
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eBLUPs are graphically displayed as histograms in Fig. 1. 
For average flag leaf tan spot severity traits (K, L, N, O), the 
eBLUPs are represented on the scale of the logit transfor-
mation. There was transgressive segregation for all tan spot 
severity traits. In the 2015 Horsham and Toowoomba con-
trolled environment and field experiments (A, B, C, P, Q, R, 
S), the eBLUPs indicate there was a slight skewness towards 
reduced disease severity across the three sub-populations.

The eBLUEs of tan spot severity for each of the sub-pop-
ulations varied depending on the trait and the location where 
the experiment was conducted (Fig. 2). At Horsham with 
the exception of tan spot symptom severity traits measured 
from the field experiment in 2015 (B, C), the glasshouse 
experiment in 2016 (D) and at early booting in the 2016 
field experiment (F), on average ICARDA lines exhibited 
significantly reduced symptoms compared to the AUS lines 
(E, G, H, I). For tan spot severity traits assessed at early 
and late anthesis at Horsham 2016 (H, I), the CIMMYT 
lines also showed significantly reduced disease symptoms 
compared to the AUS lines. The average tan spot severity of 
ICARDA wheat lines was significantly less than AUS wheat 
lines in all traits measured at South Perth experiments (J-O) 
except for the traits from the 2015 field experiment and the 
2016 controlled environment adult experiment (L and N), 
where tan spot was assessed at heading. The CIMMYT lines 

also showed significantly reduced severity compared to AUS 
lines in the traits assessed at the two 2015 South Perth adult 
tan spot experiments (K and L). Compared to AUS wheat 
lines, ICARDA lines showed significantly reduced disease 
severity in all the traits measured at 2015 Toowoomba con-
trolled environment and field experiments (P-S). A signifi-
cant reduction in tan spot severity was also observed from 
the CIMMYT lines at the adult stage of assessment in the 
Toowoomba 2015 controlled environment (Q) as well as the 
seedling stage of assessment in the Toowoomba 2016 field 
experiment (V).

Ptr effector bioassay analyses

After collapsing of replicate data to generate the Ptr 
ToxA, Ptr ToxB sensitivity traits, 28% of IWD lines were 
found to be sensitive to the Ptr ToxA effector with 24% 
of lines were sensitive to Ptr ToxB with varying degree 
of sensitivity/chlorosis (scores of 0.5 to 2) observed. A 
whole-genome analysis was performed for the Ptr ToxA 
and Ptr ToxB sensitivity traits scored across the IWD 
panel, and a Manhattan plot of the QTL results is given 
Supplementary Figure S3. As expected, for Ptr ToxA 
the results indicated near 100% of the genetic variation 
was attributed to a single locus on the long arm of 5B 

Fig. 1  Graphical summary of counts (y-axis) of the empirical best 
linear unbiased predictions (eBLUPs) on the x-axis extracted from 
each phenotypic model for tan spot severity of the international wheat 
diversity lines. Each panel represents a single tan spot severity trait 

identified by the alphanumeric code in the top left hand corner (see 
Table 2). eBLUPs for flag leaf traits are presented on the scale of the 
transformation
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linked to “BS00010590_51”, the  764th marker in the 
physical position 549.79 Mb. Similarly, the results for Ptr 
ToxB indicated a strong association to the  179th marker 
“BS00072619_51” on the short arm of 2B in the physical 
position 27.13 Mb.

The strength of the association between wheat Ptr ToxA 
and Ptr ToxB sensitivity and the complete list of tan spot 
severity traits defined in Table 2 is given in Fig. 3. A very 
significant association (p-value < 0.0001; LOD = 71.62) 
occurred for Prt ToxA with seedling tan spot severity 
assessed at the seedling stage in the glasshouse at Horsham 
2015 (A), with only smaller associations for other traits 
from the same year and location (B and C). In Horsham 
2016, a very significant association (p-value < 0.0001; 
LOD = 19.44) was found for Ptr ToxA and tan spot severity 
measured at early stem elongation (E) and, interestingly, 
the strength of this association was dramatically reduced 
with the remaining tan spot traits measured at later stages 
of the plants’ growth in the same experiment (F-I). In South 
Perth, the strongest associations with Ptr ToxA sensitiv-
ity occurred with the tan spot severity trait measured at 
the seedling stage of the 2015 experiment (J) and the tan 
spot traits measured at the seedling and adult stages of the 
field and controlled environment experiments in 2016 (M, 
N, O). Other traits obtained from South Perth controlled 
environments exhibited much weaker association. Tan spot 

