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Abstract
Key message  Breeding target traits can be broadened to include nutritive value and plant breeder’s rights traits in 
perennial ryegrass by using in-field regression-based spectroscopy phenotyping and genomic selection.
Abstract  Perennial ryegrass breeding has focused on biomass yield, but expansion into a broader set of traits is needed to 
benefit livestock industries whilst also providing support for intellectual property protection of cultivars. Numerous breeding 
objectives can be targeted simultaneously with the development of sensor-based phenomics and genomic selection (GS). Of 
particular interest are nutritive value (NV), which has been difficult and expensive to measure using traditional phenotyping 
methods, resulting in limited genetic improvement to date, and traits required to obtain varietal protection, known as plant 
breeder’s rights (PBR) traits. In order to assess phenotyping requirements for NV improvement and potential for genetic 
improvement, in-field reflectance-based spectroscopy was assessed and GS evaluated in a single population for three key 
NV traits, captured across four timepoints. Using three prediction approaches, the possibility of targeting PBR traits using 
GS was evaluated for five traits recorded across three years of a breeding program. Prediction accuracy was generally low to 
moderate for NV traits and moderate to high for PBR traits, with heritability highly correlated with GS accuracy. NV did not 
show significant or consistent correlation between timepoints highlighting the need to incorporate seasonal NV into selec-
tion indexes and the value of being able to regularly monitor NV across seasons. This study has demonstrated the ability to 
implement GS for both NV and PBR traits in perennial ryegrass, facilitating the expansion of ryegrass breeding targets to 
agronomically relevant traits while ensuring necessary varietal protection is achieved.

Introduction

Perennial ryegrass (Lolium perenne L.) is an economically 
important pasture crop worldwide, particularly in north-
ern Europe, New Zealand, and Australia. Yet genetic gain 
has been limited, with biomass yield achieving 0.25–0.6% 
improvement on average per year (Wilkins and Humphreys 
2003; Woodfield 1999) compared to a global average yield 
gain of 1.6% in maize, 1.0% in rice, 0.9% in wheat, and 
1.3% in soybean (Ray et al. 2013). Many crop species are 
self-compatible, enabling trait fixation and making genetic 
improvement simpler for a wide range of favourable alleles. 
In contrast, ryegrass is an obligate outbreeding species with 
a self-incompatibility system resulting in high heterogeneity, 
increasing the difficulty of improving agronomically impor-
tant traits. Ryegrass varieties are populations derived from 
a poly-cross of multiple parents and have greater variance 
within than between varieties (Bolaric et al. 2005; Guthridge 
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et al. 2001; Wang et al. 2009). In addition, the average breed-
ing program takes 10 years to complete, relying heavily on 
phenotypic selection (Lin et al. 2016; Wilkins and Hum-
phreys 2003), often involving the evaluation of multiple gen-
erations including individuals cloned and transplanted into 
clonal rows, selection of multi-parent plant synthetic groups 
and subsequent evaluation through multiple generations as 
synthetic varieties. Further descriptions of a generic ryegrass 
breeding program can be found in Hayes et al. (2013).

A number of steps in a generic breeding program could 
be replaced with genomic selection (GS), primarily increas-
ing genetic gain by shortening the breeding cycle (Lin et al. 
2016). GS involves the use of a reference population which 
has been both genotyped and phenotyped to develop a pre-
diction equation, which is then used to predict the pheno-
types of samples which have only been genotyped (Meuwis-
sen et al. 2001). This saves substantial time and resources 
typically required to perform phenotyping by allowing 
breeders to predict the performance of germplasm early on. 
Despite the inherent challenges presented by the ryegrass 
genome and population complexity, several studies have 
shown the potential of using GS for genetic improvement 
of ryegrass (Arojju et al. 2018; Faville et al. 2018, 2020) 
often using allele frequencies instead of bi-allelic genotypes 
in whole populations (Cericola et al. 2018; Fe et al. 2016; 
Guo et al. 2018; Keep et al. 2020; Pembleton et al. 2018). 
A study based on historical data in a breeding program has 
shown increased genetic gain would have been possible, had 
GS been applied through the breeding programs 15-year his-
tory, in comparison with the current phenotypic selection 
approach (Pembleton et al. 2018).

Several studies have shown GS in ryegrass is feasible and 
financially viable (Lin et al. 2017) but have mainly focused 
on yield-related traits or heading date (HD: Barrett et al. 
2018; Byrne et al. 2017; Cericola et al. 2018; Faville et al. 
2018, 2020; Fe et al. 2015; Guo et al. 2018; Pembleton et al. 
2018), or crown rust resistance (Arojju et al. 2018; Cericola 
et al. 2018). All breeding programs primarily focus on yield 
and consider HD due to its importance in growth profiles 
and farm systems management as well as flowering time 
synchronicity. Nonetheless, ryegrass breeding programs 
need to incorporate new traits, with a greater focus on how 
and when these traits are measured, and their subsequent 
incorporation into breeding targets and selection indexes. It 
would be sensible to focus on largely un-targeted but valued 
traits such as nutritive value (NV), while simultaneously 
ensuring the protection of newly developed varieties through 
Plant Breeder’s Right (PBR) traits. As long as there is no 
consistent strongly negative correlation present, it is possible 
to simultaneously select for multiple traits using a weighted 
selection index.

