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Abstract
Key message  A practical approach is developed to determine a cost-effective optimal training set for selective pheno-
typing in a genomic prediction study. An R function is provided to facilitate the application of the approach.
Abstract  Genomic prediction (GP) is a statistical method used to select quantitative traits in animal or plant breeding. For 
this purpose, a statistical prediction model is first built that uses phenotypic and genotypic data in a training set. The trained 
model is then used to predict genomic estimated breeding values (GEBVs) for individuals within a breeding population. 
Setting the sample size of the training set usually takes into account time and space constraints that are inevitable in an agri-
cultural experiment. However, the determination of the sample size remains an unresolved issue for a GP study. By applying 
the logistic growth curve to identify prediction accuracy for the GEBVs and the training set size, a practical approach was 
developed to determine a cost-effective optimal training set for a given genome dataset with known genotypic data. Three real 
genome datasets were used to illustrate the proposed approach. An R function is provided to facilitate widespread application 
of this approach to sample size determination, which can help breeders to identify a set of genotypes with an economical 
sample size for selective phenotyping.

Introduction

Genomic prediction (GP) has become increasingly popu-
lar for the selection of quantitative traits in animal or plant 
breeding programs since it was first proposed by Meuwissen 
et al. (2001). The main idea of GP is to capture quantitative 
trait loci using high-density molecular markers across an 
entire genome. Typically, a statistical prediction model is 
built by fitting trait values with the marker-associated scores 
for individuals in a training set. The resulting statistical 
model is then used to predict genomic estimated breeding 
values (GEBVs) for individuals of a breeding population. 

The GEBV of each individual is the fitted value produced 
by plugging its marker-associated scores into the statistical 
model. In practice, breeders can select superior individuals 
from the breeding population using their GEBVs (Heffner 
et al. 2010).

The construction of the statistical model plays a key role 
in breeding programs that use GP, and its prediction accu-
racy for GEBVs is highly dependent upon the data quality 
of the training set. The selection of an optimized training set 
can be a critical factor for accurate GEBV prediction (Zhong 
et al. 2009; Lorenz and Smith 2015; Zhang et al. 2019). 
Current genotyping costs have fallen dramatically, but phe-
notyping costs have remained relatively constant (Akdemir 
and Isidro-Sánchez 2019). Optimizing the training set for 
selective phenotyping can be an economical and efficient 
way to increase the chance of success in a genomic selection 
(Heslot and Feoktistov 2020). The training set size is limited 
by breeding resource budget constraints. Hence, the sample 
size of the optimal training set should be carefully chosen 
to balance trade-offs between prediction accuracy and phe-
notyping costs in a GP study. However, the determination of 
the sample size in training set optimization is still an unre-
solved issue (Isidro y Sanchez and Akdemir 2021). Practi-
cally speaking, the solution may require both the technical 
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skills of statisticians and the scientific knowledge of breed-
ers. There are three main statistical approaches to sample 
size determination: (i) determine the sample size to achieve 
a desired power of a hypothesis testing; (ii) determine the 
sample size to achieve a confidence interval of a specified 
width; (iii) determine the sample size to optimize a utility 
function that relates the estimation efficiency to sample size 
(Lenth 2001). To create a sample size determination of inter-
est, we proceed by constructing a utility function that draws 
a connection between GEBV prediction accuracy and the 
size of the training set.

Methods of training set optimization can be classified 
into two categories. First is the untargeted method, which 
does not use genomic information from a target test set to 
determine the training set. Second is the targeted method, in 
which the training set is determined to maximize prediction 
accuracy for a target test set (Akdemir et al. 2015; Akdemir 
and Isidro-Sánchez 2019). Using the genomic best linear 
unbiased prediction (GBLUP) model, Rincent et al. (2012) 
compared several optimization criteria for the targeted 
method and then promoted a generalized coefficient of deter-
mination (CD) (Laloë 1993; Laloë et al. 1996) to determine 
an optimal training set. Isidro et al. (2015) and Rincent et al. 
(2017) extended CD-based optimization for highly struc-
tured populations. Most recently, Rio et al. (2022) proposed 
new versions of CD to forecast the GP reliability of geno-
types. Using the whole genome regression (WGR) model, 
Akdemir et al. (2015) assessed prediction error variance 
(PEV) to optimize the training set for the targeted method. 
Both CD- and PEV-based methods can be easily modified 
to produce untargeted methods by replacing the target test 
set with the remaining set (individuals that are not selected 
into the training set) or the entire candidate set in the cal-
culation of the criteria. Akdemir and Isidro-Sánchez (2019) 
compared the untargeted and targeted methods and found 
that the latter had a generally superior prediction accuracy to 
the former, mainly because the targeted method takes advan-
tage of information on the genomic relationship between the 
training set and the test set. Some optimization approaches 
were proposed by Akdemir and Isidro-Sánchez (2019) based 
on the classical criteria in the context of optimal designs 
such as A-optimality and D-optimality.

