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Abstract
Key message R/StageWise enables fully efficient, two-stage analysis of multi-environment, multi-trait datasets for 
genomic selection, including support for dominance heterosis and polyploidy.
Abstract Plant breeders interested in genomic selection often face challenges to fully utilizing multi-trait, multi-environment 
datasets. R package StageWise was developed to go beyond the capabilities of most specialized software for genomic 
prediction, without requiring the programming skills needed for more general-purpose software for mixed models. As the 
name suggests, one of the core features is a fully efficient, two-stage analysis for multiple environments, in which the full 
variance–covariance matrix of the Stage 1 genotype means is used in Stage 2. Another feature is directional dominance, 
including for polyploids, to account for inbreeding depression in outbred crops. StageWise enables selection with multi-trait 
indices, including restricted indices with one or more traits constrained to have zero response. For a potato dataset with 943 
genotypes evaluated over 6 years, including the Stage 1 errors in Stage 2 reduced the Akaike Information Criterion (AIC) 
by 29, 67, and 104 for maturity, yield, and fry color, respectively. The proportion of variation explained by heterosis was 
largest for yield but still only 0.03, likely because of limited variation for the genomic inbreeding coefficient. Due to the 
large additive genetic correlation (0.57) between yield and maturity, naïve selection on an index combining yield and fry 
color led to an undesirable response for later maturity. The restricted index coefficients to maximize genetic merit without 
delaying maturity were identified. The software and three vignettes are available at https:// github. com/ jende lman/ Stage Wise.

Introduction

During the first decade of the twenty-first century, the focus 
of genomic selection research was the development of the-
ory and methods (e.g., Meuwissen et al. 2001; Habier et al. 
2007; Daetwyler et al. 2008; Bernardo and Yu 2007; Van-
Raden 2008), and most researchers worked in animal rather 
than plant breeding. This changed in the following decade 
with the development of specialized software for genomic 
prediction, including rrBLUP (Endelman 2011), GAPIT 
(Lipka et al. 2012), synbreed (Wimmer et al. 2012), BGLR 
(Pérez and de los Campos 2014), and sommer (Covarrubias-
Pazaran 2016). Over the last several years, new software 
development has emphasized multi-trait prediction models 

(Montesinos-López et al. 2019; Runcie et al. 2021; Pérez-
Rodríguez and de los Campos 2022). Collectively, these 
software publications have been cited several thousand 
times, which reflects their enabling role for the adoption of 
genomic selection, particularly in plant breeding.

However, these packages have limitations to handle 
the full complexity of plant breeding data, with different 
experimental designs, heritabilities, and spatial models for 
non-genetic variation. The challenge of properly analyzing 
multi-environment datasets existed before genomic selec-
tion, which led to the concept of a two-stage analysis (Fren-
sham et al. 1997). In Stage 1, genotype means are estimated 
as fixed effects for each environment, which become the 
response variable in Stage 2. The errors of the Stage 1 esti-
mates are typically different, and failure to account for this 
in Stage 2 leads to sub-optimal results (Möhring and Piepho 
2009). A “fully efficient” two-stage analysis uses the full 
variance–covariance matrix of the Stage 1 genotype means 
in Stage 2, rather than a diagonal approximation (Piepho 
et al. 2012; Damesa et al. 2017). Previous examples of a 
properly weighted, two-stage analysis have used one of three 
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well-established, REML-based programs for mixed models: 
SAS PROC MIXED (SAS Institute Inc, Cary, NC), ASReml 
(Gilmour et al. 2015), or ASReml-R (Butler et al. 2018). 
All three software allow the variance–covariance matrix of 
the random effect for Stage 1 errors to be specified while 
estimating the other, unknown variance components of the 
Stage 2 model. Despite this precedent, many studies con-
tinue to ignore Stage 1 errors, and I believe a major reason 
is the additional programming skill required.

The goal of the current research was to develop a new 
R package (R Core Team 2022) for genomic selection that 
makes fully efficient, two-stage analysis more accessible 
to plant breeders. The software, called StageWise, returns 
empirical BLUPs using variance components estimated with 
ASReml-R. It also works for polyploids and incorporates 
advanced features such as directional dominance and multi-
trait selection indices.

Methods

Single trait with homogeneous GxE
The response variable for Stage 2 is the Stage 1 BLUEs for 
the effect of genotype in environment. The mixed model with 
homogeneous GxE can be written as

where gij is the genotypic value for individual (or clone) i in 
environment j, Ej is the fixed effect for environment j, gi is 
the random effect for individual i across environments, and 
the GxE effect, gEij, is actually the model residual (Damesa 
et al. 2017). The sij effect, which represents the Stage 1 esti-
mation error, is multivariate normal with no free variance 
parameters: the variance–covariance matrix is the direct sum 
of the variance–covariance matrices of the Stage 1 BLUEs 
(Damesa et al. 2017). The gEij are independent and identi-
cally distributed (i.i.d.), which implies a single genetic cor-
relation between all environments. Without marker data, the 
software assumes the gi effects are i.i.d.

