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Abstract
Key message  VCU trials can provide unbiased estimates of post-breeding trends given that all data is used. Dropping 
data of genotypes tested for up to two years may result in biased post-breeding trend estimates.
Abstract  Increasing yield trends are seen on-farm in Germany. The increase is based on genetic trend in registered genotypes 
and changes in agronomic practices and climate. To estimate both genetic and non-genetic trends, historical wheat data from 
variety trials evaluating a varieties’ value for cultivation und use (VCU) were analyzed. VCU datasets include information 
on varieties as well as on genotypes that were submitted by breeders and tested in trials but could not make it to registration. 
Therefore, the population of registered varieties (post-registration population) is a subset of the population of genotypes tested 
in VCU trials (post-breeding population). To assess post-registration genetic trend, historical VCU trial datasets are often 
reduced, e.g. to registered varieties only. This kind of drop-out mechanism is statistically informative which affects variance 
component estimates and which can affect trend estimates. To investigate the effect of this informative drop-out on trend 
estimates, a simulation study was conducted mimicking the structure of German winter wheat VCU trials. Zero post-breeding 
trends were simulated. Results showed unbiased estimates of post-breeding trends when using all data. When restricting 
data to genotypes tested for at least three years, a positive genetic trend of 0.11 dt ha−1 year−1 and a negative non-genetic 
trend (− 0.11 dt ha−1 year−1) were observed. Bias increased with increasing genotype-by-year variance and disappeared with 
random selection. We simulated single-trait selection, whereas decisions in VCU trials consider multiple traits, so selection 
intensity per trait is considerably lower. Hence, our results provide an upper bound for the bias expected in practice.

Abbreviations
BLUE	� Best linear unbiased estimation
BLUP	� Best linear unbiased prediction
BSA	� Bundessortenamt Federal Plant Variety Office in 

Germany
MAR	� Missing at random
MCAR​	� Missing completely at random
MNAR	� Missing not at random
MSE	� Mean squared error
VC	� Variance component
VCU	� Value for cultivation and use

Introduction

In Germany, on-farm crop yield has increased during the 
last decades (Laidig et al. 2017). This yield increase can 
be due to improvements in genetics and agronomic prac-
tices (Schuster 1997). The long-term genetic trend is due 
to improvements of newly registered varieties. Non-genetic 
trends can be due to changes in the ratio of producer-to-input 
prizes (Peltonen-Sainio et al. 2009) and government regu-
lations that limit the application of fertilizer (DÜV 2020). 
Additionally, climate change can systematically affect crop 
yield (DaMatta et al. 2010). It is important for breeders and 
farmers to dissect genetic und non-genetic effects on yield 
trends in long-term variety trial data because these two 
sources determine the overall trend. Farmers require a solid 
basis to evaluate their decisions on growing newly registered 
varieties, whereas breeders are interested in measuring their 
success and planning their future breeding aims (Schuster 
1997). Separating genetic and non-genetic components of 
trend allows prioritizing future research and development to 
areas with the largest expected progress (Rizzo et al. 2022).
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Two types of trials can be used to estimate long-term 
genetic and non-genetic yield trends in wheat and other 
crops (Brancourt-Hulmel et al. 2003) for a target region: 
vintage trials and historical data from trials that evaluate 
varieties’ value of cultivation and use (VCU) (Fisher et al. 
2014; Laidig et al. 2017). The most common approaches 
are vintage trials or ERA studies (Cooper et al 2020). They 
are used for a direct comparison of old and modern varie-
ties in the same trials (e.g. Ahrends et al. 2018; Brancourt-
Hulmel et al. 2003; Bulman et al. 1993; Curin et al. 2021; 
Cox et al. 1988; Morgounov et al. 2010; Morrison et al. 
2000; Nehe et al. 2019; Ormoli 2015; Perry and D’Antuono 
1989; Sanchez-Garcia 2015; Sun et al. 2014). In vintage tri-
als, a limited number of selected varieties spanning a wide 
range of registration years (usually 10–20 years) are tested 
for a small number of years (usually two to four years) at a 
limited number of locations under present environmental 
conditions. Testing old and new varieties in the same experi-
ment has the advantage that agronomic practices can be set 
to be the same for all varieties. Therefore, trends seen in 
vintage trials are directly attributable to genetic trend. For a 
fairer comparison, however, agronomic conditions such as 
the amount of fertilizer and growth regulator applied may 
be varied within the experiment to account for temporal 
changes in these factors (Brancourt-Hulmel et al. 2003). 
The idea of vintage trials is to grow varieties under a range 
of different environmental conditions including conditions 
they are selected for. This allows estimating the variance due 
to variety-by-environmental condition interactions. While 
agronomic management can be adapted to historical condi-
tions, it is not possible to account for changes in climate and 
pathogenic pressure. Therefore, a fraction of the variety-by-
environmental condition interactions becomes part of the 
estimated genetic trend (Fischer et al. 2014). In summary, 
trends estimated from vintage trials are imprecise due to 
limited amount of data and also are potentially biased due to 
variety-by-environmental condition interactions.

The alternative is to determine trends from historical VCU 
trial data. These datasets are large and collected over a rela-
tively long period of time. VCU trials are commonly organized 
in over-lapping cycles. Every year, a new set of genotypes 
enters into a two- or three-year testing cycle. If genotypes meet 
certain selection criteria, they are registered and become varie-
ties at the end of a cycle. Check varieties that were registered 
in the past are included in all cycles as a benchmark and to 
connect cycles. An important aspect of VCU trial data is that 
it includes data on varieties as well as data on those genotypes 
that were tested in trials but could not make it to registration. 
Therefore, the population of registered varieties (post-regis-
tration population) is a subset of the population of genotypes 
tested in VCU trials (post-breeding population). In general, 
the genetic trend can be estimated for both populations. The 
genetic trend of interest is the genetic trend of varieties that 

have been registered, as only these varieties can be grown on-
farm. We can therefore say that this trend is a post-registration 
trend. In contrast, trend estimates from VCU trial data that 
includes all submitted genotypes represent post-breeding 
trends. This may be of particular interest to breeders. Both 
trend estimates consider the trend for a target region and thus 
across the locations within the region.

