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Abstract
Key message We used a historical dataset on stripe rust resistance across 11 years in an Austrian winter wheat breed-
ing program to evaluate genomic and pedigree-based linear and semi-parametric prediction methods.
Abstract Stripe rust (yellow rust) is an economically important foliar disease of wheat (Triticum aestivum L.) caused by the 
fungus Puccinia striiformis f. sp. tritici. Resistance to stripe rust is controlled by both qualitative (R-genes) and quantitative 
(small- to medium-effect quantitative trait loci, QTL) mechanisms. Genomic and pedigree-based prediction methods can 
accelerate selection for quantitative traits such as stripe rust resistance. Here we tested linear and semi-parametric models 
incorporating genomic, pedigree, and QTL information for cross-validated, forward, and pairwise prediction of adult plant 
resistance to stripe rust across 11 years (2008–2018) in an Austrian winter wheat breeding program. Semi-parametric genomic 
modeling had the greatest predictive ability and genetic variance overall, but differences between models were small. Includ-
ing QTL as covariates improved predictive ability in some years where highly significant QTL had been detected via genome-
wide association analysis. Predictive ability was moderate within years (cross-validated) but poor in cross-year frameworks.

Introduction

The fungus Puccinia striiformis f. sp. tritici (Pst) causes 
stripe rust (yellow rust), an economically important foliar 
disease of wheat (Triticum aestivum L.). Resistance breed-
ing is the most effective strategy for combating stripe rust 
epidemics (Chen 2020). Resistance to stripe rust in wheat is 
both qualitatively and quantitatively inherited (Rosewarne 
et al. 2008; Zegeye et al. 2014; Waqar et al. 2018; Blake 
et al. 2019; Ye et al. 2019). While most Yr genes confer com-
plete (qualitative) resistance against specific Pst races and 
favorable Yr alleles can be efficiently deployed via marker 

assisted selection (MAS), Yr-mediated resistance can be eas-
ily overcome by rapidly evolving Pst populations (Poland 
et al. 2009; Buerstmayr et al. 2014; Hovmøller et al. 2016; 
Chen 2020; Klymiuk et al. 2020; Tehseen et al. 2020). Quan-
titative trait loci (QTL) and adult plant resistance (APR) Yr 
genes provide partial, race non-specific resistance that can 
be more durable in comparison with race-specific Yr genes 
(Poland et al. 2009; Chen 2020) but the effects of quantita-
tive resistance mechanisms can be epistatically masked in 
the presence of race-specific Yr resistance alleles (Poland 
and Rutkoski 2016; Michel et al. 2022). Selection for and 
pyramiding of resistance QTL and APR genes via MAS can 
be an efficient strategy for achieving high levels of quantita-
tive resistance (Ragimekula et al. 2013; Poland and Rutkoski 
2016; Chen 2020).

Genomic prediction is a powerful tool for plant breed-
ing, accelerating the breeding cycle and increasing genetic 
gain for quantitative traits (Heffner et al. 2010; Heslot et al. 
2015; Poland and Rutkoski 2016; Crossa et al. 2017). Both 
linear and semi-parametric modeling have been shown to 
accurately predict stripe rust resistance (Juliana et al. 2017; 
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Muleta et al. 2017; Tehseen et al. 2021; Shahinnia et al. 
2022), but semi-parametric methods can improve prediction 
accuracy under epistatic interactions (Gianola et al. 2006; 
Gianola and Van Kaam 2008; Heslot et al. 2012; Juliana 
et al. 2017). Incorporating known QTL as model covariates 
can also enhance prediction accuracy for stripe rust resist-
ance (Juliana et al. 2017; Shahinnia et al. 2022) and other 
quantitative disease resistance traits (Poland and Rutkoski 
2016).

Prediction modeling for stripe rust has been previously 
assessed only under cross-validation and in highly con-
trolled, artificially inoculated experiments with limited num-
bers of genotypes and environments (Juliana et al. 2017; 
Muleta et al. 2017; Tehseen et al. 2021; Shahinnia et al. 
2022). Stripe rust resistance mechanisms in an active wheat 
breeding program can be influenced not only by genetic 
changes in the wheat population as a result of breeders’ deci-
sions, but also by genetic changes in rapidly evolving Pst 
populations. As such, the evaluation of prediction models 
for stripe rust resistance should reflect these dynamic and 
interacting processes.