Recently, Ou and Liao (2019) proposed a new criterion, 
called the r-score, to determine an optimal training set 
based on the WGR model. The r-score criterion was derived 
directly from Pearson’s correlation between GEBVs and 
phenotypic values for a test set. In the article, the authors 
showed that the prediction accuracy of the r-score-based 
method is usually competitive with those of the CD- and 
PEV-based methods because it takes into account both PEV 
and prediction bias. The curves presented in Ou and Liao 
(2019) and Wu et al. (2019) that describe the relationship 
between the r-score and the size of training sets randomly 

selected from the candidate set appeared to be an S-shaped 
growth curve. In other words, the curve begins at some fixed 
point and monotonically increases in r-score rate until it 
reaches an inflection point, and then, the rate decreases and 
asymptotically approaches some final value (Ratkowsky 
1983). This observation motivates us to investigate the sam-
ple size for a GP study using an S-shaped growth curve as 
a utility function. The objective of this study is to develop a 
systematic procedure for determining the size of the train-
ing set. First, an S-shaped growth curve, called the logistic 
growth curve, was employed to fit the r-score versus training 
set size using genotypic data alone. Then, an operating curve 
for the sample size determination was obtained from the fit-
ted r-score, relative to that of the entire candidate set. The 
operating curve allows a user to weigh the prediction ability 
of GEBVs and the sample size for selective phenotyping and 
then obtain a cost-effective optimal training set.

Materials and methods

Genome datasets

Three genome datasets were analyzed in this study.

44 K rice dataset

This dataset presented by Zhao et al. (2011) contains 413 
accessions with 36,901 single nucleotide polymorphism 
(SNP) markers and 36 traits. The accessions were divided 
into five subpopulations and one admixed group. Only 375 
accessions were found, with no missing phenotypic values 
among the following traits: brown rice seed area, brown 
rice volume, flag leaf length (FLL), flag leaf width, plant 
height (PH), seed length, and seed volume. SNPs with a 
calling rate < 0.9 and individuals with missing rate > 0.1 
were removed from the dataset, leaving 31,401 SNPs for 
367 accessions for further analyses. The SNP at each locus 
was coded as − 1, 0, or 1 for the homozygote of the minor 
allele, the heterozygote, and the homozygote of the major 
allele, respectively. After SNP coding, any missing locus 
at an individual was imputed by the average over all of the 
available values of the SNP.

Tropical rice dataset

This dataset, presented by Spindel et al. (2015), contains 
73,147 SNP markers and 363 elite breeding lines belonging 
to indica or an indica-admixed group. Phenotypic observa-
tions were carried out eight times in 2009–2012, once in 
the dry and once in the wet season each year, on grain yield, 
flowering time (FT), and PH, although PH data were not 
available for the wet season of 2009. Phenotypic values for 
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35 out of the 363 individuals were missing; therefore, the 
adjusted means of only 328 individuals were used in this 
example. The SNP coding was the same as that in the 44 K 
rice dataset.

Soybean dataset

This dataset, presented by Stewart-Brown et al. (2019), con-
tains 2647 SNP markers and 483 recombinant inbred lines 
with the best linear unbiased predictor (BLUP) values of oil 
content (OC), protein content (PRC), and yield (YLD). The 
BLUP values for each genotype were calculated to account 
for variation resulting from environmental factors and matu-
rity. Individuals were classified into four subpopulations and 
one admixed group, where the admixed group was composed 
of individuals in Sets 9–11 and Sets 12–14 (see Table 1 in 
Stewart-Brown et al. 2019). Only a total of 401 individu-
als had BLUP values for all three of the traits. SNPs with 
missing rates > 0.1 and minor allele frequencies < 0.05 were 
filtered out, leaving 2376 SNPs for 401 individuals retained 
for further analyses. SNP coding was the same as in the 
above 44 K rice dataset.

Genomic prediction models

The following three statistical models are commonly used 
in GP studies.

(a)	 Whole genome regression model

The WGR model can be described as follows:

where y is the vector of phenotypic values of length n;� is 
the constant term; �n is the vector of order n with all ele-
ments equal to 1; X is a marker-associated matrix of the 
order n × p ; � is the vector of marker-associated effects of 
length p; and � is the vector of random errors. Here, n is 

(1)y = ��n + X� + �

the number of individuals, and p is the number of marker-
associated components. The ridge regression estimation for 
� is given as:

where In is the identity matrix of order n; � is a shrinkage 
parameter; and 𝜇̂ is an estimate for � which is treated as a 
known value. The marker-associated matrix X can be (i) the 
original marker score matrix; (ii) the standardized marker 
score matrix; (iii) the principal component (PC) score matrix 
derived from (i); or (iv) the PC score matrix derived from 
(ii). For cases (i) and (ii), p is the number of markers, and p 
is the number of PCs used in the model for (iii) and (iv). In 
this study, we used the (iv) as the marker-associated matrix 
throughout the analysis.

(b)	 rrBLUP model

Under the assumption that both � and ϵ follow a normal 
distribution in the WGR model of Eq.  (1), denoted by 
� ∼ N

(
�, �2

�
Ip

)
 and � ∼ N

(
�, �2

�
In
)
 , the logarithm of the 

joint probability density function f (y,�|�,X) is maximized 
when

with �∗ = �
2
�

�
2
�

 . The formula in Eq. (3) was called as rrBLUP 

for � (Endelman 2011) if �∗ and � are replaced with appro-
priate estimates. This is because it is in the form of the ridge 
regression estimation of Eq. (2).