severity assessed at seedling stage of the 2015 field experi-
ment of Toowoomba (R) had the strongest association with 
Ptr ToxA (p-value < 0.0001; LOD = 34.6), with other tan 
spot traits from Toowoomba in 2015 and 2016 having much 
weaker or no association. In contrast to Ptr ToxA associa-
tion results, the bottom panel of Fig. 3 indicates there was 
only minimal or negligible association between wheat 
Ptr ToxB sensitivity and tan spot severity traits across all 
location, years, environment types and plant development 
assessment stages.

Tan spot whole‑genome analysis

Whole-genome analysis of the complete set of tan spot 
severity traits defined in Table 2 detected 158 significant 
marker associations at the familywise alpha level 0.05 across 
the 21 wheat chromosomes (Supplementary Table S2). 
Table S2 indicates there were 31 putative QTL with LOD 
scores exceeding 10 with 8 of these QTL with LOD scores 
greater than 20. An additional graphical summary of these 
results is displayed in Fig. 4 and presents the physical link-
age map overlaid with QTL. We have considered groups of 
markers associations to be linked to the same putative QTL 
if they are in strong linkage disequilibrium (LD) on the same 
chromosome. To assess this, a graphical representation of 
the LD between significant markers from Supplementary 

Fig. 2  Summary of the empirical best linear unbiased estimators 
(eBLUEs) of the sub-population types extracted from each tan spot 
severity model. Each panel represents a single tan spot severity trait 
identified by the alphanumeric code in the top left hand corner (see 

Table 2). The error bars represent half-LSDs where non-overlapping 
error bars within each panel indicate significantly different tan spot 
severity between sub-population types
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Table S2 is given in Supplementary Figure S4 (a–e). It is 
clear from these results that there is a distinct lack of repeat-
ability of the QTL with more than 120 QTL being classed 
as singletons.

Here, we have focussed on repeatability of QTL where 
markers in LD have an association with at least three differ-
ent tan spot severity traits (Table 3). To identify short- and 
long-arm chromosomal regions, we used the centromeric 

delimiter data provided in Appels et al. (2018). Table 3 
indicates that a large selection of tan spot traits assessed 
at various plant development stages were associated with 
a highly significant QTL on the short arm of 1A (TQTL-
1A.1). Closer inspection of Table S2 indicates the majority 
of the traits were associated with a physical marker located 
at 364 Mb on RefSeq V2.1. However, the consensus map 
position indicates this marker is most likely located on 1AS 

Fig. 3  LOD scores for the association of pure ToxA and ToxB effectors with tan spot traits defined in Table 2. To maximise interpretation, 
numerical versions of LOD scores have been included at the top of bars

Fig. 4  Linkage map detailing the physical location (Mbp) of the 158 
QTL (see Supplementary Table  S2 for further details) detected for 
the complete set of tan spot severity traits defined in Table 2. Boxes 

around trait codes are shaded according to their LOD score. LOD 
scores shading was capped at 25 to ensure there is differentiation at 
the lower end of the scale
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near 20 cM with additional evidence from physical markers 
in close LD at the start of 1A (Supplementary Figure S4). 
For the five tan spot traits temporally measured in the field 
at Horsham in 2016 (E-I), the TQTL-1A.1 effect size var-
ies suggesting that the expression of the QTL potentially 
changes during plant development (Table 3, Table S2). For 
five tan spot traits, a second significant QTL on the long 
arm of 1A (TQTL-1A.2) was discovered at 502–510 Mb 
and appears to be mostly associated with assessment of tan 
spot at later stages of plant development (Table 3). Three 
tan spot traits, with one seedling trait exhibiting a highly 
significant QTL (LOD > 30), were found on the short arm 
of 1B (TQTL-1B.1). The consensus map suggests this 
highly significant QTL could be on 1A, but there is no 
additional LD evidence that this marker or other markers in 
the group are in close LD with significant markers linked to 
TQTL-1A.1 and TQTL-1A.2 (Supplementary Figure S4). 
A QTL on 4BL (TQTL-4B.1) was found to be associated 
with three tan spot traits assessed at the seedling and boot-
ing stage of plant development (Table 3). A broad col-
lection of marker associations was discovered across 5B, 
with a significant QTL on 5BL (TQTL-5B.1) associated 
with tan spot severity in the adult stages of plant develop-
ment (Table 3). As expected, the inclusion of Ptr ToxA as 
a genetic covariate in the whole-genome analyses models 
ensured there were minimal associations from markers in 
LD with the Ptr ToxA physical marker detected at 549 Mb 
on 5BL. 