Perennial ryegrass is a highly productive forage in terms 
of both yield and NV. However, a number of factors have 

prevented breeding for improved NV, primarily due to the 
expense and difficulty of measurement, but also due to the 
broad range of potential target traits, environmental effects, 
spatial and temporal variation. An examination across 
the history of Northern Ireland’s recommended perennial 
ryegrass varieties saw no consistent improvement in digesti-
bility over time, but there was substantial variability between 
populations, primarily attributable to a set of specialist vari-
eties bred for improved WSC, demonstrating that improve-
ment is possible (McDonagh et al. 2016). This is promising 
for Australian cultivars, which also have not been selected 
for improved digestibility. Genetic gains for some NV traits 
may only be possible by selecting individuals rather than 
populations, such as cultivars or elite breeding lines, with 
crude protein (CP) and water-soluble carbohydrate (WSC) 
content in ryegrass cultivars showing substantial variability 
within, but not between, populations (Pembleton et al. 2016).

Understanding temporal fluctuation of NV is vital for pas-
ture management decisions as NV is seasonal and at times 
of the year drops to the point that it creates a feed gap for 
dairy cattle (Machado et al. 2005; Redfearn et al. 2002) and 
is known to rapidly decline as the grass transitions to the 
reproductive phase just before summer dormancy (Waller 
and Sale 2001). NV has traditionally been measured through 
wet-chemistry or laboratory-based near-infrared (NIR) spec-
troscopy, both of which require destructive harvesting of the 
grass and are time-consuming and expensive (Smith et al. 
1991). The development of cost-effective, in-field techniques 
in the form of reflectance-based in-field spectroscopy (Smith 
et al. 2019) allows the measurement of herbage quality over 
time and seasons. This will in turn provide correlations and 
guidance regarding the frequency of measurements needed 
to be able to breed for relevant NV traits, ultimately deliver-
ing varieties with higher NV. As mentioned, one method of 
incorporating NV improvements into other breeding targets 
is through GS, but to date only a small number of studies 
have assessed GS for NV, focusing either on families (Arojju 
et al. 2020; Fe et al. 2016; Grinberg et al. 2016; Skøt et al. 
2018), primarily wild populations (Keep et al. 2020) or the 
effect of cutting time in a few cultivars (Wang et al. 2020).

While PBR traits in general have no agronomic value, 
they are a requirement plant breeders must take into consid-
eration. Although a genetics-based classification of new cul-
tivars would be optimal, currently to register a new cultivar 
ryegrass breeders must demonstrate distinctness, uniformity, 
and stability (DUS: UPOV 2006) based on several morpho-
logical traits including plant, leaf, and inflorescence char-
acteristics (Wang et al. 2016a). These traits typically have 
simple genetic architecture and little agronomic importance. 
Although they can be modified relatively easily, this process 
of selection and screening for PBR traits increases the breed-
ing cycle time and reduces the selection pressure for agro-
nomically important target traits, ultimately limiting the rate 
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of genetic gain. Simultaneous selection with other traits such 
as yield, without the requirement for specific and laborious 
screening nurseries using GS, would be highly beneficial. 
While most PBR traits have not been widely assessed (Keep 
et al. 2020), GS for HD has already been repeatedly demon-
strated (Barrett et al. 2018; Byrne et al. 2017; Faville et al. 
2020; Fe et al. 2015; Pembleton et al. 2018), suggesting that 
other PBR traits, which are also likely to be genetically sim-
ple with high heritability, will be well-suited to the method. 
Ultimately the benefit of GS is simultaneous selection for 
a range of traits, using a weighted selection index for traits 
targeted for improvement, such as biomass yield and NV, 
and restriction windows for PBR traits which need to be con-
tained to within a nominated range when selecting parental 
groups to ensure DUS of resulting populations.

The aim of this study is to expand GS in ryegrass into a 
comprehensive suite of traits, to understand NV phenotyp-
ing requirements, and investigate the use of GS to modify 
NV and PBR traits. For NV traits, a single population of 
ryegrass, sampled across four seasonal timepoints, was 
tested for three important traits for overall NV: CP, WSC 
and in vitro dry matter digestibility (IVVDMD). For PBR 
traits, individual samples from clonal row nurseries with 
phenotypic data used in commercial breeding and collected 
across three years for five PBR traits described by UPOV 
was used: heading date (HD), leaf width (LW), height (H), 
leaf curvature (LC) and growth habit (GH).