When marker data are provided, the software decom-
poses gi into additive and non-additive values. The vector of 
additive values is multivariate normal with covariance pro-
portional to a genomic additive matrix G (VanRaden 2008 
Method 1, extended to arbitrary ploidy). If W represents 
the centered matrix of allele dosages (n individuals x m bi-
allelic markers with frequencies p = 1–q), then for ploidy �,

If a three-column pedigree is provided, G can be blended 
with the pedigree relationship matrix A (calculated using 
R package AGHmatrix (Amadeu et al. 2016)) to produce 

(1)BLUE
[

gij
]

= yij = Ej + gi + gEij + sij

(2)� =
��T

�
∑

k pkqk

� = (1 − ω)� + ω� , for 0 ≤ ω ≤ 1 (Legarra et  al. 2009; 
Christensen and Lund 2010). In addition to the additive 
polygenic effect, the user can indicate some markers should 
be included as additive (fixed effect) covariates in Eq. (1), 
to capture large effect QTL.

Directional dominance

Two models for the non-additive genetic values are avail-
able. In the genetic residual model, the non-additive values 
are i.i.d. The other option is a directional (digenic) domi-
nance model, which follows the classical framework of 
Fisher (1941) and Kempthorne (1957) and is a refinement 
of recent research (Vitezica et al. 2013; Xiang et al. 2016; 
Endelman et al. 2018; Batista et al. 2022). For a locus with 
two alleles designated 0/1, there are three digenic dominance 
effects �00, �01 , �11 , which equal the dominance deviation 
in diploids, but more generally for any ploidy are the coef-
ficients for regressing the dominance deviation on diplotype 
dosage. (Higher order dominance effects for polyploids are 
not considered.) These dominance effects can be expressed 
in terms of a parameter that has no established name but may 
be called a digenic substitution effect, � , by analogy with the 
allele substitution effect α for additive effects. The � param-
eter represents the average change in dominance deviation 
per unit increase in dosage of the heterozygous diplotype:

(This differs from the scaling in Endelman et al. (2018) by 
–2 so that � in Eq. (3) equals d in the classical diploid model 
of Vitezica et al. (2013).) Designating the frequency of allele 
1 as p = 1 − q , the dominance effects can be expressed in 
terms of the substitution effect:

The dominance value of an individual is the sum of its 
dominance effects and can be written as Q� , where the 
dominance coefficient Q for ploidy � and allele dosage X 
(of allele 1) is

In Eq. (5), 
(
�

2

)
 is the binomial coefficient. The domi-

nance genetic variance, VD, is 
(
�

2

)
 times the variance of the 

dominance effects, 4p2q2�2. Extending this framework to m 

(3)� = �01 −
1

2

(
�00 + �11

)

(4)

�00 = −2p2�

�01 = 2pq�

�11 = −2q2�

(5)Q = −2

(
�

2

)
p2 + 2p(� − 1)X − X(X − 1)
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loci, the dominance value is 
∑m

k=1
Qk�k , and the dominance 

variance is

The first term in Eq. (6) is the dominance genic variance, 
which depends on allele frequencies but not LD between 
loci. The second term is the disequilibrium covariance, 
which can be positive or negative.

In classical quantitative genetics, the substitution effects 
are fixed parameters, but to compute dominance values by 
BLUP, we switch to viewing them as random normal effects 
(de los Campos et al. 2015), with mean �� and variance �2

�
 . 

For a trait with no average heterosis in the population, 
�� = 0 (Varona et al. 2018). Let Q denote the n × m matrix 
of dominance coefficients for n individuals at m loci. The 
vector of dominance values �� is multivariate normal, with 
mean ���� and variance–covariance matrix ��T�2

�
 . Equiv-

alently, the dominance values can be written as

where � is a vector of genomic inbreeding coefficients, with 
regression coefficient b (positive value implies heterosis), 
and �0 ∼ MVN

(
0,��2

D

)
 represents dominance with no aver-

age heterosis. The genomic dominance matrix D is defined 
by interpreting its variance component �2

D
 as the expected 

value of the classical dominance variance with respect to 
the substitution effects, assuming no overall heterosis. From 
Eq. (6) the result is

which leads to

From Eq. (7), the vector of genomic inbreeding coeffi-
cients F is proportional to the row sum of Q. The correct 
scaling is derived by considering the expected value of Q 
(Eq. 5) in the classical sense (where genotypes are random 
and parameters are fixed), for a completely inbred population 
in which homozygotes of allele 1 occur with frequency p. 
Under these conditions, E[X] = �p and E

[
X2

]
= �2p , which 

leads to E[Q] = −2pq

(
�

2

)
 . Extending this to multiple loci 

and equating the result to F = 1 sets the proportionality con-
stant and leads to the following definition:

(6)VD =

(
�

2

) m∑

k=1

4p2
k
q2
k
�2
k
+
∑

k

∑

k�≠k

�k�k�cov
[
Qk,Qk�

]

(7)�� = −b� + �0

(8)�2
D
= E

[
VD

]
= �2

�

(
�

2

)∑

k

4p2
k
q2
k

(9)
� =

��T

�
�

2

�
∑

k 4p
2
k
q2
k

The vector of genomic inbreeding coefficients is included 
as a fixed effect covariate in the Stage 2 model. Inbreeding 
coefficients can also be computed from the diagonal ele-
ments of the additive relationship matrix (either A or G) 
according to (G − 1)∕(� − 1) (Henderson 1976; Gallais 
2003; Endelman and Jannink 2012).