For trend estimation from VCU trial data, a simple and 
commonly used approach is to restrict the dataset to geno-
types which were either registered at the end of a cycle (i.e., 
varieties) or which underwent at least three or four years of 
testing (Mackay et al. 2011; Laidig et al. 2014, 2017; Rijk 
et al. 2013; Öfversten et al. 2004; de la Vega et al. 2007; Woy-
ann et al. 2019). The idea behind this is to restrict data to the 
population of varieties or a population of genotypes, which 
is more similar to the population of interest compared to the 
post-breeding population of VCU trial data. Additionally, 
data reduction speeds up calculation. However, according to 
Little and Rubin’s (2002) classification of missing-data pat-
terns, the systematic reduction of VCU trial data results in 
an informative missing data pattern (missing not at random; 
MNAR). This pattern depends on both the observed data from 
registered varieties and checks and on the non-used (missing 
but observed) data from dropped genotypes. MNAR patterns 
can result in biased variance component estimates if the selec-
tion of genotypes is based on the considered trait (Piepho and 
Möhring 2006; Hartung and Piepho 2021).

Mackay et al. (2011) were aware of this potential problem 
but argued that variety selection for yield is done by com-
parison of new genotypes against established check varieties 
rather than by direct selection amongst the genotypes them-
selves. As full data of these checks are inevitably included, 
data for making the selection decision are included. More-
over, the model-based adjustment for differences in cycle 
means mainly depends on check varieties. Again, as data 
from these check varieties is not reduced and thus check 
varieties are not subject to selection, the authors expected 
negligible bias if any. Similar assumptions were made in 
Laidig et al. (2014) and in other studies using VCU trial 
data. The current study aims to investigate the validity of this 
assumption. Simulations are set up to mimic the structure 
of German VCU trials including a yield-dependent selection 
of genotypes. Simulated data prior and after restricting it 
to some minimum of testing years are analysed to quantify 
potential bias in estimated genetic and non-genetic post-
breeding trend.

Methods

The general approach of the study was to use a real VCU 
trial dataset for winter wheat to estimate variance compo-
nents for genetic and non-genetic sources. The structure of 
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this dataset and the variance components were then used to 
simulate new datasets, including selection on the simulated 
trait. The real dataset and the simulated datasets were ana-
lysed with mixed models.

VCU dataset for wheat

Winter wheat yield data from 1622 VCU trials performed 
by the Federal Plant Variety Office in Germany (Bun-
dessortenamt, BSA) between 1983 and 2016 (34 years) 
were used (Table 1). The dataset was already used for trend 
estimation (Laidig et al. 2017). Each trial was performed 
as a split-plot design with main-plots treated or non-treated 
with fungicides and growth regulators. The sub-plot factor 
was genotype. Data used here were limited to the treated 
level to avoid effects resulting from the loss of tolerance or 
resistance of genotypes due to pathogenic adaption (Rijk 
et al. 2013; Laidig et al. 2014). Therefore, the design with 
respect to the data used reduced to a randomized complete 
block design (RCBD). Adjusted means for each genotype-
by-trial combination at each main-plot level were available.

In general, data were organized in overlapping three-
year cycles. Every year a new cycle with a new set of 
genotypes started. One cycle consists of three trial series, 
i.e. three years of trials. In each year, three trial series 
from three subsequent cycles were tested in parallel with 
one series in the first, one in the second and one in the 
third year. All genotypes of each cycle were tested in the 
first year. After the first and second year on average 51% 
and 26% of all genotypes were culled as the aim is to 
register only the best genotypes as new varieties. Note 
that the number of genotypes tested in the first trial series 
increased from approximately 60 in 1983 to approximately 
120 in 2016, but proportions of culled genotypes after the 
first series remained constant (Figure S1a). In contrast, 
there was an increase in the proportion of genotypes in 

the third year of testing from 18 to 28% (Figure S1b). 
The selection decision is based on empirical best linear 
unbiased estimates (BLUEs) of genotype means for several 
traits. The most important decision criterion is an index 
combining yield, quality and ratings of resistance (called 
Ertragswertzahl in German). To have a benchmark for 
selection and to allow comparing genotypes from differ-
ent series, some well-known check varieties were included 
in all trials. Each check variety was included in more than 
one cycle and thus occurs in more than three years (Fig. 1).

The dataset comprised 2912 genotypes and had a 
total of 77,802 observations (Table 1). Genotypes can be 
divided into three groups: (1) 2901 candidates with 64,792 
observations, where a candidate here means a genotype 
which occurs at least in its first year of testing, (2) 48 
check varieties (37 were successful candidates in earlier 
years) that were tested as candidate or as check variety 
for on average 6.8 years (Fig. 1) with a total of 12,206 
observations (2,001 observations as candidates), as well 
as (3) 190 other genotypes. All of the latter group are also 
included in the group of candidates. Most of the candidates 
were tested in two subsequent cycles for various reasons. 
To simplify terminology, we subsequently subsume check 
varieties and other genotypes under the term ‘checks’.

Only a part of the candidates was registered as varieties 
after testing. A total of 1592 (55%) and 618 (21%) out of 
2901 candidates were culled after the first year and after the 
second year of testing, respectively. Furthermore, only about 
one half of the remaining candidates were registered as vari-
eties later on. The data from candidates included 64,792 
mean values from 64,792 genotype-by-year-by-location 
combinations, whereas the data of checks included 13,010 
mean values from 10,003 genotype-by-year-by-location 
combinations. Only check varieties can occur more than 
once within a year-by-location combination because they 
can be present in different series side by side.