Materials and methods

Phenotype data

NV

The NV trial used a population derived from a single variety 
consisting of 480 plants grown at Hamilton, Victoria, Aus-
tralia and had phenotypes measured for three key NV traits: 
CP, WSC and IVVDMD. These plants were part of a larger 
trial that has been previously described in Gebremedhin 
et al. (2019), Smith et al. (2019) and Smith et al. (2020). 
Seasonal yield data for the same plants were obtained from 
Gebremedhin et al. (2019), and NV value data was obtained 
from Smith et al. (2020). Briefly, the plants were measured 
at the three-leaf growth stage, resulting in four timepoints 
in one year, May (MAY: Autumn), August (AUG: Early 
Spring), September (SEP: Early Spring) and November 
(NOV: Late Spring). At each timepoint, all plants were 
measured for canopy spectra and 64 plants had all herbage 
biomass removed higher than 5 cm from the ground sur-
face and used for laboratory analysis as described in Smith 
et al. (2019) and to train the predictive model as described in 
Smith et al. (2020). Accuracies of predicted NV values using 

spectra can be found in Smith et al. (2020). The R func-
tion boxplot.stats (R Core Team 2018) was used to remove 
datapoints identified as outliers. The correlation matrix was 
generated in R using the ggpairs function of the R package 
GGally (Schloerke et al. 2018).

PBR

A number of PBR traits were phenotyped according to 
UPOV-described guidelines, with most characteristics visu-
ally classed from 1 to 9 except HD, which was recorded in 
days. For example, GH is scored from 1 to 9 for erect to 
prostrate growth, and LW is scored from very narrow to very 
broad using the 1 to 9 scale. Phenotypic data were collected 
for HD, LW and H in three years (2016, 2017, 2018), LC 
in one year (2016) and GH in two years (2017 and 2018) 
across a total of 5,026 clonal row samples. Briefly, 1,650 
plants were sampled in 2016, 1,738 in 2017 and 1,638 in 
2018. Plants were grown as clonal rows comprising five 
transplanted clonal copies (per genotype) within each row 
at Christchurch, New Zealand. Other than within row, the 
clonal row screening nursery was unreplicated.

Genotype data

PBR and NV

For PBR samples RNASeq libraries were prepared from 
individual plants using the method described in Malmberg 
et al. (2018), while a modified in-house version of the same 
method was used for NV samples. For the modified in-house 
protocol, following mRNA extraction, polyA enrichment 
was performed again using Dynabeads™ (Life Technolo-
gies, Carlsbad, CA, USA) followed by random shearing 
using heat in the presence of Mg++. First-strand cDNA syn-
thesis primed by random hexamers was performed using the 
Tetro Kit cDNA kit reverse transcriptase (Bioline, London, 
UK). Second strand was synthesised using DNA Polymerase 
I (New England Biolabs, MA, USA) and RNaseH (NEB) 
and ends were adenylated using Klenow (exo-) fragment 
polymerase (NEB). Inhouse PE-y PS adaptor was ligated to 
adenylated templates. Adaptor ligated templates were bead 
purified and then amplified using Phusion™ High-Fidelity 
DNA Polymerase (Thermo Fisher Scientific, Waltham, MA, 
USA) and barcoded PE Primers. Libraries were sequenced 
on a HiSeq 3000 platform (Illumina, San Diego, CA, USA), 
generating approximately 30 million reads (15 million 
paired) per clonal row sample and approximately 40 mil-
lion reads (20 million paired) per NV sample. Sequencing 
reads were aligned to a perennial ryegrass transcriptome 
assembly (Shinozuka et al. 2017) using BWA-mem (Li and 
Durbin 2009). Genotypes at a pre-defined list of SNP loci 
(Malmberg et al. 2018) were called using bcftools mpileup 
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v1.6 (Li et al. 2009). SNPs with alternative alleles other 
than those specified in the SNP list were removed. SNP loci 
with more than 25% missing data in samples with less than 
50% overall missing data were removed before recalculating 
missing data and removing samples with greater than 90% 
missing data. Imputation was performed using the linkage 
disequilibrium k-nearest neighbour imputation (LD-kNNi) 
method (Money et al. 2015).

For NV, a total of 485 samples from a single population 
were genotyped. Initially 135,950 SNPs were called, with 
108,232 SNPs remaining after removing SNPs with alterna-
tive alleles other than those specified in the SNP list. After 
filtering across SNPs and samples for missing data 481 sam-
ples remained with 62,095 SNPs and average missing data 
rate of 16.9% prior to imputation. Missing data was imputed 
with an estimated accuracy of 93.5%.

