Skip to main content
Log in

BSA‑seq and genetic mapping identified candidate genes for branching habit in peanut

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key Message

The candidate gene AhLBA1 controlling lateral branch angel of peanut was fine-mapped to a 136.65-kb physical region on chromosome 15 using the BSA-seq and QTL mapping.

Abstract

Lateral branch angel (LBA) is an important plant architecture trait of peanut, which plays key role in lodging, peg soil penetration and pod yield. However, there are few reports of fine mapping and quantitative trait loci (QTLs)/cloned genes for LBA in peanut. In this project, a mapping population was constructed using a spreading variety Tifrunner and the erect variety Fuhuasheng. Through bulked segregant analysis sequencing (BSA-seq), a major gene related to LBA, named as AhLBA1, was preliminarily mapped at the region of Chr.15: 150-160 Mb. Then, using traditional QTL approach, AhLBA1 was narrowed to a 1.12 cM region, corresponding to a 136.65-kb physical interval of the reference genome. Of the nine genes housed in this region, three of them were involved in hormone metabolism and regulation, including one “F-box protein” and two “2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase (2OG oxygenase)” encoding genes. In addition, we found that the level of some classes of cytokinin (CK), auxin and ethylene showed significant differences between spreading and erect peanuts at the junction of main stem and lateral branch. These findings will aid further elucidation of the genetic mechanism of LBA in peanut and facilitating marker-assisted selection (MAS) in the future breeding program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

All information is specified in the manuscript or included as Additional Files.

References

  • Abd-Hamid NA, Ahmad-Fauzi MI, Zainal Z, Ismail I (2020) Diverse and dynamic roles of F-box proteins in plant biology. Planta 251:68

    CAS  Google Scholar 

  • Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178

    CAS  Google Scholar 

  • Arya SS, Salve AR, Chauhan S (2016) Peanuts as functional food: a review. J Food Sci Technol 53:31–41

    CAS  Google Scholar 

  • Ashri A (1968) Genic-cytoplasmic interactions affecting growth habit in peanut, A. hypogaea II A revised model. Genetics 60:807–810

    CAS  Google Scholar 

  • Bertioli DJ, Cannon SB, Froenicke L, Huang G, Farmer AD, Cannon EK, Liu X, Gao D, Clevenger J, Dash S, Ren L, Moretzsohn MC, Shirasawa K, Huang W, Vidigal B, Abernathy B, Chu Y, Niederhuth CE, Umale P, Araujo AC, Kozik A, Kim KD, Burow MD, Varshney RK, Wang X, Zhang X, Barkley N, Guimaraes PM, Isobe S, Guo B, Liao B, Stalker HT, Schmitz RJ, Scheffler BE, Leal-Bertioli SC, Xun X, Jackson SA, Michelmore R, Ozias-Akins P (2016) The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet 48:438–446

    CAS  Google Scholar 

  • Bertioli DJ, Jenkins J, Clevenger J, Dudchenko O, Gao D, Seijo G, Leal-Bertioli SCM, Ren L, Farmer AD, Pandey MK, Samoluk SS, Abernathy B, Agarwal G, Ballen-Taborda C, Cameron C, Campbell J, Chavarro C, Chitikineni A, Chu Y, Dash S, El Baidouri M, Guo B, Huang W, Kim KD, Korani W, Lanciano S, Lui CG, Mirouze M, Moretzsohn MC, Pham M, Shin JH, Shirasawa K, Sinharoy S, Sreedasyam A, Weeks NT, Zhang X, Zheng Z, Sun Z, Froenicke L, Aiden EL, Michelmore R, Varshney RK, Holbrook CC, Cannon EKS, Scheffler BE, Grimwood J, Ozias-Akins P, Cannon SB, Jackson SA, Schmutz J (2019) The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nat Genet 51:877–884

    CAS  Google Scholar 

  • Chen Y, Chen Y, Shi C, Huang Z, Zhang Y, Li S, Li Y, Ye J, Yu C, Li Z, Zhang X, Wang J, Yang H, Fang L, Chen Q (2018) SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience 7:1–6

    Google Scholar 

  • Coffelt TA (1974) Inheritance of growth habit in an intra-specific cross population of peanuts. J Hered 65:160–162

    Google Scholar 

  • Cui D, Zhao J, Jing Y, Fan M, Liu J, Wang Z, Xin W, Hu Y (2013) The arabidopsis IDD14, IDD15, and IDD16 cooperatively regulate lateral organ morphogenesis and gravitropism by promoting auxin biosynthesis and transport. PLoS Genet 9:e1003759