Table 1   Characteristics of the 
historical winter wheat dataset 
and the three simulated datasets

Number of Dataset

Historical winter 
wheat data (BSA)

C C-1 C-2

Observations 77,802 77,802 58,108 42,066
 From candidates 64,792 64,792 45,293 30,233
 From checks 13,010 13,010 12,815 11,833

Years 34 34 34 34
Locations 120 120 120 120
Year-by-location combinations 1302 1302 1302 1302
Trial-by-year-location combinations 1622 1622 1622 1622
Genotypes 2912 2912 1320 702
Genotype-by-year combinations 5095 5095 3491 2245
Genotype-by-location combinations 60,421 60,421 40,727 26,148
Genotype-by-year-by-location combinations 75,795 75,795 56,101 40,102
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Within a trial series and cycle, all genotypes were tested 
in the same set of locations. On average, genotypes within 
a series were tested in 11.4, 12.6, and 24.1 locations in the 
first, second and third year, respectively. Within a cycle, only 
a few locations were repeated across years. On average 1.9, 
1.3 and 7.6 locations occurred subsequently in the first two 
years, in the first and third and in the last two years, respec-
tively. This resulted in a large number of tested genotype-by-
location combinations (60,421) compared to the number of 
tested genotype-by-year-by-location combinations (75,795). 
The dataset is sparse in the sense that only 0.65% of the pos-
sible genotype-by-year-by-location combinations are available.

The complete dataset of historical winter wheat data is 
denoted as BSA. As VCU trial dataset used for trend analysis 
are commonly reduced by dropping genotypes tested for up 
to two years (Laidig et al. 2014, 2017; Piepho et al. 2014), a 
reduced dataset is created as well. This dataset is denoted as 
BSA-2. Furthermore, the data were reduced to the 48 check 
varieties, as the connectivity of cycles and therefore the pre-
cision of adjusting cycles mainly depends on these check 
varieties. This dataset is denoted as “check varieties only”.

Analysis of VCU data

The complete and reduced historical datasets were analysed 
for the trait yield using a three-way model with factors year, 
location and genotype. The model is

(1)
yijkl =� + Yk + Lj + Gi + (LY)jk + (LYT)jkl

+ (GL)ij + (GY)ik + (GLY)ijk + eijkl

where yijkl is the mean of genotype i in trial l of year k and 
location j (Piepho and Michel 2000). For all candidates there 
is only a single mean within a year-by-location combination. 
Only check varieties can occur twice or three times within 
a year-by-location combination. This is the case if two or 
three series were tested in the same year and location. Thus, 
the separation between (GLY)ijk and the error eijkl is based on 
check varieties only. The term � is the intercept, Yk is the kth 
year effect, Lj is the jth location effect and Gi is the ith geno-
type effect. The effects (LY)jk , (GL)ij , (GY)ik , and (GLY)ijk are 
the interaction effects of the corresponding main effects, and 
(LYT)jkl is the trial effect within a year-by-location combina-
tion. Again, separation of trial effects and location-by-year 
effects is based on check varieties only. All effects (except 
the intercept) were assumed as random. Homogeneous vari-
ances were assumed for all effects. Following the approach 
of Piepho et al. (2014), the model was extended by replacing 
genotype and year main effects as follows:

where tk is a numeric variable for the year of testing and 
ri is a numeric variable for the year of first testing, � and 
� are the corresponding slopes, and Hi and Zk are the cor-
responding random deviations of Gi and Yk from the corre-
sponding regression line. The slope � represents the genetic 
trend while the slope � represents the non-genetic trend. The 
complete model can be described as:

This model differs from the models used in Laidig et al. 
(2014, 2017), Mackay et al. (2011), Öfversen et al. (2004) 
and Piepho et al. (2014) in two ways: (1) it includes a trial 
effect and (2) it separates error and three-way interaction 
effects. In both cases the separation is based on check 
varieties. The historical dataset was analysed using PROC 
HPMIXED from the SAS system. To avoid memory prob-
lems, additional factors were defined for all interaction 
effects. These factors have as many levels as there are inter-
action effects. The numeric variables year of testing and year 
of first testing were not centered.

To check whether the selection intensity of the BSA has 
changed during the study period, the proportion of selected 
genotypes among the tested genotypes in the first year was 
regressed on the first year of testing by fitting a logistic regres-
sion. The linear predictor corresponds to the expected value of 
a simple linear regression. The analysis assumed a binomial 
distribution with the logit link function.

G
i
= � ⋅ r

i
+ H

i
and Y

k
= � ⋅ t

k
+ Z

k

(2)

yijkl =� + �tk + Zk + Lj + �ri + Hi

+ (LY)jk + (LYT)jkl + (GL)ij

+ (GY)ik + (GLY)ijk + eijkl

Fig. 1   Occurrence of check varieties across years. Check varieties are 
numbered and shown on the y-axis. Each plus ( +) for a given year of 
testing means that the check variety is included as candidate geno-
type within the dataset, a circle (o) indicates that the check variety 
is included as check within the dataset. Most check varieties first 
occurred as candidates for three years. One or two years after regis-
tration, the registered variety was used as a check
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Data simulation