Here, we tested the predictive ability of linear and semi-
parametric models incorporating genomic, pedigree, and 
QTL information on the prediction of stripe rust resistance 
under cross-validation and various cross-population frame-
works using a historical dataset on more than 5000 Austrian 
winter wheat breeding lines evaluated over 11 years, largely 
under natural Pst infection (Morales et al. 2021). Linear 
models included genomic and pedigree-based best linear 
unbiased prediction (GBLUP and PBLUP, respectively) 
(Meuwissen et al. 2001; Endelman and Jannink 2012) and 
non-parametric models included genomic and pedigree-
based reproducing kernel Hilbert spaces prediction (GRKHS 
and PRKHS, respectively) (Gianola et al. 2006; Gianola and 
Van Kaam 2008; González-Camacho et al. 2012). The QTL 
used as prediction model covariates in this study had been 
previously identified via genome-wide association (GWA) 
in this material (Morales et al. 2021).

Materials and methods

Phenotypic, genotypic, and pedigree data

Here we analyzed a historical stripe rust dataset from the 
winter wheat breeding program of Saatzucht Donau GmbH 
& CoKG (Probstdorf, Austria), as described previously by 
Morales et al. (2021). Briefly, 20,529 genotypes were evalu-
ated for adult stripe rust resistance on a 1 (most resistant) 
to 9 (most susceptible) scale in 71 trials across 53 locations 
from 2008 to 2018, where the majority (60/71 trials) of the 
trials were naturally infected by Pst (Morales et al. 2021). 
The phenotypic dataset is highly unbalanced, with most 

genotypes only evaluated in one plot in one trial (Morales 
et al. 2021). Within-trial spatial variation in stripe rust sever-
ity was adjusted using the “SpATS” package (Rodríguez-
Álvarez et al. 2018) in R Core Team (2020), Morales et al. 
(2021). Within and across years, a mixed model was fit with 
the spatially-adjusted stripe rust plot values as the response, 
genotype as a fixed effect, and trial as a random effect using 
the “breedR” package (Muñoz and Sanchez 2020) in R Core 
Team (2020) and the genotype best linear unbiased estimates 
(BLUEs) were then extracted from the model for further 
analysis (Morales et  al. 2021). The within- and across-
year genotype BLUEs (Morales et al. 2021) were used for 
genomic and pedigree-based prediction in this study (Online 
Resource 1). For prediction models including multiple years 
in the training set, we fit mixed models with the spatially-
adjusted stripe rust plot values from the years in the training 
set as the response, genotype as a fixed effect, and trial as 
a random effect using the “breedR” package (Muñoz and 
Sanchez 2020) in R Core Team (2020) and then extracted 
the BLUEs for further analysis (Online Resource 1).

Pedigree information was available for 41,461 individuals 
(Online Resource 2). A subset of 5233 lines selected based 
on good agronomic performance, grain quality, and disease 
resistance had also been genotyped with 9744 single nucle-
otide polymorphisms (SNPs) derived from a custom 6 K 
Illumina marker array (Illumina, Inc., San Diego, CA, USA) 
and DArTseq (Diversity Arrays Technology Pty Ltd, Can-
berra, Australia) genotyping-by-sequencing (Akbari et al. 
2006; Elshire et al. 2011) technology (Morales et al. 2021) 
(Online Resource 3). SNP genotypes were coded in terms of 
alternate alleles “a” and “A,” where − 1 = aa (homozygous 
“a” allele), 0 = Aa (heterozygous), and 1 = AA (homozygous 
“A” allele), and missing SNP data were imputed with the 
“missForest” package (Stekhoven and Bühlmann 2012) in R 
(Morales et al. 2021; R Core Team 2020) (Online Resource 
3).

Morales et al. (2021) previously identified 150 SNPs 
that were significantly associated with stripe rust resistance 
within 2009, 2010, 2011, 2014, 2015, 2018, and across 
2008–2018 in this dataset, representing 56 QTL (Online 
Resource 4). For years in which no SNPs were significantly 
detected (2008, 2012, 2013, 2016, 2017), we selected the 
SNPs with the lowest p-values (Online Resource 4).