(c)	 GBLUP model

The GBLUP model can be described as follows:

(2)�̂ = XT
(
XXT + 𝜆In

)−1(
y − 𝜇̂�n

)

(3)� = XT
(
XXT + �

∗In
)−1(

y − ��n

)

(4)y = ��n + g + �

Table 1   Parameters fixed in 
the study scenarios and in 
building the operating curves to 
determine the training set size 
for datasets

a Fixed: the fixed candidate set scenario; Non-fixed: the non-fixed candidate scenario
b n

c
 : the candidate set size; n0 : the test set size

c nmin : starting size of the search for the optimal training set; nmax : maximal size of the search for the opti-
mal training set; � : increment of the size; m: number of optimal training sets at each fixed size

Dataset Scenarioa Parametersb Operating curvec

44 K rice Fixed n
c
= 250, n0 = 50, 75, 100 nmin = 25, nmax = 225, � = 25, m = 10

Non-fixed n
c
= 317, n0 = 50 nmin = 25, nmax = 300, � = 25, m = 10

Tropical rice Fixed n
c
= 200, n0 = 50, 75, 100 nmin = 25, nmax = 175, � = 25, m = 10

Non-fixed n
c
= 278, n0 = 50 nmin = 25, nmax = 275, � = 25, m = 10

Soybean Fixed n
c
= 275, n0 = 50, 75, 100 nmin = 25, nmax = 250, � = 25, m = 10

Non-fixed n
c
= 301, n0 = 100 nmin = 25, nmax = 275, � = 25, m = 10
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where g denotes the vector of genotypic values for the indi-
viduals, assumed by g ∼ N

(
�, �2

g
K
)
 . Here, K is considered 

the genomic relationship matrix for measuring similarity 
among individuals through the marker-associated matrix. 
Several forms were employed for K in the context of GP 
(Forni et al. 2011; Rincent et al. 2012; Tsai et al. 2021). 
GBLUP model is equivalent to rrBLUP model, if g = X� ; 
K =

1

p
XXT ; and �2

g
= p�2

�
.

The marker‑associated matrix

Let X be the original marker scores matrix, and M be the 
standardized marker score matrix. That is, mij =

xij−xj

sj
 , where 

mij and xij are the (ij)th elements of M and X , and xj and sj 
are the sample mean and the sample standard deviation for 
column j in X , for i = 1, 2,… , n , and j = 1, 2,… , p . Under 
the assumption that n < p , the spectral decomposition was 
performed on MTM , producing MTM =

∑n

i=1
uiqiq

T
i
 , where 

ui is a nonzero eigenvalue of the order u1 ≥ u2 ≥ ⋯ ≥ un > 0 , 
and qi is the eigenvector of length p. The PC score matrix 
was then obtained as:

with Q =
[
q1 ⋮ q2 ⋮ ⋯ ⋮ qn

]
 . In this study, we used as many 

PCs as individuals in the dataset.

The r‑score criterion

Let Sc , St , and S0 denote the candidate set, the training set, 
and the test set, respectively. In addition, let nc , nt , and n0 
be the respective numbers of individuals in Sc , St , and S0 . 
Moreover, let Xc , Xt , and X0 denote their respective PC score 
matrices of the orders nc × p , nt × p , and n0 × p . Based on 
the WGR model of Eq. (1) and the ridge regression estima-
tion in Eq. (2) without considering the constant term � , Ou 
and Liao (2019) developed the r-score criterion, given as 
follows:

where

Here ,  Tr[⋅] denotes  t he  t race  o f  a  square 
matrix;A = XT

t

(
XtX

T

t
+ �Int

)−1
; and Jn0 is the square matrix 

with all elements equal to 1
n0

 . The shrinkage parameter � is 

(5)L = MQ

(6)r-score =
q12√
q1q2

,

q12 = Tr
[
XT

0

(
In0 − Jn0

)
X0AXt

]
,

q1 =
(
n0 − 1

)
+ Tr

[
XT

0

(
In0 − Jn0

)
X0

]
,

q2 = Tr
[
ATXT

0

(
In0 − Jn0

)
X0A

]
+ Tr

[
XT

t
ATXT

0

(
In0 − Jn0

)
X0AXt

]
.

fixed at 1 in the calculation of the r-score. The robustness of 
� for the sample size determination will be discussed in the 
final section. Note that the computational cost can be 
reduced using the PC score matrices (Akdemir et al. 2015; 
Ou and Liao 2019).

The logistic growth curve

The logistic growth curve was used to model the change of 
r-score with the training set size, which can be described as:

where y denotes the r-score, x stands for the training set 
size, � is an unknown parameter related to the asymptote, 
parameter � relates to the intercept on y-axis, parameter � 
relates to the rate at which the r-score changes from its initial 
value (determined by the magnitude of � ) to its final value 
(determined by the magnitude of � ), and exp denotes the 
natural exponential function whose basis is Euler’s number, 
a mathematic constant approximately equal to 2.71828. For a 
given number of pairs of the r-score and training set size, the 
R function nls () (R Core Team 2019) was used to perform 
nonlinear least squares estimation for the parameters in the 
logistic growth curve model of Eq. (7).