The main purpose of the data simulation was to mimic 
the historical VCU trial datasets, including the selection 
exercised by the testing authorities. Data were simulated 
according to the model used for analyzing VCU trial dataset 
(model 2). All effects were simulated as normally distrib-
uted with zero expectation and independent and identically 
distributed effects. VCs estimated from the historical data 
(Table 2) were used to simulate new datasets. Additionally, 
a second set of VC was used, which was identical to the first 
set but had the genotype-by-year variance increased from 
3.16 to 55.75. In this case, the genotype-by-year variance 
was 4.2 times larger than the genotype variance, while in 
historical data, the genotype variance is 4.2 times larger 
than the genotype-by-year variance. In contrast to results 
of VCU trial dataset analysis, zero slopes for post-breeding 
non-genetic and genetic trend were simulated. This entails 
no loss of generality, as we are only interested in assessing 
bias and empirical best linear unbiased estimation (BLUE) 
is generally unbiased (Searle et al. 1992). Simulated data-
sets were designed to mimic the historical VCU trail dataset 
reproducing the exact same structure. This means that the 
simulated data mimicked the historical data in the sense that 
the same number of genotypes were tested in the same num-
ber of years and locations and that there was always a pair 
of genotypes (one genotype in the historical dataset and one 
in the simulated dataset) with the same amount of testing in 
the same years and locations. This required that the same 
number of candidates were simulated in each year and series 
as in the historical data. As in the historical data only can-
didates were culled during testing, the whole dataset to be 
simulated was split into 64,792 observations from candidates 
and 13,010 observations from checks. Data for candidates 

were split into cycles and the complete data for three years 
was simulated for each cycle. Afterwards, data from the first 
year of each cycle was used to select candidates tested in the 
corresponding second year. Candidates tested in the third 
year of each cycle were selected from these candidates using 
data of the corresponding first and second year of testing. 
The proportion of candidates tested in the second and third 
year of each cycle corresponds to the proportion tested in 
the cycles of the historical data. Technically, this required 
exchanging genotype and genotype-by-location labels after 
each selection step to make sure that data of the selected 
candidates are indeed occurring in the successive year in the 
historical dataset. Genotype effects and genotype-by-loca-
tion effects of candidates which were used as check varieties 
later on, were transferred to the simulated values of these 
check varieties. Data for all other checks were simulated 
using model (2) and not changed afterwards. Year, location, 
year-by-location and trial-by-year-location effects were sim-
ulated once per simulation run and used for all candidates in 
all cycles and all checks.

Separate selection steps were performed for each cycle. In 
each cycle, the selection of candidates in the first year was 
based on the following model

where � is the confounded effect of the intercept and the 
main effect of the considered year, Lj is the confounded main 
effect of the jth location, the interaction effect of the jth loca-
tion in the considered year and the lth trial effect within the 
considered location and year. Similarly, Gi is the confounded 
main effect of the ith genotype with the interaction effect of 
genotype-by-year in the considered year. The error effect 
eij denotes the confounded effect of genotype-by-location 
interaction, genotype-by-location-by-year interaction and 

(3)yij = � + Lj + Gi + eij

Table 2   Variance component 
estimates absolute and relative 
in parenthesis as well as trend 
estimates with their standard 
error given in parenthesis for 
a series of 1622 winter wheat 
trials across 34 years using all 
genotypes available (BSA) and 
dropping genotypes with up to 
two years of testing (BSA-2)

Parameter Estimate for dataset in dt2 ha−2

BSA BSA-2 Check varieties only

Variance component
Year 25.13 (13%) 23.89 22.99
Location 53.15 (27%) 53.50 54.08
Year-by-location 74.14 (37%) 73.98 72.90
Year-by-location-by-trial 8.83 (4%) 9.03 9.55
Genotype 13.27 (7%) 12.10 11.17
Genotype-by-year 3.16 (2%) 2.94 4.30
Genotype-by-location 2.25 (1%) 2.16 2.38
Genotype-by-year-by-location 9.62 (5%) 9.01 9.19
Error 9.36 (5%) 9.41 9.17

Trend Estimate (standard error) for dataset in dt ha−1 year−1

Genetic 0.559 (0.029) 0.553 (0.031) 0.555 (0.050)
Non-genetic 0.174 (0.100) 0.126 (0.098) 0.153 (0.099)
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error effect. All effects were assumed to be random except 
the intercept. Candidates were selected based on their best 
linear unbiased predictions (BLUP) for Gi . Thus, selection 
in the simulation only depends on the single trait yield. Fur-
thermore, BLUPs were used (in contrast to BLUEs as was 
used in the historical VCU trials), as the former minimize 
the mean squared error (Robinson 1991; Piepho et al. 2008). 
In each cycle, the selection of candidates in the second year 
was based on the following model:

where (GLY)ijk now is the confounded effect of three-way 
interaction and error effect, (LY)jk is the confounded effect 
of the year-by-location interaction effect and the trial effect 
of this year-by-location combination. A separation of both 
effects is not possible as the data included a single trial per 
year-by-location combination only. A separation of these 
effects requires a joint analysis of more than one cycle at a 
time. Model (4) is in line with the across-cycle models used 
in Laidig et al. (2014, 2017), Mackay et al. (2011), Öfversten 
(2004), Piepho et al. (2014) and de la Vega et al. (2007). It 
differs somewhat from the models and methods actually used 
for selection in the German historical VCU trials, where 
selection is based on model (3) and second year data only. 
The selection therefore differed in three ways from selection 
performed by the Federal Plant Variety Office in Germany: 
First, multi-trait selection was replaced by single-trait selec-
tion. Second, BLUE for Gi was replaced by best linear unbi-
ased prediction (BLUP) for Gi and third, all available data 
within a cycle was used for yearly selection, whereas in VCU 
trials, selection is based on the current year’s data only. All 
of these three changes should increase selection intensity in 
the simulated data compared to the actual VCU data. Adding 
candidates of all simulated cycles and the checks forms the 
complete dataset.

A total of four simulations were performed. Three data-
sets were created within each run of each of the four simula-
tions. For the first three simulations, variance components 
estimated from the historical data (BSA; Table 2) were used 
to simulate new datasets.