Extension to multiple locations or traits

StageWise has the option of including a random effect g(L) 
in Stage 2 for genotype within location (or L can represent 
some other factor, such as management). Using the subscript 
k to designate location, the linear model (Eq. 1) becomes

The g(L)ik effect is modeled using a separable covariance 
structure, �⊗ � in the absence of marker data, where the 
genetic covariance between locations � follows a second-
order factor-analytic (FA2) model. The FA2 model provides 
a good balance between statistical parsimony and complex-
ity for many plant breeding applications, and Stage2 returns 
the rotated and scaled factor loadings (Cullis et al. 2010). A 
heterogeneous variance model is used for gEijk (which is the 
model residual as before), with different variance parameters 
for each location.

When marker data are provided, genotypic value is par-
titioned into additive and non-additive values, and the FA2 
model is still used for the additive covariance between loca-
tions. Attempts to use an FA2 model for non-additive val-
ues were unsuccessful in several datasets, and even with a 
compound symmetry model, the correlation parameter was 
always on the boundary (equal to 1). The non-additive cor-
relation parameter was therefore fixed at 1 and accepted as a 
model limitation. When markers are included as fixed effect 
covariates, different regression coefficients are estimated for 
each location. Similarly, different regression coefficients for 
genomic inbreeding are estimated per location.

A similar framework is used for multi-trait analysis, 
with trait replacing location in Eq. (11), except that all trait 
covariance matrices are unstructured. In Stage 1, a separable 
covariance model is used for the residuals, and in Stage 2, 
the fixed effects for environment are trait-specific. When 
markers are used to partition additive and non-additive 
genetic value, separate unstructured covariance matrices 
are estimated for each. Multi-trait models are limited to the 
homogeneous GxE structure described for single trait analy-
sis (i.e., the genetic correlation between all environments is 
the same, regardless of location).

(10)
� =

−��
�
�

2

�
∑

k 2pkqk

(11)BLUE
[
gijk

]
= yijk = Ej + g(L)ik + gEijk + sijk
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Proportion of variance explained

The aim is to quantify the proportion of variance (PVE) 
explained by each effect in the Stage 2 model, excluding 
the main effect Ej (which mirrors how heritability is calcu-
lated). The core idea is to compute variances based on the 
method of Legarra (2016), and the PVE is the variance of 
each effect divided by the sum. This is not a true partitioning 
of variance because the Stage 2 effects are not necessarily 
orthogonal.

First consider effects such as gEij and sij (Eq. 1), which are 
indexed by both genotype i and environment j. Representing 
these effects by vector y of length t, the variance is

The symbol �t in Eq. (12) is a t × 1 vector of 1’s. For mul-
tivariate normal (MVN) y with mean � and variance–covari-
ance matrix � , the expectation of Vy can be computed using 
the following general formula for quadratic forms (Searle 
et al. 1992):

The “tr” in Eq. (13) stands for trace, which equals the sum 
of the diagonal elements. It follows that

where diag(�) is the mean of the diagonal elements of K. 
Equation (14) follows the convention of using an overbar to 
indicate averaging with respect to dotted subscripts.

For effects indexed only by genotype, such as gi , Eq. (14) 
needs to be modified to accommodate unbalanced experi-
ments. If � ∼ MVN(�,�) , and Z is the incidence matrix 
relating x to the gE basis of the Stage 2 model, then � = �� 
is the random vector for which we need to compute the 
expected variance. The result is identical to Eq. (14) pro-
vided the averages are interpreted as weighted averages:

The weights wi in Eq. (15) come from � = �
′

t
� and repre-

sent the number of environments for genotype i.
For the multi-location model, the genotype within loca-

tion variance is computed using � = �⊗ � and weights 
equal to the number of times each gL combination is present. 

(12)Vy =
1

t

∑

ij

y2
ij
−

(
1

t

∑

ij

yij

)2

=
1

t
��� −

1

t2

(
�

�

t
�
)2

(13)E
[
����

]
= tr(��) + ����

(14)E
[
Vy

]
=
[
diag(�) − K

⋅⋅

]
+
[
�2
⋅

−
(
�.
)2]

(15)

diag(�) =
1

t

∑

i

wiKii

K
⋅⋅
=

1

t2

∑

i,j

wiKijwj

�b
.
=

1

t

∑

i

wi�
b
i
for exponent b = 1, 2,…

For a balanced experiment with n individuals and s loca-
tions, the result is

Following Rogers et al. (2021), Eq. (16) is partitioned 
into a main effect Vg plus genotype x loc interaction VgL. The 
main effect is based on the average of the s(s−1)

2
 off-diagonal 

elements of �:

Equation (17) is extended to the unbalanced case by using 
weighted averages for G.