The study scenarios

For a given dataset, a subset of nc individuals was first 
selected at random as the candidate set Sc . A fixed num-
ber of n0 individuals was then randomly selected from the 
remaining individuals as the test set S0 . This setting was 
called the fixed candidate set scenario. Conversely, S0 was 
first determined by random sampling from the original data-
set, and then, the remaining individuals were treated as Sc . 
The candidate set Sc varied with the test set S0 in this case, 
so this characteristic was called the non-fixed candidate set 
scenario. Both targeted and untargeted methods were ana-
lyzed in the two scenarios.

For a specific S0 , the targeted method searched optimal 
training set St from Sc to achieve the maximum r-score 
between S0 and St . However, no target test set was specified 
for the untargeted method, and the optimal training set St was 
therefore identified such that the r-score between Sc and St 
was maximized. In other words, Xc (the marker-associated 
matrix of Sc ), not X0 (the marker-associated matrix of S0 ), 
is used to calculate the r-score for the untargeted method. 
Furthermore, the following sampling rule was employed 
to determine the number of genotypes for each cluster in a 
candidate set with a strong population structure. For the tar-
geted method, the number of genotypes selected from each 
cluster of the candidate set is proportional to the size of 
the cluster in the target test set. For the untargeted method, 

(7)y =
�

1 + exp (� − �x)
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corresponding genotypes were selected proportional to the 
size of the cluster in the candidate set.

Determining training set size

For each of the fixed and non-fixed candidate set scenar-
ios, the following procedure was proposed to construct the 
desired operating curves to determine the sample size for 
both the targeted and untargeted methods.

Step 1 For a given candidate set Sc with Xc and a specific 
test set S0 with X0 (instead of Sc with Xc for the untargeted 
method), we generated a number of optimal training set St 
based on the r-score criterion at the training set size nt vary-
ing from nmin to nmax by an increment of �. That is, we repeat-
edly generated m optimal training sets and obtained their 
resulting r-scores, for nt = nmin, nmin + �, nmin + 2�,… , nmax. 
Note that there is only one training set available for nt = nc.

Step 2 For the resulting r-scores and nt generated from 
Step 1, we performed the R function nls () to obtain the 
parameter estimates in the logistic growth curve model of 
Eq. (7).

Step 3 Let r-score ( nt ) =
𝛼̂

1+exp (𝛽−𝛾̂nt)
 denote the resulting 

logistic growth curve. Then, the fitted r-score ( nt ) at nt rela-
tive to the fitted r-score ( nc ) at nc is given by:

The RErs
(
nt
)
 curve of Eq. (8) is a function of nt con-

ditioned by nc , so it can be implemented to determine the 
size of the training set. Note that RErs

(
nt
)
 ranges from 0 to 

1, representing the relative r-score using an optimal train-
ing set of size nt to the whole candidate set Sc of size nc . 
Accordingly, a user can easily obtain a cost-effective train-
ing set S∗

t
 with size n∗

t
 at an acceptable RErs

(
n∗
t

)
 , where 

RErs
(
nmin

)
≤ RErs

(
n∗
t

)
≤ 1.

Validation of the procedure

For a given S∗
t
 , the GBLUP model given below was used to 

predict GEBVs for individuals in the test set S0

where yt denotes the vector of phenotypic values in S∗
t
 ; gt is 

the vector of genotypic values for S∗
t
 ; and �t is the vector of 

random errors. It is assumed that gt ∼ N

(
�, �2

g
Kt

)
, where 

Kt =
1

n

(
LtL

T

t

)
 with Lt being the submatrix of L in Eq. (5) 

corresponding to S∗
t
 . Accordingly, the BLUP for gt and the 

best linear unbiased estimate (BLUE) for � can be obtained 
from Henderson’s mixed-model equations (Henderson 
1975). Let ĝ0 be the BLUP for S0 , and let K0 be the genomic 

(8)RErs
(
nt
)
=

1 + exp
(
𝛽 − 𝛾̂nc

)

1 + exp
(
𝛽 − 𝛾̂nt

) .

(9)yt = ��n∗t
+ gt + �t,

relationship matrix between S0 and S∗
t
 . From Henderson 

(1977),

where ĝt is the BLUP for gt . The GEBVs for S0 were pre-
dicted to be of the form ĝ0 plus 𝜇̂ (the BLUE for � ). The 
Bayesian reproducing kernel Hilbert space (RKHS) method 
in the R package BGLR (Perez and de los Campos 2014) 
was used to obtain the GEBVs.

Subsequently, Pearson’s correlation between the resulting 
GEBVs and the phenotypic values recorded in the original 
dataset, denoted by r

(
n∗
t

)
 , was calculated as a measure for 

the prediction ability using S∗
t
 . The corresponding Pear-

son’s correlation using Sc can be similarly obtained, which 
is denoted by r

(
nc
)
 . The relative prediction ability of S∗

t
 to 

Sc is given as:

Here, REpa
(
n∗
t

)
 was treated as a point estimate for RErs

(
n∗
t

)
 . 

A box plot of the REpa
(
n∗
t

)
s obtained from a number of 

repetitions was used to validate the above procedure to deter-
mine the sample size.