Prediction models

All statistical analyses were conducted in R Core Team 
(2020). For genomic and pedigree-based best linear unbiased 
prediction (GBLUP and PBLUP, respectively) and genomic 
and pedigree-based reproducing kernel Hilbert spaces pre-
diction (GRKHS and PRKHS, respectively), we used the 
“breedR” package (Muñoz and Sanchez 2020) to fit the fol-
lowing mixed model (Meuwissen et al. 2001):
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where y is the vector of genotype BLUEs for stripe rust 
resistance, µ is the vector of overall means, Z is the design 
matrix of random effects, u is the vector of genotype ran-
dom effects ( u ∼ N(0,K�2

a
)), and ε is the vector of residu-

als ( � ∼ N(0, I�2

�
)). The variance of the genotype term was 

modeled as Kσ2
a, where K is the realized additive relation-

ship matrix (Endelman and Jannink 2012) and σ2
a is the 

estimated additive genetic variance (Yu et al. 2006). For 
each GBLUP model, we calculated K using SNP data from 
the lines included in the model with the “rrBLUP” pack-
age (Endelman and Jannink 2012). We used pedigree data 
to estimate K for all lines using the “AGHmatrix” package 
(Amadeu et al. 2016) and K was then subset for the lines 
included in each PBLUP model and which had also been 
genotyped. Using SNP data from the lines included in each 
GRKHS model and the pedigree K matrix subset for the 
lines in each PRKHS model and which had also been geno-
typed, we used the “BGGE” package (Granato et al. 2018) 
to model K as the following reproducing Gaussian kernel:

where the numerator is the Euclidian distance between indi-
viduals based on SNPs (GRKHS) (González-Camacho et al. 
2012) or twice the coefficient of ancestry (PRKHS) (Juliana 
et al. 2017), scaled by the percentile of the square of the 
Euclidean distance q (González-Camacho et al. 2012).

In addition, we incorporated the QTL previously iden-
tified via GWA (Morales et al. 2021) in each prediction 
model (GBLUP-A, PBLUP-A, GRKHS-A, PRKHS-A). For 
the across-year models and each within-year model, QTL 
significantly associated with stripe rust across years or in 
that year (Morales et al. 2021), respectively, were included 
as fixed covariates. Similarly, for pairwise and forward pre-
diction, the QTL associated in the test year(s) were included 
as covariates. The following mixed model (Meuwissen 
et al. 2001) was fit with the “breedR” package (Muñoz and 
Sanchez 2020):

where y is the vector of genotype BLUEs for stripe rust 
resistance, µ is the vector of overall means, Xi…j are the 
matrices of SNPs i to j, βi…j are the fixed effects of SNPs i to 
j, Z is the design matrix of random effects, u is the vector of 
genotype random effects ( u ∼ N(0,K�2

a
)), and ε is the vec-

tor of residuals ( � ∼ N(0, I�2

�
)). Covariance structures were 

specified as described previously.
We also conducted ordinary least squares (OLS) regres-

sion using a similar approach as described above, with the 

y = 1n� + Zu + �,

K
�

xi, xj
�

= exp

�

−
∑

k

�

xik − xjk
�2

q

�

,

y = 1n� + X�i …X�j + Zu + �,

only difference being that the random genotypic term was 
not included. The following mixed model (Meuwissen 
et al. 2001) was fit with the “breedR” package (Muñoz and 
Sanchez 2020):

where y is the vector of genotype BLUEs for stripe rust 
resistance, µ is the vector of overall means, Xi…j are the 
matrices of SNPs i to j, βi…j are the fixed effects of SNPs i 
to j, and ε is the vector of residuals ( � ∼ N(0, I�2

�
)).

Prediction frameworks

We used cross-validation (five-fold, 10 replications) to eval-
uate each prediction model within and across years. Within 
each fold of each replication of each model, the response 
vector y included the genotype BLUEs of the training set and 
missing values for the test set. K was estimated using SNP 
data from all genotypes in both the training and test sets. 
Predictive ability was defined as the Pearson’s correlation 
between the observed and predicted values of the test set 
in each fold of each replication. For each model within and 
across years, we estimated heritability within each replica-
tion/fold as the proportion of the total variance explained by 
the random genotypic term.