BLUP

Empirical BLUPs are calculated conditional on the vari-
ance components estimated in Stage 2. All Stage 2 models 
described above can be written in the following standard 
form:

where � is a vector of fixed effects (for environments, mark-
ers, and inbreeding), � is a vector of multivariate normal 
genetic effects, and � is the “residual” vector (for the g x env 
and Stage 1 error effects). Let �̂ denote BLUP[u], which 
is calculated one of two ways for numerical efficiency. If 
the length of y exceeds the length of u, then �̂ is calculat-
ing by inverting the coefficient matrix of the mixed model 
equations (MME; Henderson 1975). Otherwise, �̂ is calcu-
lated by inverting � = var(�) and using the following result 
(Searle et al. 1992):

Genetic merit is a linear combination of random and fixed 
effects. For random effects, the structure of u is trait nested 
within individual, nested within additive vs. non-additive 
values. For fixed effects (ignoring the environment effects), � 
contains trait nested within marker effects, followed by trait 
nested within the regression coefficient for heterosis. If W 
represents the centered matrix of allele dosages for the fixed 
effect markers (n individuals x m markers), F is the vector 
of genomic inbreeding coefficients, and c is the vector of 
economic weights for multiple traits or locations, then the 
genetic merit vector for the population is

(16)
E
[
Vg(L)

]
=

tr(�⊗ �)

ns
−

(
�

�

n
⊗ �

�

s

)
(�⊗ �)

(
�n ⊗ �s

)

n2s2

=
[
diag(�)

][
diag(�)

]
−
(
G

⋅⋅

)(
Γ
⋅⋅

)

(17)E
[
Vg

]
=
[
diag(�) − G

⋅⋅

][
2

s(s − 1)

∑

i

∑

j>i

Γij

]

(18)� = �� + �� + �

(19)
�̂ = cov(�, �)�� = var(�)����

where � = �−1 − �−1�
(
���

−1
�
)−1

���
−1



Theoretical and Applied Genetics (2023) 136:65 

1 3

Page 5 of 13 65

The value of � depends on which genetic value is pre-
dicted: 0 for additive value, 1 for total value, and (
�

2
− 1

)
∕(� − 1) for breeding value and ploidy � (Gallais 

2003). Because BLUP is a linear operator, �̂ = BLUP[�] 
(i.e., the selection index) is given by Eq. (20) with u and � 
replaced by their predicted values.

Index coefficients entered by the user are interpreted as 
relative weights for standardized traits (or locations). To 
generate the vector c, the software divides the user-supplied 
weights by the standard deviations of the breeding values 
(estimated in Stage 2); it also applies an overall scaling such 
that ‖�‖ = 1 , which ensures predictions are commensurate 
with the original trait scale in multi-location models.

The reliability r2
i
 of the predicted merit �̂�i for indi-

vidual i is the squared correlation with its true value �i , 
which depends only on the random effects. If �i represents 
the vector of random genetic effects for individual i, and 
� denotes

[
1 𝛾

]′
⊗ �, then the random effects component of 

�i is �′�i , and the reliability is

The final equality in Eq. (21) relies on the following prop-
erty of BLUP: cov

(
�, �̂

)
= var

(
�̂
)
 . For the MME solution 

method, the var
(
�̂
)
 matrix is computed as var(�) − �22 , 

where �22 is from the partitioned inverse coefficient 
matrix (Henderson 1975). For the V inversion method, 
var

(
�̂
)
= var(�)

(
�

�

��
)
var(�) (Searle et al. 1992).

Selection response

The breeder’s equation provides the expected response to 
truncation selection on predicted merit �̂  . If � denotes the 
multi-trait vector of breeding values for an individual, then 
its predicted merit is �̂� = ���̂ (see Eq. 20), and the multi-trait 
response x under selection intensity i is

(To connect Eq. (22) with a familiar form of the breeder’s 
equation, the first bracketed term is the selection differential, 
and the second bracketed term represents heritability.) The 
subscript n on covn indicates it is the covariance with respect 
to the n individuals in the population, which differs slightly 
from the covariance of a vector with respect to its MVN 
distribution (see “Appendix”). As mentioned earlier, under 
BLUP, the latter covariance satisfies cov

(
�, �̂

)
= var

(
�̂
)
 . 

Combining this result with “Appendix” Eq. (35), it follows 

(20)� =
([

�n 𝛾�n
]
⊗ �′

)
� +

([
� 𝛾�

]
⊗ �′

)
�

(21)

r2
i
=

cov2
(
𝜃i, �̂�i

)

var
(
𝜃i
)
var

(
�̂�i
) =

[
��cov

(
�i, �̂i

)
�
]2

[
��var

(
�i
)
�
][
��var

(
�̂i
)
�
] =

��var
(
�̂i
)
�

��var
(
�i
)
�

(22)� =
[
i𝜎�̂�

]
[
covn

(
�, �̂�

)

𝜎2

�̂�

]
= i𝜎−1

�̂�
covn

(
�, �̂

)
�

that covn
(
�, �̂

)
= varn (̂�) , which is denoted B. The formula 

for traits j and k is

The vector �̂j is a 2n × 1 stacked vector of the predicted 
additive and non-additive values for a population of size n. 
The calculation of cov(�̂j, �̂k) follows the same procedure 
described above (see Eq. 19), and the contribution from � is 
calculated using the fixed effect estimates. Since the overall 
scaling of the index coefficients is arbitrary, we can impose 
�2