Tan spot genomic prediction

For each tan spot trait, the eBLUEs of the sub-popula-
tions were added to the additive eBLUPs and non-additive 
eBLUPs to form total genetic predictions of the each of 
the lines in the IWD panel. For all traits except tan spot 
severity in Horsham 2016 assessed at the seedling stage 
(D), genomic prediction accuracies indicate a strong influ-
ence from the genetics (Supplementary Figure S5) and this 
aligns with the high heritabilities obtained from the phe-
notypic modelling. As the scoring system differed between 

traits and some traits were transformed for analysis pur-
poses, the genomic prediction variety rankings were used 
to provide a standardisation of the relative resistance of 
each variety within a trait. To visualise this resistance, 
rankings for each variety were averaged across the tan 
spot traits and varieties were ordered from most resistant 
to most susceptible by the average ranking (Fig. 5). In the 
figure, traits were also ordered to provide a distinct parti-
tioning between seedling and adult tan spot severity assess-
ment. As expected, this process revealed many ICARDA 
lines with excellent genetic resistance to tan spot, including 
IC-7, IC-2, IC-15 and IC-22. Within the Australian sub-
population, AUS-4, AUS-16, AUS-29 and AUS-36 also 
showed broad tan spot genetic resistance across all seedling 
and adult assessed traits. However, the lines predicted to 
be most resistant across all tan spot severity traits were 
in the large CIMMYT sub-population, including CI-25, 
CI-27, CI-32, CI-38, CI-39, CI-40, CI-42, CI-47, CI-48, 
CI-58, CI-95 and CI-96. Interestingly, the top five CIM-
MYT lines CI-38, CI-39, CI-40, CI-47 and CI-48 all exhib-
ited the greatest genetic resistance at the seedling stage and 
showed some mild susceptibility when plants were at vari-
ous adult stages of development. The presentation of the 
traits in Fig. 5 has allowed visual identification of lines that 
appear to be more genetically resistant at either seedling or 
adult stages of plant development. Some examples of lines 
that show greater genetic resistance at adult compared to 
seedling stage of plant development include CI-1, CI-2, 
CI-98, CI-99, CI-112 and CI-113. Lines exhibiting greater 
resistance in the seedling stage compared to the adult stage 
are AUS-10, CI-51, CI-67 and CI-59.

Discussion

In this research, we have conducted thorough phenotypic 
and genotypic experimentation on tan spot severity in an 
internationally diverse set of wheat lines using Australian 
Ptr isolates. Similar to Shankar et al. (2017), experiments 
were conducted in three locations across Australia under 

Table 3  Summary of significant 
QTL detected from whole-
genome analysis of tan spot 
traits detected for at least three 
traits (see Supplementary 
Table S2 for full list of QTL)

This includes physical map distance interval (Phys. Interval), consensus map interval (Cons. Interval), 
average LOD score (Ave. LOD), average per cent of genetic variation (Ave. %GV). Tan spot trait codes are 
given in the final column (see Table 2)

QTL name Phys. interval (Mbp) Cons. interval (cM) Ave. LOD Ave. %GV Trait codes

TQTL-1A.1 4.0–364.1 13.73–20.29 13.55 19.17 B, E, F, G, H, I, J, L,
M, N, P, S, T, V

TQTL-1A.2 502.4–510.2 66.31–85.69 7.34 10.98 F, G, I, P, S
TQTL-1B.1 6.9–44.5 8.36–53.61 12.83 8.27 I, J, M
TQTL-4B.1 559.2–614.4 71.29–76.07 7.78 9.50 B, P, M
TQTL-5B.1 318.3–414.7 40.55–48.29 6.15 12.50 G, I, Q, S