The parameters of nc and n0 fixed in the study scenarios, 
and those of nmin , nmax , � , and m fixed in building the operat-
ing curves to determine the training set size are summarized 
in Table 1. RErs

(
n∗
t

)
 in Eq. (8) was fixed at 0.95 and 0.99 

to produce the training set size n∗
t
 , and then, the optimal 

training set S∗
t
 corresponding to n∗

t
 were generated. For each 

setting of the parameters, the procedure was repeated 30 
times. Note that the sampling rule set for the highly struc-
tured population was taken into account in the training set 
optimization for the 44 K rice and soybean datasets.

Results

The fitted logistic growth curves and operating curves are 
displayed in Figs. S1–S6 of the Supplementary Materials, 
which showed that almost all of the observed data points 
were located on or quite close to the fitted logistic growth 
curves in the panels of each figure. However, there were still 
some relatively large deviations in the case of the targeted 
method under the non-fixed candidate set scenario in the 
44 K rice dataset.

The mean and standard deviation of the resulting 30 opti-
mal training set sizes ( n∗

t
 ) for each trait in the datasets are 

separately displayed in Tables 2, 3 and 4. Note that the untar-
geted method in the fixed candidate set scenario resulted in 
a unique n∗

t
 at a given RErs

(
n∗
t

)
 for all of the 30 repetitions, 

because the fixed candidate set was used as the test set for 

(10)ĝ0 = K0(Kt)
−1ĝt,

(11)REpa
(
n∗
t

)
=

r
(
n∗
t

)

r
(
nc
) .
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calculating the r-score. Hence, there is only one operating 
curve for this case. The test set was not used to determine the 
sample size of training set for the untargeted method. The 
untargeted method therefore gave only n∗

t
 regardless of n0.

From Tables 2, 3 and 4, we first considered the fixed can-
didate set scenario. For the targeted method, the optimal 
training set size determined at RErs

(
n∗
t

)
 = 0.95 increases 

approximately by two individuals on average as the test set 
size ( n0) increases by 25 individuals, except the case that 
the 44 K rice dataset presented six individuals from n0 = 
50 to 75. The corresponding quantities at RErs

(
n∗
t

)
 = 0.99 

are even smaller, and the largest one is just two individu-
als in the 44 K rice dataset (Table 2). The optimal training 
set size required to predict the test set with n0 = 50 was 

also sufficient for other larger test sets in each dataset. For a 
fixed n0 , an extra number of individuals (approximately 70, 
55, and 85 individuals on average for the 44 K rice, tropi-
cal rice, and soybean datasets, respectively) are required in 
the training set to attain RErs

(
n∗
t

)
 from 0.95 to 0.99. For 

the untargeted method, it generally requires a much larger 
training set than its targeted counterpart to achieve the same 
relative r-score. Those are approximately by 101, 20, and 28 
individuals on average at RErs

(
n∗
t

)
= 0.95 ; and 106, 11, and 

21 individuals on average at RErs
(
n∗
t

)
= 0.99 for the 44 K 

rice, tropical rice, and soybean datasets, respectively.
We then considered the non-fixed candidate set scenario. 

For the targeted method, an extra number of individuals 
(approximately 105, 80, and 91 individuals on average for 

Table 2   Means and standard deviations (in parentheses) of the result-
ing training set sizes over 30 repetitions at RErs

(
n
∗
t

)
= 0.95 and 0.99, 

under the fixed candidate set scenario with three different test set 

sizes ( n0 = 50, 75 and 100) and the non-fixed candidate set scenario 
with test n0 = 50 , for both the targeted and untargeted methods in the 
44 K rice dataset

Scenario Method n0 RErs
(
n
∗
t

)
= 0.95 RErs

(
n
∗
t

)
= 0.99

Fixed candidate set Targeted 50 31.22 (3.15) 106.27 (7.23)
75 37.00 (2.44) 108.03 (4.85)

100 39.90 (1.47) 110.47 (2.98)
Untargeted 138 (NA) 214 (NA)

Non-fixed candidate set Targeted 50 42.03 (7.52) 147.77 (16.64)
Untargeted 50 164.53 (1.61) 264.43 (1.41)

Table 3   Means and standard deviations (in parentheses) of training 
set sizes over the 30 repetitions at RErs

(
n
∗
t

)
= 0.95 and 0.99 under 

the fixed candidate set scenario with three different test set sizes 

( n0 = 50, 75, and 100) and the non-fixed candidate set scenario with 
test n0 = 50 for both the targeted and untargeted methods in the tropi-
cal rice dataset

Scenario Method n0 RErs
(
n
∗
t

)
= 0.95 RErs

(
n
∗
t

)
= 0.99

Fixed candidate set Targeted 50 109.60 (3.69) 165.07 (2.98)
75 111.93 (2.98) 166.33 (2.17)

100 112.87 (1.83) 166.97 (1.38)
Untargeted 131 (NA) 177 (NA)

Non-fixed candidate set Targeted 50 146.87 (8.71) 226.40 (6.93)
Untargeted 50 172.17 (1.46) 239.80 (1.00)

Table 4   Means and standard deviations (in parentheses) of the result-
ing training set sizes over 30 repetitions at RErs