    CAS  Google Scholar 

  • Dardick C, Callahan A, Horn R, Ruiz KB, Zhebentyayeva T, Hollender C, Whitaker M, Abbott A, Scorza R (2013) PpeTAC1 promotes the horizontal growth of branches in peach trees and is a member of a functionally conserved gene family found in diverse plants species. Plant J 75:618–630

    CAS  Google Scholar 

  • Dong Z, Jiang C, Chen X, Zhang T, Ding L, Song W, Luo H, Lai J, Chen H, Liu R, Zhang X, Jin W (2013) Maize LAZY1 mediates shoot gravitropism and inflorescence development through regulating auxin transport, auxin signaling, and light response. Plant Physiol 163:1306–1322

    CAS  Google Scholar 

  • Fonceka D, Tossim HA, Rivallan R, Vignes H, Faye I, Ndoye O, Moretzsohn MC, Bertioli DJ, Glaszmann JC, Courtois B, Rami JF (2012) Fostered and left behind alleles in peanut: interspecific QTL mapping reveals footprints of domestication and useful natural variation for breeding. BMC Plant Biol 12:26

    Google Scholar 

  • Giayetto O, Morla FD, Fernandez EM, Cerioni GA, Kearney M, Rosso MB, Violante MG (2013) Temporal analysis of branches pod production in peanut (Arachis hypogaea) genotypes with different growth habits and branching patterns. Peanut Science 40:8–14

    Google Scholar 

  • Guo F, Ma J, Hou L, Shi S, Sun J, Li G, Zhao C, Xia H, Zhao S, Wang X, Zhao Y (2020a) Transcriptome profiling provides insights into molecular mechanism in Peanut semi-dwarf mutant. BMC Genomics 21:211

    CAS  Google Scholar 

  • Guo W, Chen L, Herrera-Estrella L, Cao D, Tran LP (2020b) Altering Plant Architecture to Improve Performance and Resistance. Trends Plant Sci 25:1154–1170

    CAS  Google Scholar 

  • Hill JL Jr, Hollender CA (2019) Branching out: new insights into the genetic regulation of shoot architecture in trees. Curr Opin Plant Biol 47:73–80

    CAS  Google Scholar 

  • Kawai Y, Ono E, Mizutani M (2014) Evolution and diversity of the 2-oxoglutarate-dependent dioxygenase superfamily in plants. Plant J 78:328–343

    CAS  Google Scholar 

  • Kayam G, Brand Y, Faigenboim-Doron A, Patil A, Hedvat I, Hovav R (2017) Fine-mapping the branching habit trait in cultivated peanut by combining bulked segregant analysis and high-throughput sequencing. Front Plant Sci 8:467

    Google Scholar 

  • Lei L, Zheng H, Bi Y, Yang L, Liu H, Wang J, Sun J, Zhao H, Li X, Li J, Lai Y, Zou D (2020) Identification of a major QTL and candidate gene analysis of salt tolerance at the bud burst stage in rice (Oryza sativa L.) using QTL-Seq and RNA-Seq. Rice 13:55

    Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25:1754–1760

    CAS  Google Scholar 

  • Li P, Wang Y, Qian Q, Fu Z, Wang M, Zeng D, Li B, Wang X, Li J (2007) LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res 17:402–410

    CAS  Google Scholar 

  • Li H, Zhang L, Hu J, Zhang F, Chen B, Xu K, Gao G, Li H, Zhang T, Li Z, Wu X (2017) Genome-wide association mapping reveals the genetic control underlying branch angle in rapeseed (Brassica napus L.). Front Plant Sci 8:1054

    Google Scholar 

  • Li L, Yang X, Cui S, Meng X, Mu G, Hou M, He M, Zhang H, Liu L, Chen CY (2019) Construction of high-density genetic map and mapping quantitative trait loci for growth habit-related traits of peanut (Arachis hypogaea L.). Front Plant Sci 10:745

    Google Scholar 

  • Luo H, Pandey MK, Khan AW, Guo J, Wu B, Cai Y, Huang L, Zhou X, Chen Y, Chen W, Liu N, Lei Y, Liao B, Varshney RK, Jiang H (2019) Discovery of genomic regions and candidate genes controlling shelling percentage using QTL-seq approach in cultivated peanut (Arachis hypogaea L.). Plant Biotechnol J 17:1248–1260