The simulated datasets in the first simulation that mim-
icked the VCU trial dataset were denoted as C (for com-
plete). Additionally, C datasets were modified afterwards by 
dropping some observations. Specifically, datasets C-1 and 
C-2 were created by dropping candidates that were tested 
only in one or in up to two years. Dropping candidates which 
were tested for one or up to two years results in an informa-
tive missing data pattern (Little and Rubin 2002; Piepho and 

(4)
yijk = � + Yk + Lj + Gi + (LY)jk

+ (GL)ij + (GY)ik + (GLY)ijk

Möhring 2006). The three simulated datasets (C, C-1 = C \
{candidates tested for one year}, and C-2 = C \ {candidates 
tested for less than three years}) were created in each of 500 
simulation runs. They share the years, locations and trials 
but vary in the number of genotypes tested (Table 1). Data-
sets C and BSA as well as C-2 and BSA-2 have the same 
size, respectively.

In the second simulation, the historical VCU trial dataset 
was reduced by randomly dropping duplicates in genotype-
by-year-by-location combinations. The drop-out mechanism 
here is completely at random (MCAR) and thus should not 
affect expectation of parameters estimated from the dataset. 
Duplicates only occurred for check varieties. As a conse-
quence, the data had a single mean for each genotype-by-
year-by-location combination within the dataset. Therefore, 
model (2) simplifies to model (5) given below. Thus, the 
model for analysis is identical to the model for simulating the 
data. After dropping duplicates, data were simulated analo-
gously to dataset C. The simulated dataset was denoted as 
SM (for single mean). It was reduced to SM-1 and SM-2 by 
dropping genotypes tested for up to one or up to two years. 
The datasets SM, SM-1, and SM-2 had 75,795, 55,106 and 
41,102 observations, respectively. As the additional drop-out 
of check varieties’ data was completely at random (MCAR), 
this step did not change the missing data pattern. Thus, the 
datasets C and SM had a missing-at-random (MAR) data 
pattern. The other four datasets (C-1, C-2, SM-1 and SM-2) 
had an informative missing pattern (MNAR). 100 simulation 
runs were performed for the second simulation.

The third simulation was similar to the first one, but 
replaced the yield-based selection by a random selection. In 
this case, the missing data pattern is MCAR. This simulation 
served as a benchmark for the other simulations.

In the fourth simulation, the genotype-by-year variance 
was increased to 55.75. This fourth simulation was added 
to check if bias in trends can be modified when increasing 
genotype-by-year variance. All remaining simulation steps 
including the number of simulation runs are identical to the 
first simulation. Datasets were denoted as I, I-1 and I-2 (for 
the increase in genotype-by-year VC).

Analysis of simulated datasets

All datasets were analysed using the same model. As model 
(2) is computationally demanding, it was not used within the 
simulation. The model was reduced to

(5)
yijkl =� + �tk + Zk + Lj + �ri + Hi + (LY)jk

+ (LYT)jkl + (GL)ij + (GY)ik + eijkl
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where eijkl now is the confounded effect of the three-way 
interaction (GLY)ijk and the error in (2). This simplification 
is in line with most papers analyzing VCU trial data for trend 
analysis (Laidig et al. 2014; Laidig et al. 2017; Mackay et al. 
2011; Öfversten 2004; Piepho et al. 2014; de la Vega 2007). 
Note that model (5) accounts for trial main effects that are 
commonly ignored, but ignores the covariance of multiple 
observations on the same genotype (check) in the same 
year-by-location combination due to an identical genotype-
by-year-by-location effect ( (GLY)ijk ). This covariance only 
occurs in datasets C, C-1 and C-2. For these datasets, the 
model for analysis (ignoring covariance) differs from the 
model for data simulation (modelling covariance). Thus, the 
comparison between C and SM datasets allows quantifying 
the bias resulting from this simplification. The comparison 
between results from the first and third simulation allows 
evaluating the effect of the size of genotype-by-year variance 
on the bias in trend estimation. The simulation of datasets 
and their analyses were performed with SAS.

Evaluation criteria

In each simulation run and each dataset, the variance compo-
nents for all effects were estimated. Subsequently, these esti-
mates were averaged across simulation runs. Furthermore, 
the slopes for genetic and non-genetic trends were estimated. 
The mean squared error (MSE) between estimated and simu-
lated values of Hi of all genotypes (including checks) tested 
in at least three years were calculated. Note that all values 
simulated for the post-breeding population, thus evaluation 
criteria refers to the post-breeding population. A weighted 
average was then computed from MSE values using a meta-
analytic approach with weights corresponding to the inverse 
squared standard errors (Borenstein et al. 2009). Addition-
ally, the rank correlation was calculated between estimated 
and simulated values of Hi of all genotypes (including 
checks) tested in at least three years. Correlations were aver-
aged across simulation runs.

Results

Results from historical VCU trial dataset

The analysis of the historical VCU trial datasets showed 
large variances for year, location and year-by-location com-
pared to genetic variances (Table 2). This is in line with, 
e.g. Laidig et al. (2008). There is a strong positive genetic 

trend and a small but positive non-genetic trend. The 95% 
confidence interval for the genetic trend do not include zero.

Genetic VCs (genotype, genotype-by-year, genotype-
by-location, genotype-by-year-by-location) were slightly 
smaller for BSA-2 compared to BSA. Additionally, the esti-
mated non-genetic trend was smaller for BSA-2 compared 
to BSA. If data were reduced to the 48 check varieties only, 
VC and trend estimates were comparable to the estimates 
obtained for the complete data.

Results from simulated datasets

For SM, estimated 95% confidence interval for all VCs 
covered the simulated value and no bias was detected. In 
contrast, analysis of C, C-1, C-2, SM-1, and SM-2 showed 
biased VC estimates compared to the VC simulated 
(Tables 3, 4). For C, C-1 and C-2, the genotype-by-location 
VCs were over-estimated and the confounded genotype-by-
year-by-location and error VCs as well as the year-by-loca-
tion-by-trial VC were underestimated. For C, the genotype-
by-year VC estimate was slightly larger than simulated. For 
C-1 and C-2, genotype and genotype-by-year VCs were 
underestimated. Both VC were underestimated in SM-1 
and SM-2 as well. The genotype and genotype-by-year VC 
estimates differed between datasets C, C-1, C-2, SM, SM-1, 
and SM-2, with larger VC in C and SM compared to datasets 
C-1, C-2 and SM-1 and SM-2, respectively. Differences got 
larger in C-2 and SM-2 compared to C-1 and SM-1, respec-
tively (Tables 3, 4). All other 95% confidence intervals of 
VC estimates covered the true values (Table 3, 4). 