(
n
∗
t

)
= 0.95 and 0.99, 

under the fixed candidate set scenario with three different test set 

sizes ( n0 = 50, 75, and 100) and the non-fixed candidate set scenario 
with n0 = 100 , for both the targeted and untargeted methods in the 
soybean dataset

Scenario Method n0 RErs
(
n
∗
t

)
= 0.95 RErs

(
n
∗
t

)
= 0.99

Fixed candidate set Targeted 50 114.37 (5.07) 200.50 (5.69)
75 116.37 (2.27) 200.67 (2.99)

100 118.80 (2.28) 201.50 (2.53)
Untargeted 144 (NA) 221 (NA)

Non-fixed candidate set Targeted 100 125.87 (4.35) 216.47 (5.19)
Untargeted 100 150.83 (1.21) 235.23 (1.22)
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the 44 K rice, tropical rice, and soybean datasets, respec-
tively) are required in the optimal training set to attain 
RErs

(
n∗
t

)
 from 0.95 to 0.99; the corresponding quantities 

are 100, 67, and 85 individuals with the untargeted method. 
The untargeted method requires more individuals to be pre-
sented in the optimal training set, by approximately 122, 26, 
and 25 individuals on average for the 44 K rice, tropical rice, 
and soybean datasets, respectively, than the targeted method 
at RErs

(
n∗
t

)
 = 0.95; the corresponding quantities are 127, 13, 

and 19 individuals at RErs
(
n∗
t

)
 = 0.99.

The side-by-side box plots of the resulting 30 REpa
(
n∗
t

)
 

s for the traits in each dataset are separately displayed in 
Figs. 1, 2 and 3. The average prediction ability over 30 r

(
n∗
t

)
 

s for each trait in every dataset is displayed in Tables S1–S3 
of the Supplementary Materials. We first considered the 

44 K rice dataset. For a particular trait with the fixed candi-
date set scenario, the box plots in the four panels of Fig. 1 
generally reflect the result that the larger training set size 
leads to more precise estimates of REpa

(
n∗
t

)
 , i.e., a smaller 

dispersion of the estimates. For example, the box plot for 
FLL with n0 = 100 in panel (d) appears to have a narrower 
spread not only than the remaining two cases of n0 = 75 and 
50 in the same panel but also all of the three cases in panels 
(a)–(c) with the fixed candidate set scenario. The case for 
a particular trait with the non-fixed candidate set scenario 
presented a larger dispersion than the other cases with a 
fixed candidate set scenario in the same panel.

Regarding the results for the tropical rice dataset, 
the box plots in the four panels in Fig. 2 still reflect the 
result that a larger training set size leads to more precise 

Fig. 1   Side-by-side box plots for the REpa
(
n
∗
t

)
s over 30 repetitions at 

RErs
(
n
∗
t

)
= 0.95 and 0.99, under a fixed candidate set scenario with 

three test set sizes ( n0 = 50, 75, and 100) and a non-fixed candidate 
set scenario with test n0 = 50 for both the targeted and untargeted 

methods in the 44 K rice dataset. BRSA Brown rice seed area, BRV 
Brown rice volume, FLL Flag leaf length, FLW Flag leaf width, PH 
Plant height, SL Seed length, SV Seed volume. The corresponding 
RErs

(
n
∗
t

)
 is indicated as a red dashed line
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estimates of REpa
(
n∗
t

)
 s in a fixed trait. The median in the 

box plot approaches the nominal RErs
(
n∗
t

)
 as n∗

t
 increases, 

except for the traits in panel (c) of the untargeted method 
at RErs

(
n∗
t

)
 = 0.95 compared to those in panel (a) of the 

targeted method at RErs
(
n∗
t

)
 = 0.95. Overall, these results 

indicate that the bias in the estimation usually improves with 
an increase in training set size. The case for a particular 
trait with the non-fixed candidate set scenario presented a 
relatively large dispersion than the other cases with the fixed 
candidate set scenario in the same panel. This result is also 
highlighted in Fig. 1. Finally, regarding the results for the 
soybean dataset in Fig. 3, the box plots in the four panels 
for OC and PRC show that the estimates of REpa

(
n∗
t

)
 s for 

these two traits are distributed narrowly around the nominal 
RErs

(
n∗
t

)
 values such as 0.95 or 0.99.

Discussion

The logistic growth curve was used in this study, mainly 
because it satisfies the principles of parsimony and inter-
pretability as discussed in Ratkowsky (1993). The logistic 
growth curve with only three parameters provided a superior 
fit for almost all of the study scenarios in the three datasets, 
and those parameters can be used to sufficiently interpret the 
behavior of the observed data. However, the logistic growth 
function still seemed to be insufficient for some of the cases. 
Particularly, the targeted method under the non-fixed can-
didate set scenario in the 44 K rice dataset (the upper-left 
panel in Fig. S2 of the Supplementary Materials) had a poor 
fit near the maximum value of the r-score, which should 
have a significant impact on the estimation of the 95th and 
99th percentile points. Therefore, we re-fitted the data points 

Fig. 2   Side-by-side box plots for the REpa
(
n
∗
t

)
s over 30 repetitions 

at RErs
(
n
∗
t

)
= 0.95 and 0.99, under a fixed candidate set scenario 

with three different test set sizes ( n0 = 50, 75, and 100) and a non-

fixed candidate set scenario with n0 = 50 , for both the targeted and 
untargeted methods in the tropical rice dataset. FT Flowering time, 
GY Grain yield, PH Plant height. The corresponding RErs