For PBR, a total of 5,026 clonal row samples were geno-
typed. Initially 197,137 SNPs were called, with 125,244 
SNPs remaining after removing loci with alternative alleles 
other than those specified in the SNP list. After filtering 
across SNPs and samples for missing data 4,480 samples 
remained with 81,064 SNPs and average missing data rate 
of 26.2% prior to imputation. Missing data was imputed with 
an estimated accuracy of 93.7%.

Genomic prediction

NV

Narrow-sense heritabilities were calculated in the R pack-
age BGLR (Pérez and de Los Campos 2014) using unscaled 
phenotypic data and performing heritability estimation using 
the sample variance of genomic values at each iteration of 
the sampler. Prior to heritability estimation, the genotype 
data were subset to contain only samples with available 
phenotype data, and SNP loci were further filtered for a 
minimum minor allele frequency (MAF) of 0.05. Estimated 
heritabilities were used as a prior for genomic prediction in 
all scenarios.

Genomic prediction was run using the R package BGLR 
(Pérez and de Los Campos 2014) using the BayesA (Meu-
wissen et al. 2001) model:

where y is a vector of phenotype values for the trait of 
interest (i.e. heading date, crude protein, etc.), u is the popu-
lation mean, 1n is a vector of ones the same length, n, as the 
number of phenotypic values, K is a matrix of genotypes 
coded as the copy number of the alternative alleles (i.e. 0, 1, 
2), v is a vector of random SNP effects estimated from the 
reference population, where each SNP effect is v

i
∼ N(0, �2

vi
) , 

and e ∼ N(0, �2

e
) is a vector of residual errors.

y = u1
n
+ Kv + e

The BayesB model was also tested but found not to be 
significantly different (results not shown); therefore, in all 
analyses a BayesA model was fitted with a scaled-t den-
sity prior of marker effects. This was fitted with the default 
parameters used by the BLGR package. For computational 
convenience, BGLR samples marker effects from normal 
distributions where the variance of each SNP was sampled 
from an inverted Chi-squared distribution using default 
degrees of freedom and the scaling parameter defined by 
the BGLR package for trait heritability, with estimated herit-
abilities provided as described above. A total of 12,000 itera-
tions with a burn-in of 2000 was used. Due to the relatively 
small scope of the NV study and using a single population, 
prediction accuracy was evaluated using a within-population 
k-fold approach, whereby each timepoint by phenotypic trait 
combination was evaluated by randomly masking 20% of 
samples at a time and averaged across the 5 iterations. Trace 
plots were manually investigated to ensure proper conver-
gence of the algorithm. Genomic prediction accuracy was 
calculated as the correlation between GEBVs and observed 
phenotype.

PBR

Estimation of narrow-sense heritabilities and genomic 
prediction was performed with the same parameters as 
described for the NV data set. Estimated heritabilities were 
used as a prior for genomic prediction in all scenarios, with 
the exception of HD prediction using a reference population 
composed of synthetic varieties, where an expected herit-
ability of 0.85 was used (Pembleton et al. 2018).

For PBR traits, it was possible to evaluate prediction 
accuracy using a number of scenarios including (1) within-
population (population defined as the year) k-fold approach, 
whereby each year by phenotypic trait combination was 
evaluated by randomly masking 20% of samples, (2) for-
ward prediction where the samples from previous years was 
used to predict into the next year, and (3) where a reference 
population composed of synthetic varieties from a breeding 
program (Pembleton et al. 2018) was used to predict the 
HD GEBVs for each year of advanced germplasm from the 
same program. Prior to each round of genomic prediction, 
the genotype data was subset to contain only samples with 
available phenotype data and SNP loci were further filtered 
for a MAF of 0.05.

In order to determine the effect of using GEBVs when 
grouping plants into 4-parent synthetic crosses, as compared 
to the currently used method based on observed PBR phe-
notypes, a simulation was run for various GEBV selection 
windows. The simulations were carried out in R by selecting 
the first parent plant randomly from the whole population. 
The remaining available samples were filtered to retain sam-
ples with a GEBV within the nominated selection window of 
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the randomly selected first parent, and the second parent was 
randomly selected from among them. Remaining samples 
were once again filtered to only those within the nominated 
selection window of the first and second parents and a third 
parent randomly selected. This last step was repeated for 
the selection of the final parent. The range of phenotypes 
present within these simulated 4-parent synthetic groups was 
then calculated to determine how well GEBVs were able to 
restrict PBR phenotypes to within the expected range. This 
simulation was repeated 10,000 times, and the phenotype 
ranges were averaged.

Results

NV

Phenotype data and heritability

The distribution of phenotypic data for NV traits is shown 
in Fig. 1 and was variable across timepoints, with nutritive 
composition of ryegrass changing with the seasons, typically 
decreasing into late spring. Examining individual samples 
across timepoints shows that seasonal fluctuation of NV 
traits is largely consistent across the whole population, but 
not between individuals, particularly for CP and WSC.