Means of estimated genetic and non-genetic trends are 
close to zero with 95% confidence interval covering the 
value zero for C and SM (Tables 3, 4). In contrast, a posi-
tive genetic trend and a negative non-genetic trend can be 
observed for C-1, C-2, SM-1 and SM-2. Trends in C-1 and 
SM-1 as well as in C-2 and SM-2 were similar with larger 
deviations from zero in datasets dropping genotypes tested 
for up to two years. In all cases, zero is not contained in 
the 95% confidence interval (Tables 3, 4). Estimated trends 
became larger when increasing the genotype-by-year vari-
ance (Table S1). Furthermore, dropping data from geno-
types tested only one or two years resulted in an increased 
MSE. If yield based selection was replaced by random 
selection, no differences between complete and reduced 
data can be detected. In this case, trend estimates were close 
to zero (results not shown). Rank correlation of genotype 
BLUPs and true simulated values were similar for all data-
sets (0.86–0.87 with slightly larger values for C and SM, 
respectively).
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Table 3   Simulated post-breeding and average estimated variance 
component (VC) values as well as simulated post-breeding and esti-
mated trends, the mean squared error (MSE) of estimated genotype 

best linear unbiased predictions (BLUPs) for simulated datasets C, 
C-1 and C-2 across 500 simulations

The dataset C mimics the complete historical VCU dataset. The datasets C-1 and C-2 were created from C by dropping genotypes tested up to 
one or two years, respectively. Values printed in bold have a confidence interval that does not include the value used for simulation. Values in 
parenthesis represent the 95% confidence interval. Values are given in dt2 ha−2 for VC and MSE and dt ha−1 year−1 for trend estimates
§ Mean squared error between genotype BLUPs and simulated true values

Parameter Values used for 
simulation (BSA)

Estimate for dataset (95% confidence interval)

C C-1 C-2

Variance component
Year 25.13 25.18 (24.57; 25.78) 25.22 (24.61; 25.83) 25.21 (24.60; 25.82)
Location 53.15 53.60 (52.82; 54.37) 53.66 (52.88; 54.44) 53.65 (52.87; 54.43)
Year-by-location 74.14 74.20 (73.89; 74.51) 74.18 (73.87; 74.49) 74.25 (73.94; 74.57)
Year-by-location-by-trial 8.83 8.74 (8.68; 8.81) 8.79 (8.72; 8.86) 8.71 (8.64; 8.78)
Genotype 13.27 13.26 (13.23; 13.30) 6.52 (6.48; 6.55) 5.90 (5.86; 5.94)
Genotype-by-year 3.16 3.18 (3.16; 3.19) 3.01 (3.00; 3.02) 3.11 (3.09; 3.12)
Genotype-by-location 2.25 2.51 (2.50; 2.52) 2.53 (2.51; 2.54) 2.53 (2.51; 2.54)
Genotype-by-year-by-location 9.62 18.69 (18.67; 18.70) 18.66 (18.65; 18.68) 18.65 (18.64; 18.67)
Error 9.36
Trend
Genetic 0 0.000 (− 0.002; 0.003) 0.086 (0.084; 0.089) 0.115 (0.113; 0.118)
Non-genetic 0 − 0.000 (− 0.009; 0.009) − 0.070 (− 0.079; − 0.061) − 0.106 (− 0.115; − 0.097)
Evaluation criterion
MSE§ – 1.42 (1.41; 1.43) 8.97 (8.94; 9.01) 16.79 (16.74; 16.84)

Table 4   Simulated post-breeding and average estimated variance 
component (VC) values as well as simulated post-breeding and esti-
mated trends, the mean squared error (MSE) of estimated genotype 

best linear unbiased predictions (BLUPs) for simulated datasets SM, 
SM-1 and SM-2 across 100 simulations

The datasets SM-1 and SM-2 were created from SM by dropping genotypes tested up to one or two years, respectively. Values printed in bold 
have a confidence interval that does not include the value used for simulation. Values in parenthesis represent the 95% confidence interval. Val-
ues are given in dt2 ha−2 for VC and MSE and dt ha−1 year−1 for trend estimates
§ Mean squared error between genotype BLUPs and simulated true values

Parameter Values used for 
simulation (BSA)

Estimate for dataset (95% confidence interval)

SM SM-1 SM-2

Variance component
Year 25.13 25.19 (23.88; 26.49) 25.13 (23.94; 26.59) 25.23 (23.91; 26.55)
Location 53.15 52.87 (51.16; 54.58) 52.94 (51.22; 54.65) 52.90 (51.18; 54.61)
Year-by-location 74.14 73.78 (73.17; 74.39) 73.73 (73.11;74.35) 73.78 (73.16; 74.40)
Year-by-location-by-trial 8.83 8.83 (8.70; 8.97) 8.92 (8.79; 9.06) 8.85 (8.71; 8.98)
Genotype 13.27 13.33 (13.23; 13.44) 6.48 (6.40; 6.56) 5.88 (5.79; 5.97)
Genotype-by-year 3.16 3.15 (3.12; 3.19) 2.99 (2.96 ;3.02) 3.08 (3.04; 3.11)
Genotype-by-location 2.25 2.25 (2.22; 2.28) 2.26 (2.23; 2.29) 2.27 (2.24; 2.30)
Genotype-by-year-by-location 9.62 18.97 (18.94; 19.00) 18.94 (18.91; 18.97) 18.94 (18.91; 18.98)
Error 9.36
Trend
Genetic 0 − 0.002 (− 0.007; 0.004) 0.086 (0.080; 0.091) 0.114 (0.108; 0.119)
Non-genetic 0 − 0.002 (− 0.022; 0.017) − 0.073 (− 0.092; − 0.054) − 0.108 (− 0.127; − 0.089)
Evaluation criterion
MSE§ – 1.43 (1.41; 1.45) 9.12 (9.07; 9.17) 17.00 (16.93; 17.08)
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Discussion