Theoretical and Applied Genetics (2023) 136:61 

1 3

Page 15 of 19 61

controlled environment and field conditions, and the experi-
ments were repeated across two years. Plants were mostly 
inoculated at the seedling stage with a combination of Ptr 
isolates, and tan spot symptom severity was assessed visu-
ally (see Table 2). All tan spot severity traits were analysed 
using an LMM that partitioned genetic and non-genetic vari-
ation. Strong heritability was exhibited by nearly all tan spot 
severity traits. Within the sub-populations used in this IWD 
panel, the ICARDA lines identified by Shankar et al. (2015) 
and used here, had almost universally greater average resist-
ance to Australian Ptr isolates than the CIMMYT and AUS 
sub-populations.

The IWD panel was also screened for sensitivity to Ptr 
ToxA and Ptr ToxB using purified effector proteins in plant 
bioassays and assessed for necrosis and chlorosis. A GWAS 
was then conducted and Ptr ToxA sensitivity aligned with a 
single locus on the long arm of 5B conferring its definitive 
link to Tsn1 (Faris 1996; Effertz et al. 2002). The importance 
of the ToxA-Tsn1 interaction during seedling responses to 
tan spot has been demonstrated in a panel of 40 commercial 
Australian wheat varieties (See et al. 2018) and 257 wheat 
accessions from the Vavilov collections (Dinglasan et al. 
2018). The IWD panel only contains 10 lines in common 
with the lines used in See et al. (2018) so it unfortunately 

cannot be used for substantive comparisons. However, our 
research does confer a strong interaction with Ptr ToxA dur-
ing seedling responses to tan spot. Similarly, in the IWD 
panel, Ptr ToxB sensitivity was strongly linked to a single 
locus on the short arm of 2B within the physical map region 
for Tsc2 defined by Corsi et al. (2020). The inclusion of Ptr 
ToxA and Ptr ToxB covariates in the tan spot phenotypic 
models validated the ubiquitous presence of the Ptr ToxA 
effector in Australian Ptr isolates (Faris and Friesen 2005). 
However, high association of Ptr ToxA sensitivity with tan 
spot disease severity was mainly observed at the seedling 
stage of plant development in both field and glasshouse 
experiments but not at the later growth stages. This is in 
agreement with a recent study in which Ptr ToxA sensitive 
wheat lines derived from a bi-parental recombinant inbred 
line (RIL) population exhibited tan spot resistance at the 
adult growth stage (Dinglasan et al. 2021). Similar to other 
crop diseases, it is also possible quantitative resistance is 
governed by many genes with small effects that are not asso-
ciated with effector interactions (Cowger and Brown 2019). 
The universal non-significance of the Ptr ToxB covariate for 
all tan spot traits also aligns with previously reported studies 
on the lack of Ptr ToxB effector presence in Australian Ptr 
isolates (See et al. 2021).

Fig. 5  A visual heat map of the predicted tan spot severity rank-
ings for the 192 varieties of the international wheat diversity panel 
(columns) for each of the tan spot severity traits (rows) defined in 
Table 2. For any given trait, smaller and more transparent dots rep-
resent reduced tan spot severity relative to the rest of the population 