Within traits, almost half (8/18) of the correlations 
between timepoints were significant (p < 0.05: Fig. 2) but 
varied between traits. Only SEP and NOV timepoints show 
significant but low correlation in all 3 traits. Consecutive 
timepoints were not always significantly correlated, sug-
gesting that the nutritive profile of plants does not change 
consistently between individuals, as is also suggested in 
Fig. 1. Within timepoints, CP is significantly correlated 
with IVVDMD across all timepoints, while WSC is signifi-
cantly correlated with IVVDMD for MAY (0.524) and AUG 
(0.149), but the correlation reduces across the four time-
points until it is no longer significantly correlated in SEP 
(0.046) or NOV (0.068). CP and WSC are not significantly 
correlated in MAY (0.092) but are strongly negatively cor-
related in AUG (− 0.424) and remain negatively correlated 
through SEP (− 0.364) and NOV (− 0.122), reducing over 
time. While early season WSC correlation with late sea-
son CP is generally low, there is significant correlation, and 
a similar trend is observed between early season CP and 
late season WSC. Some significant correlations are present 
between WSC and IVVDMD, but no clear pattern can be 
discerned. Across all timepoints there was no significant cor-
relation found between either WSC, CP or IVVDMD and 
corresponding seasonal yield (data not shown). Narrow-
sense heritability across traits and timepoints was low to 
moderate with the highest heritability for MAY CP at 0.43 
and the lowest for NOV WSC at 0.20 (Table 1). There was 

a strong correlation between heritability and GS accuracy 
(0.85), which is expected as trait heritability determines the 
theoretical maximum of prediction accuracy ( 

√

h2).

Genomic prediction—within‑population k‑fold evaluation

Genomic prediction accuracies were low to moderate for 
NV, based on k-fold evaluation (Table 2). CP accuracies 
ranged from 0.184 to 0.474 across timepoints, while WSC 
and IVVDMD ranged from 0.041–0.345 and 0.153–0.394, 
respectively (Table 2). From a timepoint perspective, MAY 
had the highest average accuracies across all 3 traits (0.390), 
while NOV was the lowest (0.152).

PBR

Phenotype data and heritability

Phenotypic distribution was variable between years for most 
traits where multi-year data were available (Fig. 3). This was 
particularly the case for height, where phenotype distribu-
tion in 2017 had a significantly lower mean and larger range 
compared to 2016 and 2018 data. HD appears to have the 
most uniform phenotypic distribution between years, but it 
should be noted that this sample set does not contain com-
mon plants across the years, which would enable normalisa-
tion of the data across years.

Narrow-sense heritabilities for PBR traits were mod-
erate to high (Table 3). Heritability was highest for HD 
(0.753–0.828) and lowest for LC (0.348). There was a strong 
correlation between heritability and GS accuracy (0.95).

Genomic prediction—within‑population k‑fold evaluation

Within-population evaluation of GS accuracy was mod-
erate to high for PBR traits by year (Table 4). The high-
est accuracy was for HD 2017 (0.756), followed by HD 
2018 (0.692). HD 2016 was lower but still relatively high 
(0.588). The lowest GS accuracy was for LC 2016 (0.250). 
H showed the most variability in GS accuracy between years 
(0.358–0.626).

Genomic prediction—forward prediction

Using only data generated in previous years as the reference 
population to perform forward prediction (where multi-year 
data was available) delivered moderate-to-high GS accuracy 
in most traits (Table 4). An exception was when using 2016 
data to predict H 2017, which had a GS accuracy of 0.052. 
All traits, except HD 2017 (1.047), showed inflated pre-
dicted values, again most notably in H 2017 (0.222) which 
had a low prediction accuracy. As expected, accuracies are 
reduced compared to a within-population evaluation.
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Genomic prediction—synthetic varieties reference 
population for heading date

A set of 697 synthetic varieties from a breeding program 
with genotypes in the form of allele frequencies were used 

as the reference population to predict HD across all three 
years in individual clonal row samples. Similar to forward 
prediction, GS accuracy was reduced compared to within-
population k-fold evaluation but remained moderate to high 
(Table 4).

Fig. 1   Phenotypic distribution of individuals across timepoints represented as line graphs on the left and as boxplots on the right for a CP, b 
WSC and c IVVDMD
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Fig. 2   Correlation matrix showing phenotype correlations across time for IVVDMD, CP and WSC, with significance levels as follows: 
*p < 0.05; **p < 0.01; ***p < 0.001

Table 1   Estimated narrow-sense heritabilities for NV traits

CP WSC IVVDMD

MAY 0.429 0.294 0.372
AUG​ 0.284 0.385 0.231
SEP 0.325 0.352 0.266
NOV 0.214 0.201 0.270

Table 2   Mean GS accuracy evaluated using a k-fold within-popula-
tion validation. Standard deviation in brackets