    CAS  Google Scholar 

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    CAS  Google Scholar 

  • Meng L, Li H, Zhang L, Wang J (2015) QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal 3:269–283

    Google Scholar 

  • Munoz N, Liu A, Kan L, Li MW, Lam HM (2017) Potential uses of wild germplasms of grain legumes for crop improvement. Int J Mol Sci 18(2):328

    Google Scholar 

  • Okada K, Wada M, Moriya S, Katayose Y, Fujisawa H, Wu J, Kanamori H, Kurita K, Sasaki H, Fujii H, Terakami S, Iwanami H, Yamamoto T, Abe K (2016) Expression of a putative dioxygenase gene adjacent to an insertion mutation is involved in the short internodes of columnar apples (Malus x domestica). J Plant Res 129:1109–1126

    CAS  Google Scholar 

  • Patel JS, John CM, Seshadri CR (1936) The inheritance of characters in the groundnut Arachis hypogaea. Proc Ind Acad Sci 3:214–233

    Google Scholar 

  • Pierik R, Fankhauser C, Strader LC, Sinha N (2021) Architecture and plasticity: optimizing plant performance in dynamic environments. Plant Physiol 187:1029–1032

    CAS  Google Scholar 

  • Pittman RN (1995) United States peanut descriptors. ARS 132 Tifton, GA: US Department of Agriculture, Agricultural Research Service

  • Qu L, Lin LB, Xue HW (2019) Rice miR394 suppresses leaf inclination through targeting an F-box gene, LEAF INCLINATION 4. J Integr Plant Biol 61:406–416

    CAS  Google Scholar 

  • Roychoudhry S, Kepinski S (2015) Shoot and root branch growth angle control-the wonderfulness of lateralness. Curr Opin Plant Biol 23:124–131

    Google Scholar 

  • Roychoudhry S, Del Bianco M, Kieffer M, Kepinski S (2013) Auxin controls gravitropic setpoint angle in higher plant lateral branches. Curr Biol 23:1497–1504

    CAS  Google Scholar 

  • Sang D, Chen D, Liu G, Liang Y, Huang L, Meng X, Chu J, Sun X, Dong G, Yuan Y, Qian Q, Li J, Wang Y (2014) Strigolactones regulate rice tiller angle by attenuating shoot gravitropism through inhibiting auxin biosynthesis. Proc Natl Acad Sci U S A 111:11199–11204

    CAS  Google Scholar 

  • Sarkar S, Cazenave AB, Oakes J, McCall D, Thomason W, Abbott L, Balota M (2021) Aerial high-throughput phenotyping of peanut leaf area index and lateral growth. Sci Rep 11:21661

    CAS  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    CAS  Google Scholar 

  • Shirasawa K, Koilkonda P, Aoki K, Hirakawa H, Tabata S, Watanabe M, Hasegawa M, Kiyoshima H, Suzuki S, Kuwata C, Naito Y, Kuboyama T, Nakaya A, Sasamoto S, Watanabe A, Kato M, Kawashima K, Kishida Y, Kohara M, Kurabayashi A, Takahashi C, Tsuruoka H, Wada T, Isobe S (2012) In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biol 12:80

    CAS  Google Scholar 

  • Sun C, Wang B, Wang X, Hu K, Li K, Li Z, Li S, Yan L, Guan C, Zhang J, Zhang Z, Chen S, Wen J, Tu J, Shen J, Fu T, Yi B (2016) Genome-wide association study dissecting the genetic architecture underlying the branch angle trait in rapeseed (Brassica napus L.). Sci Rep 6:33673

    CAS  Google Scholar 

  • Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano LM, Kamoun S, Terauchi R (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183

    CAS  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    CAS  Google Scholar 

  • Wang J, Wu B, Lu K, Wei Q, Qian J, Chen Y, Fang Z (2019) The amino acid permease 5 (OsAAP5) regulates tiller number and grain yield in rice. Plant Physiol 180:1031–1045

    CAS  Google Scholar 

  • Wolters PJ, Schouten HJ, Velasco R, Si-Ammour A, Baldi P (2013) Evidence for regulation of columnar habit in apple by a putative 2OG-Fe(II) oxygenase. New Phytol 200:993–999

    CAS  Google Scholar 

  • Wu X, Tang D, Li M, Wang K, Cheng Z (2013) Loose Plant Architecture1, an INDETERMINATE DOMAIN protein involved in shoot gravitropism, regulates plant architecture in rice. Plant Physiol 161:317–329