Because GRKHS had the best predictive ability and highest 
heritability overall in the cross-validated analysis and because 
GBLUP is the most commonly used model for genomic pre-
diction (Zhang et al. 2021), we conducted further cross-year 
testing on GRKHS and GBLUP. In the forward prediction 
framework, BLUES within each year (2009–2010) were used 
as the test set. For each test set, we comprised progressive 
training set(s) of BLUEs from the previous year(s), with the 
first training set only including the year immediately before 
the test year and the last training set including all years prior 
to the test year. For example, the training sets for the 2011 test 
year included BLUEs from 2010, 2009–2010, and 2008–2010. 
We also evaluated GBLUP and GRKHS between pairs of 
years. For each pair of years, one year was used as the train-
ing set and the other year as the test set, and vice versa. The 
forward prediction and between-year test sets were selected in 
two ways: (1) all genotypes in the training and test sets were 
included (“overlap”) and (2) genotypes that were present in 
both the training and test sets were excluded from the test set 
(“no overlap”). For each model, the response vector y included 
the genotype BLUEs of the training set and missing values for 
the test set. K was estimated using SNP data from all geno-
types in both the training and test sets. Predictive ability was 
defined as the Pearson’s correlation between the observed and 
predicted values of the test set and heritability was estimated 

y = 1n� + X�i …X�j + �,
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as the proportion of the total variance explained by the random 
genotypic term.

Results

Comparison of cross‑validated stripe rust prediction 
models within and across years

Cross-validated predictive ability ( PA) for stripe rust was 
moderate, with a grand mean of  PA = 0.40 ± 0.24. The 
number of lines per year ranged from 47 to 1639 (Table 2). 
Overall, the difference in predictive ability among kinship-
based models (all models except OLS) was small, ranging 
from PA = 0.37 for PBLUP to PA = 0.49 for GRKHS-A, 
while OLS had the lowest predictive ability (PA = 0.22) 
(Table 1). GRKHS and GRKHS-A had the greatest herit-
ability (h2 = 0.75–0.79), while GBLUP and GBLUP-A had 
the lowest heritability (h2 = 0.34–0.42) (Table 2). In an over-
all comparison among years, predictive ability was highest 
across years and within 2014 and 2016 ( PA= 0.57–0.58) 
and lowest within 2008 and 2009 (PA = 0.29–0.30), while 
heritability was highest within 2009 (h2 = 0.84) and lowest 
within 2011 (h2 = 0.26) (Tables 1 and 2). Predictive ability 
and heritability were weakly positively correlated (r = 0.09, 
p = 9 ×  10–11).

Predictive ability was highest within 2009 and 2010 
with GBLUP (Table 1). GRKHS best predicted 2011, while 
GRKHS-A had the best predictive ability within 2008, 2012, 
2014, 2015, and 2017 (Table 1). Within 2016, GRKHS-A, 
PRKHS, and PRKHS-A has the highest predictive ability, 
while PRKHS-A best predicted 2018. In the across-years 
analysis, predictive ability was best with GRKHS, GRKHS-
A, and PRKHS-A (Table 1). All kinship-based models per-
formed equally within 2013 (Table 1).

For the genomic prediction methods, including QTL as 
covariates did not significantly improve predictive ability. 
Overall and within/across years, GBLUP and GBLUP-A per-
formed equally, as did GRKHS and GRKHS-A (Table 1). 
However, pedigree-based models that included QTL covar-
iates had higher predictive ability than their counterparts 
without QTL covariates in some cases. Overall, PBLUP-A 
and PRKHS-A had better predictive ability than PBLUP and 
PRKHS (Table 1). Similarly, PBLUP-A and PRKHS-A had 
higher predictive ability than PBLUP and PRKHS within 
2008, 2014, and 2015, and across years (Table 1). Within 
2008, 2014, and 2015, OLS had predictive ability compa-
rable to or higher than PBLUP-A and PRKHS-A (Table 1).

Comparison of between‑year and forward 
prediction models for stripe rust

Both between-year and forward predictive ability were gen-
erally poor, with a grand mean of  PA = 0.12 ± 0.14 for the 

between-year framework and  PA = 0.14 ± 0.14 for forward 
prediction (Table 3, Figs. 1 and 2). Overall, the models in 
which genotypes present in both the training and test sets 
where excluded from the test set (GBLUP–no overlap; 
GRKHS–no overlap;  PAbetween = 0.14;  PAforward = 0.17) 
had better predictive ability than the models where all 
genotypes in the training and test sets were included 
(GBLUP–overlap; GRKHS–overlap;  PAbetween = 0.09–0.11;  
PAforward = 0.10–0.12) (Table 3). Heritability was also higher 
with the “no overlap” models compared to the “overlap” 
models and the GBLUP models had greater heritability than 
their respective GRKHS models (Table 3).