CP WSC IVVDMD

MAY 0.474 (0.049) 0.303 (0.030) 0.394 (0.188)
AUG​ 0.258 (0.100) 0.312 (0.037) 0.274 (0.057)
SEP 0.226 (0.065) 0.345 (0.066) 0.153 (0.096)
NOV 0.184 (0.107) 0.041 (0.079) 0.232 (0.044)
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GEBV selection window

In order to evaluate the application of the data in a breeding 
program to generate varieties that fit into the DUS catego-
ries, a set of selection windows were evaluated. The GEBV 
selection windows were based on the observed phenotypes 
in each data set, ranging from 0–89 for HD, 2–9 for LW, 1–9 
for H, 4–8 for LC and 2–9 for GH. Using a smaller selection 
window marginally reduced the resulting mean phenotype 
range of simulated 4-parent groups (Table 5), but not to the 

Fig. 3   Box plots showing the phenotypic distribution of PBR traits across years for a heading date, b leaf width, c height, d growth habit and e 
leaf curvature

Table 3   Estimated narrow-sense heritabilities for PBR traits

HD LW H LC GH

2016 0.753 0.523 0.455 0.348 NA
2017 0.828 0.630 0.676 NA 0.605
2018 0.788 0.502 0.593 NA 0.583
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same magnitude as expected, i.e. reducing the selection win-
dow by 1 unit did not reduce the phenotype range by 1 unit.

Discussion

Rapid methodological advancements enable a more compre-
hensive and sophisticated approach to breeding in ryegrass 
and will be essential in delivering an ongoing sustainable 
industry through superior outcomes and products. Routine 
use of modern technologies that have been developed and 
established in other species will be essential. Breeding pro-
grams have the potential to increase genetic gain threefold 
or more by implementing GS over traditional approaches 
(Lin et al. 2016; Pembleton et al. 2018), and the develop-
ment of in-field reflectance-based phenotyping (Smith et al. 
2019) enables expansion into traits that have previously been 
resource-intensive to phenotype.

Phenotyping NV

Ryegrass is already highly valued as a forage crop due to 
its favourable NV profile, but this can be improved further 
(Faville et al. 2010; McDonagh et al. 2016; Muylle et al. 
2013; Pembleton et  al. 2016) to make livestock indus-
tries more sustainable and productive. This study has 
shown that in-field spectroscopy is a suitable method for 

high-throughput phenotyping of key NV traits, but further 
improvements in accuracy through expansion of reference 
populations and refinement of regression algorithms should 
be pursued. Current industry rankings, such as the Forage 
Value Index, take into consideration seasonal biomass yield 
as well as the target environment (Chapman et al. 2017) 
while factoring in seasonality, flowering time, ploidy, and 
overall persistence. The inclusion of metabolisable energy 
(ME) as a new trait in New Zealand rankings is an additional 
driver for selection in NV traits. Given the lack of corre-
lation between seasonal yield and NV traits found in this 
study, consistent with other studies (McDonagh et al. 2016), 
NV is well suited for GS approaches alongside yield through 
the use of selection indexes.

To date, several factors have prevented the widespread 
pursuit of NV improvement in ryegrass breeding including 
the prohibitive cost of phenotyping, lack of consensus over 
traits to target (Chapman et al. 2015; Stewart and Hayes 
2011), potential environmental effects (Arojju et al. 2020; 
Wang et al. 2016b), and variation in nutritional profile over 
plant lifecycle, seasons and for some traits even time of day 
(Fe et al. 2016; Wang et al. 2020; Wilkins and Humphreys 
2003). The results of this study highlight that, like biomass 
yield, a seasonal selection approach will be required, primar-
ily targeting the late season flowering period, as ryegrass 
plants commit resources to flowering over plant growth 
and create a feed gap for dairy cattle (Machado et al. 2005; 

Table 4   Mean GS accuracy for each of the three approaches used: k-fold within-population validation, forward prediction, and using a reference 
population consisting of synthetic varieties

K-fold: Mean (sd)
Forward prediction: Mean (slope)
Synthetic RefPop: Mean

K-fold Forward prediction Synthetic RefPop

HD LW H LC GH HD LW H GH HD

2016 0.588
(0.027)

0.395
(0.070)

0.358
(0.049)

0.250
(0.037)

– – – – – 0.437

2017 0.756
(0.037)

0.598
(0.033)

0.626
(0.049)

– 0.560
(0.023)

0.578
(1.047)

0.300
(0.658)

0.052
(0.222)

– 0.620

2018 0.692
(0.036)

0.475
(0.010)

0.584
(0.033)

– 0.513
(0.022)

0.637
(0.855)

0.349
(0.590)

0.313
(0.539)

0.354
(0.547)

0.532

Table 5   Mean range of 
phenotypes in 10,000 simulated 
parental groupings for various 
GEBV selection windows

GEBV selection window

1 2 3 5 6 7

HD – – – 16.7 17.0 17.3
LW 2.9 3.1 3.4 – – –
H 3.0 3.2 3.5 – – –
LC 2.3 2.4 2.3 – – –
GH 3.2 3.3 3.5 – – –
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Redfearn et al. 2002; Waller and Sale 2001). Further study 
is required to improve understanding of how NV changes 
across time and to determine optimal NV composition at 
different seasonal timepoints, which can then be targeted 
through selective breeding and GS to deliver genetic gain.