�̂
= 1 . Inverting Eq. (22) under this constraint leads to an 

expression for the index coefficients:

Substituting this result into 1 = �2

�̂
= �

�

�� leads to an 
implicit equation for the response:

Equation (25) is the matrix representation of an ellipsoid 
in t dimensions, which is used by StageWise to provide a 
geometric visualization of selection tradeoffs. (The software 
DESIRE (Kinghorn 2013) is an earlier example of plotting 
the elliptical multi-trait response.) If the response is 
expressed in units of genetic standard deviation, a diagonal 
matrix � with elements �b =

√
�2
A
+ �2�2

D
 is used to rescale 

the matrix of the quadratic form as ��−1� . The principal 
axes of the ellipse are given by the eigenvectors of this 
matrix, and the lengths of the semi-axes equal the inverse 
square-root of the eigenvalues.

This geometric model provides a convenient method 
for implementing a restricted selection index, in which 
the response for some traits is constrained to be zero 
(Kempthorne and Nordskog 1959). From above, the change 
in genetic merit associated with response x is �′� , which is 
the projection of x onto c times the magnitude of c. For the 
unrestricted index, the response that maximizes genetic gain 
is therefore the solution of the following convex optimiza-
tion problem:

The linear inequality constraint in Eq.  (26), which is 
convex, replaces the linear equality constraint of Eq. (25), 
which is not convex. This substitution is valid because the 
linear objective ensures the optimum is on the boundary 
(Boyd and Vandenberghe 2004). For the restricted index, 

(23)

Bjk = diag(�) − L
⋅⋅
+ 𝜇j⋅𝜇k⋅ −

(
𝜇j⋅

)(
𝜇k⋅

)

� =
[
�n 𝛾�n

]
cov

(
�̂j, �̂k

)[
�t 𝛾�t

]�

�j =
[
� 𝛾�

]
�j

(24)� = i−1�−1�

(25)���
−1
� − i2 = 0

(26)
max
�

���

���
−1
� ≤ 1
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the restricted traits are not included in the objective �′

� , and 
equality or inequality constraints on the genetic gain xi for 
restricted trait i are added to Eq. (26). Convex optimization 
is performed using CVXR (Fu et al. 2020), and the index 
coefficients are computed from the optimal x via Eq. (24) 
with intensity i = 1.

Marker effects and GWAS

Marker effects and GWAS scores are also calculated by 
BLUP. Let � represent the mt × 1 vector of additive (sub-
stitution) effects for t traits/locations nested within m mark-
ers, with variance–covariance matrix �m ⊗ �

�
𝜙
∑

k pkqk
�−1 

for ploidy � (Endelman et al. 2018). From the linearity of 
BLUP, the predicted multi-trait index of marker effects is (
�m ⊗ �′

)
�̂, and from Eq. (19), �̂ can be written in terms of 

the predicted additive values �̂ as

The W matrix in Eq. (27) is the centered matrix of allele 
dosages (individuals x markers). A similar result holds for 
relating the multi-trait index of digenic substitution effects 
� to the predicted dominance values �̂ (Eq. 7):

The fixed effect for inbreeding is included in �̂  and there-
fore represented in the predicted marker effects.

GWAS p-values are computed from the standardized 
BLUPs of the marker effects, which are asymptotically 
standard normal (Gualdrón Duarte et al. 2014). If �k denotes 
the kth column of the W matrix, then the standard error of 
the predicted additive effect for marker k is

The formula for dominance effects is analogous, based on 
Eq. (28). StageWise provides the option to parallelize this 
computation across multiple cores. To control for multiple 
testing, the desired significance level specified by the user is 
divided by the effective number of markers (Moskvina and 
Schmidt 2008) to set the p value discovery threshold.

(27)
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Potato data analysis

The potato dataset is an updated version of the data from 
Endelman et al. (2018), which spanned 2012–2017 at one 
location (Hancock, WI) and contained 571 clones from both 
preliminary and advanced yield trials. The current version 
spans 2015–2020 and contains 943 clones. Fixed effects for 
block or trial, as well as stand count, were used in Stage 1. 
Three traits were analyzed: total yield (Mg  ha−1), vine matu-
rity (1 [early] to 9 [late] visual scale at 100 days after plant-
ing), and potato chip fry color (Hunter L) after 6 months 
of storage. The G matrix was used for multi-trait analysis, 
instead of H, due to convergence problems with the latter.

Marker data files contain the estimated allele dos-
age (0–4) from genotyping with potato SNP array v2 or 
v3 (which contains most of v2) (Felcher et al. 2012; Vos 
et al. 2015). Genotype calls were made with R package fit-
Poly (Zych et al. 2019). Data from the two array versions 
were combined with the command merge_impute from R 
package polyBreedR (https:// github. com/ jende lman/ polyB 
reedR). This command performs one iteration of the EM 
algorithm described in Poland et al. (2012) (only one itera-
tion is needed for complete datasets at low and high density), 
followed by shift and scaling (if necessary) to ensure all data 
are in the interval [0, ploidy].