In the between-year framework, there was no consistent 
relationship between predictive ability and the number of 
years between the training and test sets (Pearson’s correla-
tion r = 0.002; p = 0.9), although some trends were appar-
ent. For example, the years 2013–2015 better predicted each 
other than other years (Fig. 1). Conversely, the training years 
2008–2012 tended to have better predictive ability for the 
test years 2016–2017 than with other years, and vice versa 
(Fig. 1). The test year 2018 was poorly predicted by all 
training years (Fig. 1). The phenotypic correlation between 
pairs of years was generally higher than the correspond-
ing genomic predictive ability (Fig. 1, Table 4). Adjacent 
pairs of years tended to have higher phenotypic correlations 
than pairs further apart in time (Table 4). The number of 
lines shared between pairs of years ranged from 14 to 541 
(Table 4).

In the forward prediction framework, we found no appar-
ent trend with respect to the number of previous years in the 
training set versus predictive ability (Pearson’s correlation 
r = 0.1; p = 0.8). However, we did find trends in predictive 
ability among test years and models. With the GBLUP–no 
overlap and GRKHS–no overlap models, predictive ability 
was higher for the test years 2012 (PA = 0.34 ± 0.02), 2015 
(PA = 0.26 ± 0.01), and 2017 (PA  = 0.29 ± 0.02) than other 
test years (PA = 0.06–0.19) (Fig. 2). While predictive ability 
for the test year 2016 was poor with the “no overlap” models 
(PA = 0.12 ± 0.03), its predictive ability with the “overlap” 
methods was moderate (PA = 0.41 ± 0.07) and comparable 
to cross-validated predictions (Fig. 2, Table 1). In contrast, 
prediction for the test year 2013 was very poor with the 
“overlap” models (PA = -0.14 ± 0.03) compared to the “no 
overlap” models (PA = 0.13 ± 0.02) (Fig. 2). The test years 
2011 (PA = 0.06 ± 0.01) and 2018 (PA =  −0.04 ± 0.03) were 
poorly predicted across all scenarios (Fig. 2).

Discussion

Here, we evaluated linear and semi-parametric methods 
using genomic, pedigree, and QTL information for genomic 
prediction of resistance to stripe rust across 11 years in an 
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Austrian winter wheat breeding program. Resistance to 
stripe rust in an active wheat breeding program is partially 
influenced by the combination of two dynamic processes: 
(a) breeders’ decisions about family selection at every gen-
eration/year and (b) rapidly changing Pst populations. We 
found small differences in performance among prediction 
models and that cross-validated predictive ability was mod-
erate within years but poor in most cross-year scenarios.

GRKHS modeling yielded the best overall predictive 
ability in the cross-validated framework but the difference 
between GRKHS/GRKHS-A and the other models was 
small, with insignificant differences with GBLUP modeling 
(3–4%) and slightly larger differences with the pedigree-
based models (4–10%). Previous studies comparing genomic 
prediction models for stripe rust resistance in wheat found 
that GRKHS had similar performance to GBLUP (Juliana 
et al. 2017; Tehseen et al. 2021) and slightly better accuracy 
than pedigree-based models (Juliana et al. 2017). GRKHS 
had greater heritability than all other models under both 
cross-validated and cross-year prediction, with notable 
differences ranging from 7 to 45% under cross-validation. 
Previous studies also found that RKHS methods reduce 
error variance and capture a greater amount of the genetic 
variance (Gianola et al. 2006; Crossa et al. 2010) and may 
improve prediction under epistasis (Gianola et al. 2006; 

Gianola and Van Kaam 2008; Heslot et al. 2012; Juliana 
et al. 2017).

As expected given the quantitative inheritance of stripe 
rust resistance in this population (Morales et al. 2021), OLS 
had poor predictive ability compared to the genomic and 
pedigree-based kinship models. While genomic prediction 
is an effective tool for improving quantitative traits (Heffner 
et al. 2010; Heslot et al. 2015; Poland and Rutkoski 2016; 
Crossa et al. 2017), approaches that incorporate individual 
markers, such as OLS and MAS, can be used successfully 
under less complex genetic architecture and where major 
QTL are present (Ragimekula et al. 2013; Poland and Rut-
koski 2016; Juliana et al. 2017; Chen 2020; Shahinnia et al. 
2022).