The results of the current study suggest that, in this popu-
lation, CP contributes more consistently to overall digestibil-
ity, particularly later in the season as plants enter the flower-
ing stage and may be linked to flowering time. Consistent 
with Pembleton et al. (2016), correlations between CP and 
WSC were often negative, such that it may not be possible 
to breed for increased WSC content without reducing CP 
content. This may be acceptable as Australasian varieties 
of ryegrass typically have an excess of CP based on animal 
requirements (Trevaskis et al. 2004). A ratio between CP 
and WSC may be more informative than either trait sepa-
rately. An even more relevant measure would be ME, as the 
ultimate goal is to provide sufficient energy to dairy ani-
mals, and the inclusion of seasonal ME in selection indexes 
changes the ranking of ryegrass cultivars (Ludemann et al. 
2018). Further research into which traits to target and when, 
the interplay between ryegrass traits as well as animal 
requirements, needs to be conducted in order to fully exploit 
the potential to improve overall productivity of ryegrass.

Genomic prediction accuracy of NV traits

GS accuracy of NV ranged from low to moderate across 
traits and timepoints and was comparable to the accuracy 
achieved by Arojju et al. (2020) but lower than some other 
studies (Grinberg et al. 2016; Keep et al. 2020; Skøt et al. 
2018). Heritabilities of these populations are likely to be the 
primary factor of the difference in GS accuracy. The current 
study and the Arojju et al. (2020) study have similar narrow-
sense heritability estimates (0.20–0.43) and GS accuracies, 
while the other studies reported large broad-sense heritabili-
ties for the NV traits examined, ranging from 0.41 to 0.74 
(Grinberg et al. 2016; Keep et al. 2020; Skøt et al. 2018). 
Similarly, assessment of populations with high relatedness 
may account for the higher accuracies observed by Grin-
berg et al. (2016) and Skøt et al. (2018), who made use of 
half-sib families to predict the breeding values of mother 
plants. Although the use of GWAS-informed markers would 
account for some of the GS accuracy observed by Keep et al. 
(2020), the use of a single timepoint and populations rather 
than individuals may have resulted in inflated accuracies 
for NV traits due to the lack of variation between popula-
tions, as found previously (Pembleton et al. 2016). Consist-
ently, the current study showed that on a population level, 
fluctuations of NV broadly follow a seasonal pattern, but 
individual genotypes display variability. There is only one 
breeding program, as far as we are aware, that has achieved 
and sustained population improvement of a nutritive trait, 

improving DMD through increased WSC content (Wilkins 
and Lovatt 2011). This was achieved partly or completely 
through population improvement breeding, which involves 
selection of individuals and their progeny families, reinforc-
ing the assessment that selection of NV traits in individuals 
is a beneficial strategy for ryegrass breeding. However, there 
is a possibility that improved results would be obtained by 
using sward-based phenotypes to select individual plants, 
such as is the case for biomass yield due to the poor cor-
relation between spaced individual plants and sward per-
formance (Hayward and Vivero 1984; Waldron et al. 2008), 
making NV traits particularly suitable for GS breeding. With 
the exception of this single breeding program, NV traits have 
not been targeted by ryegrass breeding, so free segregation 
across populations is expected. As such, a lack of correlation 
between NV traits and yield is expected, as was confirmed in 
this study. Furthermore, the current study used elite, indus-
try relevant germplasm rather than largely ecotypic material, 
and so may have higher relevance to breeding.

NV traits are likely to be under the control of many QTL 
with small effects (Arojju et al. 2020; Shinozuka et al. 2012), 
which may explain the reduced GS accuracies observed 
compared to PBR traits. As mentioned, heritability will also 
affect GS, limiting the maximum selection accuracy which 
can be achieved, and indeed this study observed a strong 
positive correlation between narrow-sense heritability and 
GS accuracy, as has been found in previous studies (Arojju 
et al. 2018, 2020; Crossa et al. 2017; Pembleton et al. 2018). 
The combination of a smaller population (481 vs 4480) and 
lower heritability for NV traits in comparison with PBR 
traits are likely to explain the difference in predictability. 
As such, GS of NV is likely to improve through the estab-
lishment of a larger reference population.