The simulations showed that when using a proper mixed 
model and all available data (model 3 with datasets SM), VC 
estimates were unbiased. Additionally, non-genetic trend and 
post-breeding genetic trend can be estimated without bias. 
This is expected as datasets are then large with an MAR data 
pattern and the analysis is based on restricted maximum like-
lihood estimation (Piepho and Möhring 2006; Hartung and 
Piepho 2021). Similar results were observed, if the yield-
based selection was replaced by a random selection. Again, 
the missing data pattern is MAR. It should be stressed 
here that we would expect similar results for all datasets 
(including those with MAR data pattern) when accounting 
for the relationship between genotypes e.g. via pedigree or 
marker-based relationship matrices (van der Werf and de 
Boer 1990), but note that such information is not usually 
available for VCU trials, and was not available here.

For the other datasets, the missing data pattern is NMAR. 
In this case, simulation showed that there is a bias in VC 
estimates and trend estimates. It is important to re-iterate 
that our assessment of bias in VC and trend estimates relates 
to the post-breeding population and thus to the population 
entering the VCU trials. In both the historical VCU trial data 
and our simulation, the population of registered varieties 
(post-registration) differs from the population of genotypes 
submitted by breeders for registration (post-breeding). Sub-
mitted genotypes in the post-breeding population are the 
result of breeders’ selection. In contrast, registered varieties 
are based jointly on selection by breeders in their trials and 
selection exercised by examination offices in VCU trials. 
The post-registration population is a sub-population selected 
from the post-breeding population. Therefore, within a cycle 
both populations differ systematically. Selection performed 
in VCU trials causes selection gain and therefore results in 
larger expected means in the post-registration population 
compared to the corresponding post-breeding population.

For the datasets C-1, C-2, SM-1, SM-2, I-1 and I-2, the 
simulation showed that there are two sources of bias for VC 
estimates: the differences between model (2) used for data 
simulation and model (5) used for analysis, as well as the 
informative drop-out in these reduced datasets.

Bias in VC estimates found in C, C-1 or C-2, but not in 
the corresponding datasets SM, SM-1 or SM-2, were caused 
by the simplification made in model (5). In Germany, VCU 
trials are organized in overlapping series. In each year, a 
new series with new genotypes but usually the same check 
varieties is started. As these series are tested in the same 
locations in two or three years, check varieties can occur 
more than once in a given year-by-location combination. 
This results in a positive correlation between these mean 
values. The common approach (model 3) is to ignore this 

correlation (Piepho et al. 2014). In our simulations, ignor-
ing the correlation resulted in slightly biased VC estimates 
for year-by-location-by-trial, genotype-by-location and the 
confounded variance of genotype-by-year and error effects. 
Trend estimates were unaffected.

Bias seen in VC estimates from reduced datasets only 
were caused by the informative drop-out. The bias in the 
genotype VC is based on selection of the best-performing 
genotypes (Piepho and Möhring 2006). It is a bias relative 
to the variance simulated for the post-breeding population. 
The variance of the post-registration population is expected 
to be smaller compared to the post-breeding population as 
poorly performing genotypes are dropped (Schüler et al. 
2001). Therefore, it is not clear whether the post-registration 
genotype VC is estimated with bias. The bias seen for the 
post-breeding genotype-by-year VC is based on selection 
too, as in the first year of testing the genotype and genotype-
by-year effects are confounded. Again, it remains unclear 
whether there is bias of the VC estimates in relation to the 
post-registration population.

For all reduced datasets with informative missing data 
pattern, genetic post-breeding trend is overestimated and 
agronomic trend is underestimated. Bias disappeared when 
using random selection and increased with increasing geno-
type-by-year VC. Trends are estimated by comparing means 
of subsequent cycles. To adjust means of different cycles, 
data of check varieties are required. In VCU trial data from 
Germany, about 15% of data belongs to check varieties. As 
stated above, means differ systematically between post-
breeding and post-registration populations. However, if the 
selection gain reached by examination offices is constant 
for all cycles, the trend estimated from both populations are 
expected to be similar. They can vary in case of a temporally 
varying selection intensity within VCU trials. In both the 
German historical VCU trial data and our simulated data, 
the proportion of genotypes tested in the third year increased 
with time (Figure S1b). This increase should decrease the 
selection gain reached by examination offices in the third 
year. As the gain decreases in more recent cycles, this should 
reduce post-registration genetic trend estimate compared to 
post-breeding genetic trend estimates. In contrast, our simu-
lation showed overestimated genetic trends when using data 
from candidates with at least two or three years of testing. 
Therefore, the observed bias in post-breeding trend estimates 
probably is based on the selection of candidates. Candidates 
were selected according to their estimated yield in the cur-
rent year (current and previous years in the second selec-
tion step), and thus on the confounded effects of genotype 
and genotype-by-year. Therefore, candidates with positive 
genotype-by-year effects are more likely selected for further 
testing compared to candidates with negative genotype-by-
year effects. As this positive effect cannot be reproduced in 
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subsequent years, it is covered by the regression on the year 
of testing and thus is interpreted as negative non-genetic 
trend. Furthermore, as the simulated overall trend is zero, 
the estimated genetic trend must be positive.