and larger more opaque dots represent higher tan spot severity. The 
tan spot traits are partitioned into two distinct sections with traits 
assessed at seedling stage in red and traits assessed at adult stage in 
blue. The varieties are ordered by average rankings across all tan spot 
traits given in the bottom row of the heat map (colour figure online)
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We used a one-step whole-genome analysis approach for 
detection and selection of significant tan spot related QTL. 
It used an extended LMM to partition and estimate the com-
plex genetic and non-genetic variation arising in each of the 
tan spot experiments and consequently avoided the need for 
two stage analysis approaches commonly implemented in 
QTL and GWAS-related software packages (Bradbury et al. 
2007; Tang et al. 2016; Broman and Wu 2019). This method 
also circumvents the computational requirement to individu-
ally scan the complete set of 20 K + unique markers as well 
as determine an appropriate familywise error rate to use as 
a threshold for multiple comparisons. With this approach we 
detected 158 marker associations across the 21 wheat chro-
mosomes with 31 putative QTL with a LOD score exceeding 
10. No marker associations were detected for tan spot sever-
ity traits assessed at the seedling stage of plant development 
in Horsham in 2016 and the adult stage of plant develop-
ment in the controlled environments of South Perth 2015 
and Toowoomba 2016. For nearly all tan spot traits a very 
significant QTL was found on 1AS between 13 and 21 cM. 
This has previously been identified in many other tan spot 
genetic analyses (Singh et al. 2016; Shankar et al. 2017; Liu 
et al. 2020) and is most likely co-localised with the Ptr ToxC 
sensitivity gene, Tsc1 (Effertz et al. 2002). Interestingly, the 
physical marker for this QTL was located on the long arm 
of 1A at 362 Mbp in RefSeq v2.1 and previous RefSeq ver-
sions of 1A pseudo-molecules. However, the marker dis-
played significant linkage disequilibrium with other markers 
on 1AS (see Supp Figure S4 a). A QTL was found on 1AL 
and was highly suggestive of a secondary interaction of Ptr 
in adult plants in the later stages of development. A similar 
genomic region was tentatively reported in Dinglasan et al. 
(2019) where plants were also assessed at a later stage of 
development. A moderate size QTL was found on 1BS and 
this has been reported in other studies including Shankar 
et al. (2017) and (Liu et al. 2020). A QTL associated with 
three tan spot traits was found on the short arm of 4B, and 
this was also reported in Shankar et al. (2017) with a fur-
ther two similar closely linked regions reported in Dinglasan 
et al. (2019). A broad collection of marker associations were 
found on 5B and many of these genomic regions have been 
tentatively reported in Liu et al. (2020). This current study 
now provides evidence of a strongly significant QTL on 5BL 
between 318 and 414 Mb that appears to be not co-localised 
with the ToxA sensitivity gene Tsn1.

The results of the whole-genome analysis indicated 
there were more than 120 non-repeatable QTL across 19 
chromosomes of the wheat genome. This indicates the 
potentially highly polygenic nature of tan spot severity 
measurements obtained from experiments conducted 
under varying trial management constraints such as varied 
inoculation methods, controlled or field experimentation 

and assessment of disease at various plant develop-
ment stages. To address this trait polygenicity, we used 
a one-step genomic prediction model based on genomic 
BLUP (Norman et al. 2017; 2018) as this was shown to 
perform well against other genomic prediction model-
ling approaches (Muqaddasi et al. 2021) where tan spot 
severity was analysed. Our genomic prediction accuracies 
were substantially higher than Muqaddasi et al. (2021) 
indicating a strong genetic influence in the tan spot sever-
ity traits suggesting the relative predictions are ideal for 
selecting lines for resistance and susceptibility. Although 
Singh et al. (2016) and Phuke et al. (2020) identified 
some sources of Ptr resistance in CIMMYT populations, 
this research has definitively identified multiple CIM-
MYT lines with broad resistance to Australian based Ptr 
that also exhibited better resistance than current Austral-
ian elite germplasm. Given these positive results, we are 
now exploring the possibility of more complex genomic 
prediction modelling approaches, such as repeated meas-
ures or multi-environment genomic prediction (Tolhurst 
et al. 2019), that may provide further insight into the trait 
polygenicity.

In summary, we have assembled an international wheat 
diversity (IWD) panel with broad levels of tan spot resist-
ance and then conducted extensive phenotypic and geno-
typic analyses of tan spot severity traits with Australian 
Ptr isolates, with assessment over two years and multi-
ple locations. Phenotypic analyses revealed strong herit-
ability of tan spot severity traits, with ICARDA lines on 
average showing reduced tan spot symptoms compared 
to other sub-populations. One-step whole-genome analy-
ses detected a large QTL on 1AS that is most likely co-
locating with the ToxC sensitivity gene Tsc1. The lack of 
repeatable QTL prompted us to conduct a genomic pre-
diction model where multiple CIMMYT lines were found 
with broad genetic resistance to Australian Ptr. These lines 
will provide an invaluable resource for Australian wheat 
plant breeding programmes to improve tan spot resistance 
of future varieties.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00122- 023- 04332-y.
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