Results

The workflow to analyze data with StageWise is illus-
trated in Fig. 1. Any software can be used to compute 
genotype BLUEs and their variance–covariance matrix in 
Stage 1. For convenience, the package has a command 
named Stage1, which can accommodate any number of 
fixed or i.i.d. random covariates, as well as spatial analysis 
using SpATS (Rodríguez-Álvarez et al. 2018). To partition 
genetic value into additive and non-additive components, 
genome-wide marker data is processed with the command 
read_geno, and the output is then included in the call to 
Stage2. After estimating the variance components with 
Stage2, the blup_prep command inverts either the coef-
ficient matrix of the mixed model equations or the vari-
ance–covariance matrix of the Stage 2 response variable, 
whichever is smaller. This allows for rapid, iterative use 
of the blup command to obtain different types of predic-
tions and standard errors, which are used in the calcula-
tion of reliability (i.e., squared accuracy) for individuals 
and GWAS scores for markers. Three vignettes, or tutori-
als, come with the software to give detailed examples of 
using the commands. The following results represent a 
condensed version of this information.

https://github.com/jendelman/polyBreedR
https://github.com/jendelman/polyBreedR
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The primary dataset comes from six years of potato 
yield trials at a single location and includes 943 genotyped 
clones. The genotypic values of heterozygous clones have 
both additive and non-additive components. Non-additive 
values can be modeled in StageWise either as genetic 
residuals (no covariance) or as dominance values. In the 
context of genomic prediction, directional dominance 
models use inbreeding coefficients to estimate heterosis. 
Figure 2 compares three types of inbreeding coefficients 
for this population: (1) FD, from the directional dominance 
model, (2) FG, from the diagonal elements of the addi-
tive genomic relationship matrix, and (3) FA, from the 
diagonal elements of the pedigree relationship matrix. 
The  FG and  FD coefficients from the genomic models were 
highly correlated (r = 0.98) and have the same population 
mean, − 0.08, which indicates a slight excess of heterozy-
gosity compared to panmictic (Hardy–Weinberg) equi-
librium. Although there was some concordance between 
the genomic and pedigree coefficients for the most inbred 
individuals, there was little agreement at small values of 
FA (Fig. 2).

Single trait analysis

Initially, the three traits in the potato dataset–total yield, 
chip fry color, and vine maturity–were analyzed indepen-
dently. In Stage 1, broad-sense heritability on a plot basis 
was highest for yield (0.70–0.83), with similar results for 
fry color (0.25–0.74) and maturity (0.38–0.74) (Figure 
S1, ESM1). The benefit of including Stage 1 errors in the 
Stage 2 model was assessed based on the change in AIC, 
which ranged from − 29 for maturity to − 104 for fry color 
(Table 1). Applying the summary command to the output 
from Stage2 generates a table with the proportion of varia-
tion explained (PVE). The PVE for additive effects, which 
can be called genomic heritability, ranged from 0.34 (yield) 
to 0.43 (maturity) (Table 2). The PVE for dominance effects 
has two parts: one due to the variance of the dominance 

Fig. 1  Overview of the com-
mands and workflow in R/
StageWise

Fig. 2  Comparison of inbreed-
ing coefficients (F) for a 
population of 943 potato breed-
ing lines. The vertical axis is 
computed from the dominance 
coefficients, and the horizontal 
axis is computed from the addi-
tive relationship matrix

Table 1  Akaike Information Criterion (AIC) for the Stage 2 model 
with vs. without inclusion of the Stage 1 errors

Yield Fry color Vine maturity

Without 7007 4662 2018
With 6940 4558 1989
Change − 67 − 104 − 29
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effects (“Dominance” in Table 2), and the other from vari-
ation in the genomic inbreeding coefficient (“Heterosis” in 
Table 2). Of the three traits, yield had the largest influence 
of dominance, with a combined PVE of 0.15.

StageWise has the ability for genomic prediction with the 
H matrix, which is a weighted average of G and A that was 
originally developed to use ungenotyped individuals in the 
training population (Legarra et al. 2009; Christensen and 
Lund 2010). Even when all individuals are genotyped, H 
may still outperform G due to the sparsity of A (Fig. 3). For 
the potato dataset, the change in AIC with H ranged from 
− 6 (fry color) to − 13 (yield). The optimum weight for A 
was 0.3 for vine maturity and fry color and 0.5 for yield. As 
the weight for A increased, the estimate for genomic herit-
ability (solid line in Fig. 3) also increased, at the expense of 
dominance (dashed line).

The blup_prep command has an option to mask Stage 
1 BLUEs, which can be used to estimate the accuracy of 
predicting new individuals or new environments. Figure 4 
compares the reliability of genome-wide marker-assisted 
selection (MAS) vs. marker-based selection (MBS) for the 
last breeding cohort in the potato dataset. The distinction 
between MAS and MBS is that the selection candidates 
are part of the training set with MAS but not with MBS 
(Bernardo 2010). The reliability of MAS (r2

A
) was 0.14–0.21 

higher than MBS (r2
B
) across traits. From index theory 

(Lande and Thompson 1990; Riedelsheimer and Melchinger 
2013), the two quantities are related by

When used with the genomic heritability estimates from 
Stage2, this formula closely matched the data for all three 
traits (Fig. 4).