(
n
∗
t

)
 is indi-

cated as a red dashed line
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by using another four-parameter growth curve, called as 
Weibull type function (Ratkowsky 1983). The Weibull type 
function can be described as:

where � is an extra parameter compared to the logistic func-
tion in Eq. (7). The fitted Weibull type function together 
with the original logistic function, and their fitted operating 
curves are displayed in Fig. 4. From the figure, the Weibull 
type function indeed improved the fitting and resulted in a 
larger training set size at the 99th percentile point. In addi-
tion, the mean and standard deviation of the estimates for 
the parameters and the n∗

t
 determined at RErs

(
n∗
t

)
 = 0.95 or 

0.99 over the 30 repetitions in the same study scenario are 
displayed in Table 5. From which, the Weibull type func-
tion led to a training set size at RErs

(
n∗
t

)
 = 0.95 almost 

(12)y = � − �exp
(
−�x�

)

the same as the logistic function, but a much larger one at 
RErs

(
n∗
t

)
 = 0.99 (approximately by 36 genotypes on aver-

age). The above discussion implies that a more complex 
function could be employed when the parsimonious model 
does not work satisfactorily. In our experience, it becomes 
more challenging to set the initial values for the parameters 
to obtain a convergent model when performing the nonlinear 
least squares estimation for a more complex function.

Spline (piecewise polynomial) regression can also be 
applied to perform the task of this study. However, deciding 
on the number and positions of the knots and the order of 
polynomials in each segment is not simple. In addition, the 
great flexibility of spline functions often makes it very easy 
to overfit the data when using spline regression (Montgom-
ery and Peck 1982). Another advantage of growth curve-
based regression over spline regression is that it allows a 

Fig. 3   Side-by-side box plots for REpa
(
n
∗
t

)
s over 30 repetitions at 

RErs
(
n
∗
t

)
= 0.95 and 0.99 under a fixed candidate set scenario with 

three different test set sizes ( n0 = 50, 75, and 100) and a non-fixed can-

didate set scenario with n0 = 100 , for both the targeted and untargeted 
methods in the soybean dataset. OC Oil content, PRC Protein content, 
YLD Yield. The corresponding RErs

(
n
∗
t

)
 is indicated as a red dashed line
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connection to be drawn between the r-score and the train-
ing set size in a single model across all datasets, as well as 
fixed and non-fixed candidate set scenarios with targeted and 
untargeted methods.

Although Ou and Liao (2019) found that the r-score 
was relatively robust under various values of the shrink-
age parameter � , it is not yet known how robust it is for 

calculating the optimal training set size n∗
t
 . We thus validated 

its robustness by calculating the n∗
t
 in a fixed candidate set 

scenario with an untargeted method at various values of λ . 
The results are displayed in Table 6, and they clearly show 
that our proposed procedure for the sample size determina-
tion can be free from the setting of the value of �.

Fig. 4   Fitted Weibull type and logistic curves (left) and operating curves (right) for the data points in the upper-left panel of Fig. S2 in the Sup-
plementary Materials

Table 5   Means and standard deviations (in parentheses) of the result-
ing estimated parameters using logistic growth function (Eq. 7) and 
Weibull type function (Eq.  12), respectively, and training set sizes 

at RErs
(
n
∗
t

)
= 0.95 and 0.99 over 30 repetitions under the non-fixed 

candidate set scenario with n0 = 50 for the targeted method in the 
44 K rice dataset

Model Parameters Training set sizes

𝛼̂ 𝛽 𝛾̂ 𝜃̂ RErs
(
n
∗
t

)
= 0.95 RErs

(
n
∗
t

)
= 0.99

Logistic 0.8750 (0.0126)  − 2.2867 (0.1383) 0.0152 (0.0027) – 42.03 (7.52) 147.77 (16.64)
Weibull 83.7296 (0.7111) 82.8027 (0.7022)  − 0.0045 (0.0018)  − 0.3656 

(0.1428)
42.23 (6.52) 183.77 (16.38)

Table 6   The optimal training 
set size determined for the fixed 
candidate set scenario with the 
untargeted method over various 
values of � for the datasets

Dataset �

0.001 0.01 0.1 1 10 100 1000

44 K rice 0.95 138 138 138 138 138 138 138
0.99 214 214 214 214 214 214 214

Tropical rice 0.95 131 131 130 131 131 131 131
0.99 177 177 177 177 177 177 177

Soybean 0.95 144 144 144 144 144 144 141
0.99 222 221 222 221 221 221 219
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We considered the stratified r-score for the 44 K rice and 
soybean datasets, because their population structures could 
affect the training set size determination. The population 
structure and the clustering of the datasets are displayed in 
Fig. S7 of the Supplementary Materials. The results showed 
that the 44 K rice dataset (approximately 46% genetic vari-
ability explained by the first two PCs) had much stronger 
population structure than the soybean dataset (approximately 
24% genetic variability explained by the first two PCs). This 
observation might reflect the results shown in Tables 2 and 
4 that the n∗