The simulation results provide an upper bound for 
the bias for post-breeding genetic and non-genetic trend 
expected from informative drop-out, as selection in our sim-
ulation was based on BLUPs of a single trait only, whereas 
in actuality selection decisions are more complex. Indeed, 
the selection of the BSA are based on BLUEs for yield, as 
well as for a large number of quality and resistance traits. If 
selection is based on more traits, the selection intensity for 
yield is much lower than assumed in our simulation. Note 
that we replaced selection based on BLUE by BLUP-based 
selection, as BLUPs have smaller mean squared error even 
in small experiments (Forkman and Piepho 2013). BLUP 
minimizes the mean squared error and thus maximizes the 
correlation of estimated and true ranking of the genotypes 
(Searle et al. 1992). In both cases, selection decisions prob-
ably get better and selection intensity is increased. Addition-
ally, we replaced single-year selection after the second year 
by a selection based on both testing years. Thus, selection in 
the second year prefers candidates with a positive genotype-
by-year effect in both years. As selection intensity in our 
simulation is larger than in the historical VCU trials, the 
observed bias seen in our simulation is larger too. For this 
reason, bias in trend estimation from data-reduced historical 
VCU trial analysis is expected to be smaller compared to our 
simulation. The genotype VC estimates in BSA-2 and C-2 or 
SM-2 gave some idea about the strength of yield-dependent 
selection in historical VCU data. In our simulations, the 
genotype variance was reduced to less than 50% compared 
to the post-breeding VC, whereas the genotype VC estimate 
in BSA-2 was still larger than 90% of the estimate in BSA. 
Nevertheless, an informative missing data pattern has the 
risk of biased trend estimates.

Trends seen in VCU trial datasets are based to genetic and 
non-genetic sources. To dissect these, several approaches can 
be used. If weather data is available, a crop growth model 
can be used to correct for yield differences due to systematic 
changes in climate (Gonzalo et al. 2022; Rizzo et al. 2022; 
Hadasch et al. 2020). This allows separating climate and 
non-climate sources of trends. Piepho et al. (2014) dissected 
genetic and non-genetic trends by adding two linear regres-
sions in their mixed model, one for the year of first testing 
(defined as genetic trend) and one for the calendar year of 
testing (defined as non-genetic trend). While the approach is 
easy to apply, it heavily depends on the connectivity of the 
data and thus on the occurrence of check varieties across and 
within years. Adding data from vintage trials can extend the 
connectivity of the data. The current paper does not extend 
the database but only uses historical data, as this is the com-
mon approach when analyzing VCU datasets. Additionally, 

weather data were not available, thus the current paper used 
the mixed model approach of Piepho et al. (2014) adding 
only linear regressions for genetic and non-genetic trends. 
The assumption of linearity was not tested formally with 
the current data, though regression plots suggest no grave 
departures from linearity. Beche et al. (2014), Grassini et al. 
(2013) and Fischer et al. (2014) suggested to use a linear 
time trend to describe current and future change rates for 
yield (Fischer 2015). In contrast to this, Calderini and Slafer 
(1998) and Öfversten et al. (2004) found non-linear trends. 
Boken (2000) and Finger (2010) show that quadratic mod-
els fitted the trend better than the linear model, revealing a 
significant inflexion point in the trend. Slafer and Peltonen-
Sainio (2001) stated that on-farm yield seemed to stagnate 
for some crops in developed countries during the last years. 
Such a plateau can be fitted by broken-stick models (Calde-
rini and Slafer 1998). Another alternative is a linear regres-
sion for logarithmically transformed data (Öfversten et al. 
2004). This corresponds to a constant relative change over 
time. Again, the deviations from linearity of the observed 
trend across all years was not checked in the current study.

The current study is based on a mixed model analysis due 
to its easy application. In general, other approaches are pos-
sible. As the dataset is large and thus there is a lot of infor-
mation on VC estimates and variety means, we do not expect 
relevant differences when using a Bayesian approach. As 
we are interested in the interpretation of slope estimates for 
two specific time covariates only, black-box approaches such 
as neural networks and other machine learning approaches 
provide no advantages, and these methods make it difficult to 
account for the year, location and genotype main effects and 
interaction. Thus, mixed models are the method of choice 
for the problem at hand.

The estimated post-breeding genetic trend from the con-
sidered winter wheat data across all quality groups was 0.56 
dt ha−1 year−1 as reported in Laidig et al. (2017) for the same 
trials and the same period. Cormier et al. (2013) reported a 
similar trend of 0.51 dt ha−1 year−1 in France. Lower genetic 
gains were estimated in Hartl et al. (2011) and Bilgin et al. 
(2015). For a detailed discussion of potential reasons for 
differences in genetic gain estimates see Laidig et al. (2017). 
Rizzo et al. (2022) reported much lower estimates of genetic 
gain based on on-farm data, explaining most of the visible 
trend by climatic variables. The latter study used different 
methods to predict genetic gain, calculating the genetic 
trend from three independent models using three datasets, 
one for climatic trend, one for technological trend and one 
for total trend. We believe that the approach to calculate the 
genetic trend as differences of trend estimates from three 
independent linear models leads to a downward bias in case 
that predictor variables interact or are positively correlated, 
hence likely leading to underestimating genetic trend. In all 
other studies mentioned above, the estimated trend is large 
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compared to the upper bound of bias (0.11 dt ha−1 year−1) 
shown in our simulation when dropping genotypes tested for 
up to two years. Note that bias for historical VCU trial data 
can vary between crops as the ratio of genotype to genotype-
by-year variance may differ from the ratio found in winter 
wheat. For smaller ratio and lower selection intensity the 
bias is expected to be smaller than the one seen in our simu-
lation. At the same time, reduction of data reduced compu-
tational burden, so that there could be reasons to accept the 
bias of in trend estimates from reduction of VCU trial data. 
An unbiased estimation of post-registration trends is not pos-
sible from VCU trial data. Unbiased post-registration trends 
require data obtained after registration. In Germany, data of 
post-registration trials of registered varieties, performed by 
federal states in Germany (Landessortenversuche), can be 
used for post-registration trend estimation.
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