Although GWAS is not the emphasis of StageWise, the 
software can perform a fully efficient, two-stage GWAS. For 
the potato dataset, there was a major QTL for vine maturity 
on chr05 (Figure S2, ESM1), in the vicinity of the well-
known regulator of potato maturity StCDF1 (Kloosterman 

(30)r2
A
= r2

B
+

h2
(
1 − r2

B

)2
(
1 − h2r2

B

)

et al. 2013). Stage2 has an optional argument to include 
markers as fixed effects for major QTL. In this case, the 
PVE for the marker was 0.10, which represents 21% of the 
total additive variance.

Multi‑trait analysis

Multi-trait analysis follows the same general workflow as a 
single trait. In addition to the PVE, the summary command 
returns the additive correlation matrix for the traits. For the 
potato dataset, late maturity was correlated with higher yield 
(r = 0.57) and slightly with lighter fry color (r = 0.23). There 

Table 2  Proportion of variation explained for the multi-year potato 
dataset

Both “Dominance” and “Heterosis” come from the directional domi-
nance model

Yield Fry color Vine maturity

Additive 0.34 0.38 0.43
Dominance 0.12 0.04 0.02
Heterosis 0.03 0.00 0.00
Genotype x year 0.30 0.24 0.16
Stage 1 error 0.21 0.34 0.39

Fig. 3  Minimizing the Akaike Information Criterion (AIC) to select 
the optimal weighting of pedigree (A) and marker (G) additive rela-
tionship matrices: H = wA + (1–w)G. The optimal weight varied by 
trait in a potato dataset of 943 clones. The proportion of variation 
explained (PVE) by the additive effects (solid line) increased with w, 
while the PVE for the dominance effects (dashed line) decreased
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was no genetic correlation (r = 0.00) between yield and fry 
color.

The “index.coeff” argument for blup is used to specify 
the selection index coefficients, which determine the relative 
weights of the traits (after standardization to unit variance) 
for genetic merit. (Because StageWise uses a multi-trait 
BLUP, the optimal index coefficients equal the coefficients 
of genetic merit.) For the potato chip market, it is reasonable 
to give equal weight to yield and fry color. However, naïve 
selection on these traits alone will generate offspring with 
later maturity, which is undesirable. One way to avoid this is 
by using vine maturity as a covariate in the analysis.

Alternatively, the gain command in StageWise can 
be used to compute the coefficients of a restricted selec-
tion index, in which the response for some traits is con-
strained to be zero (Kempthorne and Nordskog 1959). For 
a given selection intensity and t traits, the set of all possi-
ble responses is a t-dimensional ellipsoid, and gain shows 
2D slices of it. Figure 5 shows the breeding value response 
for yield and maturity, as well as two line segments. The 
dashed red line is the projection of the index vector, and 

the solid blue line is the projection of the optimal response. 
The restricted index requires negative weight for maturity 
to produce zero response, which reduces the yield response 
compared to the unrestricted index by 0.23i� ( i is selection 
intensity and � is the genetic standard deviation of the breed-
ing values; Table 3).

Fig. 4  Comparing the reliability (r2) of marker-assisted (MAS) vs. 
marker-based (MBS) genomic selection in the potato dataset. Each 
point represents a clone from one breeding cohort, and the blue line 

is a linear trendline. The increased accuracy from having phenotypes 
for the selection candidates (MAS) was closely predicted by selection 
index theory (dashed line)

Fig. 5  Selection response trade-
offs in the potato dataset for 
three traits: yield, maturity, and 
fry color. The response surface 
is three-dimensional, but only 
the yield-maturity plane is 
shown to highlight the tradeoff 
between these two traits. The 
dashed red line segment is the 
projection of the index vector, 
and the solid blue line segment 
is the projection of the optimal 
response (color figure online)

Table 3  Multi-trait response for potato under truncation selection, 
assuming yield and fry color contribute equally to genetic merit

Index coefficients are for standardized traits and scaled to have unit 
norm. Response is for intensity i = 1, in units of genetic standard devi-
ation

Trait Unrestricted index Restricted index

Coefficients Response Coefficients Response

Total yield 0.707 0.53 0.601 0.30
Fry color 0.707 0.52 0.601 0.51
Vine maturity 0.000 0.47 -0.527 0.00
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Discussion

StageWise was designed to enhance the use of genomic pre-
diction in plant breeding, but there are some limitations. At 
present, each phenotype is associated with a single genotype 
identifier, which is inadequate for hybrid prediction. The 
options for modeling GxE are somewhat limited, particu-
larly for multiple traits, which assume a uniform genetic 
correlation between environments. For single trait analysis, 
a more complex GxE model is possible to allow for heter-
ogenous genetic correlation between locations. The genetic 
covariance between locations is based on a second- order 
factor-analytic (FA2) model (Smith et  al. 2001), which 
offers enough statistical complexity for many applications. 
To assess model adequacy, the factor loadings returned by 
Stage2 can visualized with the command uniplot, which gen-
erates a circular plot in which the squared radius for each 
location equals the proportion of genetic variance explained 
by the latent factors (Cullis et al. 2010). This functionality is 
illustrated in Vignette 2 using national trial data for potato 
(Schmitz Carley et al. 2019). At present, StageWise does 
not have functionality for genomic prediction with environ-
mental covariates.