The QTL used as prediction model covariates here, which 
had been previously identified in a GWA study in this popu-
lation, had small effects on stripe rust resistance (Morales 
et al. 2021). Small-effect QTL are not ideal targets for MAS, 
but previous studies have found that the inclusion of small- 
and medium-effect QTL as prediction model covariates can 
improve predictive ability for stripe rust resistance (Juliana 
et al. 2017; Shahinnia et al. 2022). The inclusion of QTL 
covariates in genomic prediction modeling did not signifi-
cantly increase predictive ability when compared to the 
respective models without QTL covariates (e.g., GBLUP 
vs. GBLUP-A) in our dataset. Our results suggest that back-
ground quantitative resistance mechanisms were driving the 
signal for genomic prediction, complementing previous find-
ings of genome-wide selection signatures in this breeding 
program (Morales et al. 2021). In addition, Morales et al. 
(2021) found that rapid changes in allele frequencies led to 
the fixation of QTL detected by GWA in this population. 
As such, modeling QTL covariates may not be a reliable 
approach for long-term improvement of genomic prediction 
for stripe rust resistance in some breeding programs. The 
utility of QTL in prediction or MAS for resistance to stripe 
rust largely depends on the plant material. Breeding pro-
grams should—and often do—evaluate different strategies 
for genomic prediction modeling and/or MAS.

In 2011, the Warrior race (genetic group PstS7) emerged 
across Europe and quickly became the dominant Pst race 
thereafter (Hovmøller et al. 2016; Global Rust Reference 
Center 2021). Predictive ability and heritability were very 
poor for 2011 under both cross-validated and forward pre-
diction. In addition, including genotypes that were present 
in both the training and test years in between-year genomic 
prediction modeling reduced predictive ability from 2011 to 
2013. These results suggest that some resistance alleles in 
the population may have become ineffective with the emer-
gence of the Warrior race. However, resistance to stripe rust 
in this breeding program appears to have been largely driven 
by quantitative mechanisms, as demonstrated by (a) our pre-
vious findings of quantitative inheritance and genome-wide 

Table 3  Predictive ability and heritability of between-year and for-
ward prediction models for stripe rust

Predictive ability was calculated as the Pearson’s correlation between 
the observed and predicted values of the test set. Heritability was esti-
mated as the proportion of the total variance explained by the random 
genotypic term. Means ± standard errors of predictive ability and her-
itability for each model as displayed. Groups that are not connected 
by the same letter have significantly different predictive ability or her-
itability (Tukey’s HSD test, p < 0.05). GBLUP – no overlap: genomic 
best linear unbiased prediction, in which lines present in both the 
training and test sets were excluded from the test set. GBLUP – over-
lap: GBLUP with all training and test set lines included. GRKHS – 
no overlap: genomic reproducing kernel Hilbert spaces prediction, in 
which lines present in both the training and test sets were excluded 
from the test set. GRKHS – overlap: GRKHS with all training and 
test set lines included

Framework Model Predictive ability Heritability

Between-year GBLUP – no 
overlap

0.141 ± 0.135 a 0.456 ± 0.166 b

GBLUP – overlap 0.110 ± 0.128 ab 0.084 ± 0.158 d
GRKHS – no 
overlap

0.143 ± 0.122 a 0.789 ± 0.172 a

GRKHS – overlap 0.093 ± 0.125 b 0.229 ± 0.367 c
Forward GBLUP – no 

overlap
0.170 ± 0.106 ab 0.397 ± 0.121 b

GBLUP – overlap 0.099 ± 0.133 b 0.027 ± 0.065 c
GRKHS – no 
overlap

0.167 ± 0.098 ab 0.802 ± 0.115 a

GRKHS – overlap 0.115 ± 0.179 ab 0.101 ± 0.238 c
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selection (Morales et al. 2021), (b) the lack of improvement 
in genomic prediction accuracy by incorporating QTL covar-
iates, and (c) the non-relationship between proximity in time 
and predictive ability under cross-year genomic prediction 
frameworks.

Here, predictive ability for stripe rust resistance was 
higher under cross-validation than in the cross-year predic-
tion frameworks, similar to previous reports where predic-
tion accuracy for other traits was higher within populations 
than across populations (Thavamanikumar et al. 2015; Haile 
et al. 2021; Isidro y Sánchez and Akdemir 2021). Compared 
to a study on genomic prediction for stripe rust in bread 
wheat landraces from Afghanistan, we found similar levels 
of cross-validated predictive ability (Tehseen et al. 2021), 
while our cross-validated genomic predictive ability results 
were lower than those reported in advanced lines from the 
CIMMYT bread wheat program (Juliana et al. 2017) and in 

a panel of Central European winter wheat (Shahinnia et al. 
2022). The higher cross-validated predictive ability in pre-
vious studies may have been the result of more highly con-
trolled, replicated, and artificially inoculated experiments 
(Juliana et al. 2017; Shahinnia et al. 2022).