Genomic prediction accuracy of PBR traits

GS accuracy was moderate to high for PBR traits, even with 
a range of prediction approaches applied, and although 
within-population evaluation was the most accurate, forward 
prediction as well as the use of a large reference population 
composed of synthetic varieties was found to be suitable 
and is more representative of the accuracy expected through 
ongoing GS implementation. This may be partly attribut-
able to genetic architecture, as these traits are expected to 
be under control of few QTL with relatively large effects 
(Fe et al. 2015; Yamada et al. 2004), and Bayesian (vari-
able selection) models have been found to also perform well 
when few loci contribute to genetic variation (Daetwyler 
et al. 2013). Accuracies for HD were comparable with that 
of other studies (Byrne et al. 2017; Cericola et al. 2018; 
Fe et al. 2015; Keep et al. 2020; Pembleton et al. 2018). 
In terms of less commonly studied PBR traits, in a study 
of mostly wild populations with some cultivars included, 
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Keep et al. (2020) found GS accuracies of 0.64 and 0.80 for 
GH and LW, respectively, which is comparable to the mean 
prediction accuracy for GH (0.537) but a higher accuracy for 
LW than found in this study (0.489), which may be attributa-
ble to the inclusion of GWAS markers by Keep et al. (2020). 
Variability in the accuracy of phenotyping leaf and plant 
architecture traits by visually scoring may have contributed 
to the overall lower GS accuracy for PBR traits other than 
HD, rather than genetic architecture or GxE interactions.

The forward prediction approach resulted in reduced GS 
accuracies but remained moderate to high, with the excep-
tion of using 2016 data to predict H in 2017. Examination of 
the phenotypic distribution across the three years shows that 
2017 had a significantly lower mean and larger range com-
pared to 2016 and 2018, due to differences in either genetic 
effects, environmental effects or management conditions, 
highlighting the potential impact of genotype by environ-
ment (GxE) interactions on GS performance. Methods to 
minimise variation in sampling conditions should be consid-
ered, such as normalising data by including replicate sam-
ples across all testing years and incorporating GxE effects 
into the prediction model; however, prediction of average 
performance of PBR traits rather than performance under 
extreme environments is likely to be of greater value to 
breeding programs for the establishment of DUS.

Using a reference population composed of synthetic vari-
eties from a breeding program to predict HD resulted in 
reduced prediction accuracies compared to within-popula-
tion evaluation but remained moderate to high and compa-
rable to forward prediction within clonal rows. Notably, the 
synthetic varieties reference population and the clonal row 
samples used in this study are derived from the same breed-
ing program, and there is likely some genetic relationship 
between the two populations. This is beneficial for the appli-
cation of GS within breeding programs, as it takes advantage 
of genetic relationships to improve persistency and accuracy 
of GS while leveraging existing resources, rather than devel-
oping large and relevant reference populations anew (Pemb-
leton et al. 2018) but does come at the cost of decreased 
accuracy across generations and populations (Habier et al. 
2007; Zhong et al. 2009).

Assessment of the use of GEBVs to select 4-parent 
groups from individual clonal row samples showed that 
the resulting mean phenotype range of simulated 4-parent 
groups did not change significantly with GEBV selection 
window. This may be attributable to the inflated predic-
tion values observed, as GEBVs are higher compared to 
phenotypes such that while it appears there is a large dif-
ference in phenotype between samples based on GEBVs, 
this difference is not as pronounced in reality. The degree 
of variation, which is acceptable within a 4-parent group, 
will depend on the trait, and a possible strategy to mitigate 
this is to expand the groupings to include 5 or 6 parent 

plants based on GEBV and then use visual inspection to 
remove any plants which are obviously different in appear-
ance. Although the creation of DUS populations could be 
improved through modelling of expected population dis-
tribution, GEBVs can be used to select 4-parent groups 
and achieve similar results to currently used phenotypic 
selection.

Conclusion

Sensor-based phenomics are suitable for high-throughput 
phenotyping of NV traits in a GS context where screening of 
large diverse reference populations is required. The low-to-
moderate accuracies achieved in this study are comparable 
to other studies and is expected to be improved through the 
expansion of reference populations, both for sensor-based 
phenotyping and for GS. Further consideration into which 
traits should be measured is essential, although it is clear 
that a seasonal approach is required as well as selection of 
individuals rather than populations for genetic improvement. 
Given the broad applicability of GS models to both complex 
and simple genetic traits, they are well suited to selection 
of PBR traits as demonstrated in this study. Furthermore, 
this study has shown that GEBVs can replace true pheno-
types for selection of 4-parent groups for the generation of 
synthetic populations. Ultimately, PBR traits should base 
this selection on modelling the expected trait distribution 
in resulting synthetic populations. Nonetheless, applying 
restriction windows on GEBVs will achieve comparable 
results to the current phenotypic selection strategy typically 
employed by breeding programs. Modern technologies and 
breeding methodologies need to be fully exploited to further 
ryegrass breeding. This needs to begin with investing in the 
development of reference populations and prediction equa-
tions of numerous relevant traits to position strategically for 
the future.
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