    CAS  Google Scholar 

  • Yoshihara T, Spalding EP, Iino M (2013) AtLAZY1 is a signaling component required for gravitropism of the Arabidopsis thaliana inflorescence. Plant J 74:267–279

    CAS  Google Scholar 

  • Yu B, Lin Z, Li H, Li X, Li J, Wang Y, Zhang X, Zhu Z, Zhai W, Wang X, Xie D, Sun C (2007) TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J 52:891–898

    CAS  Google Scholar 

  • Zhang N, Yu H, Yu H, Cai Y, Huang L, Xu C, Xiong G, Meng X, Wang J, Chen H, Liu G, Jing Y, Yuan Y, Liang Y, Li S, Smith SM, Li J, Wang Y (2018) A core regulatory pathway controlling rice tiller angle mediated by the LAZY1-dependent asymmetric distribution of auxin. Plant Cell 30:1461–1475

    CAS  Google Scholar 

  • Zhao L, Tan L, Zhu Z, Xiao L, Xie D, Sun C (2015) PAY1 improves plant architecture and enhances grain yield in rice. Plant J 83:528–536

    CAS  Google Scholar 

  • Zhao C, Qiu J, Agarwal G, Wang J, Ren X, Xia H, Guo B, Ma C, Wan S, Bertioli DJ, Varshney RK, Pandey MK, Wang X (2017) Genome-wide discovery of microsatellite markers from diploid progenitor species, Arachis duranensis and A. ipaensis, and Their Application in Cultivated Peanut (A. hypogaea). Front Plant Sci 8:1209

    Google Scholar 

  • Zhao Y, Ma J, Li M, Deng L, Li G, Xia H, Zhao S, Hou L, Li P, Ma C, Yuan M, Ren L, Gu J, Guo B, Zhao C, Wang X (2020) Whole-genome resequencing-based QTL-seq identified AhTc1 gene encoding a R2R3-MYB transcription factor controlling peanut purple testa colour. Plant Biotechnol J 18:96–105

    CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by National Key Research and Development Program of China, National Natural Science Foundation of China (31861143009, 32072090), Key Research and Development Project of Shandong Province (2020LZGC001), Agricultural Scientific and Technological Innovation Project of Shandong Academy of Agricultural Sciences, and Taishan Scholar Project of Shandong Province (ts20190964).

Funding

This study was funded by National Natural Science Foundation of China (31861143009, 32072090), Key Research and Development Project of Shandong Province (2020LZGC001), Agricultural Scientific and Technological Innovation Project of Shandong Academy of Agricultural Sciences, and Taishan Scholar Project of Shandong Province (ts20190964).

Author information

Authors and Affiliations

Authors

Contributions

CZ and XW conceived and designed the experiments. XZ, NA, KZ, RT, HZ, JJ and MT developed the populations. JP, CL, AL, XZ, LH, JM, XL, RT and CM performed the experiments. JP and CZ wrote the manuscript. XW, MKP and RKV revised the manuscript.

Corresponding authors

Correspondence to Xingjun Wang or Chuanzhi Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Elena Bitocchi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

122_2022_4231_MOESM1_ESM.jpg

Fig. S1 Selecting polymorphic InDel markers between Fuhuasheng and Tifrunner. The InDel markers with polymorphism were circled out with a red ellipse. M: DNA Marker)

Fig. S2 QTL Mapping for branching habit on the genetic linkage map.

Supplementary File S1: The chromatograms of sequencing results for each InDel amplified DNA fragment. (RAR 1003 KB)

122_2022_4231_MOESM4_ESM.xlsx

Supplementary Table S1: List of SNP and InDel Sites in candidate interval in the mapping genomic region for branching habit on Chr.15. (XLSX 28 KB)

Supplementary Table S2: List of InDel primers used for mapping in this study. (XLSX 13 KB)

Supplementary Table S3: List of KASP primers used for mapping in this study. (XLSX 27 KB)

122_2022_4231_MOESM7_ESM.xlsx

Supplementary Table S4: SNPs in putative candidate genes in the mapping genomic region for branching habit on Chr.15. (XLSX 17 KB)

Supplementary Table S5: Oligonucleotide primers used in qRT-PCR (XLSX 181 KB)

Supplementary Table S6: Genetic models analysis using SEA software. (DOCX 16 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, J., Zhou, X., Ahmad, N. et al. BSA‑seq and genetic mapping identified candidate genes for branching habit in peanut. Theor Appl Genet 135, 4457–4468 (2022). https://doi.org/10.1007/s00122-022-04231-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-022-04231-8

Navigation