This is the first study to formulate and apply a model 
for directional dominance in polyploids. Although heterosis 
explained less than 5% of the variance (PVE) for yield, we 
should expect small PVE when there is limited variation for 
inbreeding. The standard deviation of FD was only 0.03 for 
the population of 943 potato clones (Fig. 3).

From the theory of directional dominance, the average 
dominance coefficient is the covariate for estimating het-
erosis. Xiang et al. (2016) used average heterozygosity for 
the covariate because under a genotypic parameterization 
of dominance in diploids, this is equivalent to the aver-
age dominance coefficient. However, studies employing 
orthogonal parameterizations of dominance have also used 
this covariate (Aliloo et al. 2017; Yadav et al. 2021), even 
though heterozygosity is no longer equivalent to the domi-
nance coefficient because the relative contribution of the 
genotypes to inbreeding depends on allele frequency (see 
Eq. 5). For example, the minor allele homozygote contrib-
utes more to inbreeding than the major allele homozygote, 
and the difference is �(� − 1)(q − p) for ploidy � and minor 
allele frequency p = 1 − q at panmictic equilibrium. To give 
another example, simplex dosage of the minor allele in a 
tetraploid contributes more to inbreeding than duplex dosage 
only for p > 1/3; for p < 1/3, duplex dosage contributes more.

A more general approach to restricted selection indices 
was developed in StageWise by investigating the geometry 
of the problem (Eq. 26). Until now, only equality constraints 
have been included (i.e., specifying a certain value for 

genetic gain), which are amenable to solution by the method 
of Lagrange multipliers. StageWise uses convex optimiza-
tion software to allow for both equality and inequality con-
straints. In many situations, inequality constraints are more 
appropriate than equality constraints. For example, when 
selecting for yield, we might accept earlier but not later 
maturity, which is represented by response ≤ 0 . With only 
one constrained trait, the optimal solution corresponds to 
zero response, so the inequality offers no advantage. But 
with two or more constraints, higher genetic gains are pos-
sible with inequalities (ESM2).

The “mask” argument for blup_prep makes it easy to 
investigate the potential benefit of using a correlated, sec-
ondary trait to improve genomic selection. Many plant 
breeding programs are exploring the use of spectral meas-
urements from high-throughput phenotyping platforms to 
improve selection for yield. For example, Rutkoski et al. 
(2016) demonstrated that aerial measurements of canopy 
temperature during grain fill could be used to predict wheat 
grain yield. Vignette 3 shows how to recreate this result with 
StageWise.

Typically, the number of traits a breeder must consider 
for selection is too large to analyze jointly in StageWise 
based on the current implementation with ASReml-R. New 
algorithms may alleviate this limitation in the future (Runcie 
et al. 2021), but in the meantime, a practical approach is to 
split the traits into groups for multivariate analysis based on 
phenotypic correlations. In the final step, multiple outputs 
from blup_prep can be combined in one call to blup, using 
an index that covers all traits (example in Vignette 3).

We should acknowledge that truncation selection on 
breeding value is not optimal for long-term genetic gain. 
The design of selection methods that conserve and exploit 
genetic diversity more efficiently is an exciting area of 
research (e.g., Toro and Varona 2010; Akdemir and Sánchez 
2016; Goiffon et al. 2017). Although such methods are not 
currently available in StageWise, the additive and domi-
nance marker effects returned by the software can be used 
to implement them.

Appendix

The objective is an expression for the expected covariance 
between two quantities of a population of size n, repre-
sented by multivariate normal vectors �1 ∼ MVN

(
�1,�1

)
 

and �2 ∼ MVN
(
�2,�2

)
 , with covariance L:

(31)� =

[
�1
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]
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�1

�2

]
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[
�1 �
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Noting that �1 =
[
�n �

]
� and �2 =

[
� �n

]
� , the popula-

tion covariance is (cf. Eq. (12))

where �n = �n�
�

n
 is a n x n matrix of ones. Using 

Eq. (13), the expectation of the first quadratic form in Eq. 
(32) is

The expectation of the second quadratic form in Eq. 
(32) is

Putting Eq. (33and34) together, the expected covari-
ance is

As in the Methods, for partitioning covariance on 
a gE basis, the unbalanced nature of the experiment is 
accounted for by computing the covariance between 
vectors �1 = ��1 and �2 = ��2, where incidence matrix 
Z maps n individuals to gE instances. If y denotes the 
stacked vector 

[
�1 �2

]′ , then

Replacing x with y in Eq. (32), the result for expected 
covariance follows Eq. (35) but using averages weighted 
by the number of environments per genotype.
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