t
 determined at RErs

(
n∗
t

)
 = 0.95 or 0.99 in the 

44 K rice dataset were relatively small compared with their 
counterpart scenarios in the soybean dataset.

Another factor that may influence the determination of 
the training set size is the marker density of the datasets. 
To explore the impact on the sample size determination, we 
calculated the n∗

t
 under the fixed candidate set scenario with 

the untargeted method at various levels of maker density 
in the datasets. The subsets of markers selected from each 
dataset were evenly distributed over each rice or soybean 
chromosome. The results are displayed in Table 7, which 
show that the optimal training set size might decrease if 
the number of markers is insufficient. For example, the size 
was reduced from 221 to 210 genotypes in the soybean data-
set, if the number of markers was reduced from p = 2376 
to 0.25p = 594 . Chung and Liao (2020) proposed an index 
called the D-score for measuring genomic diversity among 
genotypes. We will investigate how it affects the training set 
size determination in a future study.

As shown in Tables 2, 3 and 4, the marker-associated 
matrix of a dataset has a key impact on the determination 
of the optimal training set. In general, the use of test set 
information while building a training set results in much 
more economical phenotyping cost, in terms of the number 
of genotypes, than its untargeted counterpart. Moreover, 
larger test sets did not significantly increase the size required 
for the optimal training set to attain an expected accuracy 

( RErs
(
n∗
t

)
 = 0.95 or 0.99). A number of additional individu-

als was required in the training set to attain a higher expected 
accuracy ( RErs

(
n∗
t

)
 is from 0.95 to 0.99), the required quan-

tity varied with the datasets.
In this study, REpa

(
n∗
t

)
 of Eq. (11) was used to estimate 

RErs
(
n∗
t

)
 of Eq. (8). The factors affecting prediction ability, 

such as sample size, population structure, marker density, 
trait heritability, genetic architecture, and statistical estima-
tion methods (Zhong et al. 2009; Zhang et al. 2019) should 
also influence bias and dispersion in the estimation. As 
shown in Figs. 1, 2 and 3, the size of the optimal training set 
size could be a key factor affecting both the bias and disper-
sion in the estimation, which can be improved as the size n∗

t
 

increases. In particular, the box plots for FLL in Fig. 1 of the 
44 K rice dataset and those for YLD in Fig. 3 of the soybean 
dataset were found to be relatively dispersed compared with 
the remaining traits in the same dataset. From Tables S1 and 
S3, these two traits have the lowest prediction ability (FLL: 
0.35–0.51; YLD: 0.16–0.28) among the traits in the same 
dataset. This may be partially due to their relative low trait 
heritability (FLL: 0.0354; YLD: 0.0355). The trait herit-
ability estimated from all available phenotypic values for 
each trait-dataset combination based on the GBLUP model 
of Eq. (4) is displayed in Table S4 of the Supplementary 
Materials.

In addition, a targeted optimization usually outperformed 
its untargeted counterpart, as expected. Most of the resulting 
REpa

(
n∗
t

)
 over the 30 repetitions for all the data-trait com-

binations were smaller than 1, meaning that r
(
n∗
t

)
< r

(
nc
)
 . 

However, there were still some cases of REpa
(
n∗
t

)
> 1 , with 

the result that r
(
n∗
t

)
> r

(
nc
)
 for these cases. This interesting 

result indicated that the optimal training set, which excludes 
irrelevant candidates, can enhance the prediction ability and 
reduce the size of training set. An optimal training set with a 
sufficient size might provide more powerful prediction abil-
ity than the entire candidate set for particular dataset-trait 
combinations.

Based on the GBLUP model of Eq. (4), the CD crite-
rion can be treated as an index for measuring the correlation 
between the GEBVs and the true genotypic values (Laloë 
1993; Rincent et al. 2012). This is similar to the concept of 
the developing r-score, which is based on the correlation 
between the GEBVs and the phenotypic values. Therefore, 
the CD criterion can be a promising alternative for incorpo-
ration into our proposed procedure. We are currently inves-
tigating this interesting issue and will present the results in a 
future communication. Another useful optimization criterion 
of PEV, proposed by Akdemir et al. (2015), is anticipated to 
produce a decreasing function with the size of the training 
set, so suitable declining curves (Kawabata and DeFrank 
1994) might be applied to the sample size determination.

Table 7   Optimal training set size determined under the fixed candi-
date set scenario with the untargeted method over various levels of 
marker density in the datasets

Note that the numbers of SNP markers are given by p = 31,401, 
73,147, and 2,376 for the 44 K rice, tropical rice, and soybean data-
sets, respectively

Dataset RErs
(
n
∗
t

)
Marker density

p 0.75p 0.5p 0.25p

44 K rice 0.95 138 138 138 137
0.99 214 214 214 214

Tropical rice 0.95 131 131 130 130
0.99 177 177 177 177

Soybean 0.95 144 142 141 134
0.99 221 220 218 210
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An R function for executing the proposed approach, 
called SSDFGP, is available from the package TSDFGS 
(Ou 2022). A user can install the package from the R office 
repository CRAN or GitHub. Our proposed approach should 
prove useful to determine the composition and size of an 
optimal training set for genomic selection.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00122-​023-​04254-9.
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