The data used in this study was distinct from previous 
experiments in that (a) it derived from an active breeding 
program, in which more than 5000 genotypes were evalu-
ated, with breeders’ decisions leading to rapid genetic 
changes in the population over time and (b) the trials were 
conducted over 11 years at more than 50 locations, largely 
under natural Pst infection. In addition, all previous studies 
on genomic prediction modeling for stripe rust resistance 
have been conducted within populations, while our work has 
assessed models under both cross-validated (within-year/
population) and cross-population (forward and between-
year) frameworks (Juliana et al. 2017; Muleta et al. 2017; 

Fig. 1  Between-year predictive ability of GBLUP and GRKHS 
models in which lines present in both the training and test sets were 
excluded from the test set (GBLUP–no overlap and GRKHS–no 

overlap) and in which all training and test set lines were included 
(GBLUP–overlap and GRKHS–overlap)
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Fig. 2  Forward predictive ability of GBLUP and GRKHS models in 
which lines present in both the training and test sets were excluded 
from the test set (GBLUP–no overlap and GRKHS–no overlap) and 

in which all training and test set lines were included (GBLUP–over-
lap and GRKHS–overlap). For each test year, the training sets com-
prised progressive sets of subsequent years

Table 4  Phenotypic correlations 
and number of shared genotypes 
between pairs of years from 
2009–2018

Correlation coefficients ( r) and  p-values are in the upper diagonal. Numbers of genotypes ( n) present in 
each pair of years are in the lower diagonal. Numbers of genotypes within each year are on the diagonal. 
P-values are denoted as *0.05 <  p≤ 0.01; **0.01 <  p 0.0001;  p < 0.0001

n\r 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

2009 93 0.74*** 0.53** 0.69** 0.50* 0.34 0.47* 0.56* 0.48 0.51
2010 68 182 0.24* 0.57** 0.51** 0.37* 0.32 0.30 0.02 0.36
2011 44 78 243 0.55*** 0.27* 0.03 0.02 0.16 −0.18 0.09
2012 25 38 91 288 0.49*** 0.100 0.28* 0.17 0.38* 0.25
2013 23 30 64 105 266 0.21* 0.55*** 0.18 0.45** 0.17
2014 28 31 48 66 102 1458 0.49*** 0.11 0.16 −0.01
2015 26 32 48 60 71 497 1298 0.02 0.30** 0.29**
2016 19 27 38 46 49 131 541 1380 0.24*** 0.36***
2017 16 23 31 40 42 69 163 518 638 0.47***
2018 14 19 30 35 39 54 94 158 172 1639
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Tehseen et al. 2021; Shahinnia et al. 2022). Forward and 
between-year genomic prediction was poor, while pheno-
typic correlation between pairs of years was moderate. In 
addition, including genotypes that were observed in both 
the training and test years in genomic prediction modeling 
decreased predictive ability in the cross-year frameworks. 
Spatiotemporal changes in Pst population composition can 
lead to changes in observed levels of stripe rust resistance, 
as resistance alleles can break down with genetic changes in 
the pathogen (Michel et al. 2022). The complex pathosystem 
between Pst and wheat, especially in an active breeding pro-
gram, makes genomic prediction for stripe rust challenging 
in the long term.

Our results suggest that although cross-validated, within-
environment prediction can appear promising, genomic 
prediction across years and germplasm, which would be a 
more realistic application in a breeding program, may not 
be sufficient for selection of resistance to stripe rust alone. 
Screening germplasm for stripe rust resistance in multi-envi-
ronmental trials is crucial for making informed selection 
decisions. Although visual phenotypic assessment of stripe 
rust resistance is less expensive than genotyping, conduct-
ing trials across multiple locations/years can be costly (e.g., 
labor, field space, seed availability) and environmental con-
ditions are not always conducive for Pst infection and stripe 
rust symptom development, even under artificial inoculation. 
As such, selective phenotyping and genotyping strategies 
should be optimized within breeding programs to maximize 
the efficiency of selection for stripe rust resistance.
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