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Abstract
Key message Utilising a nested association mapping (NAM) population-based GWAS, 98 stable marker-trait associa-
tions with 127 alleles unique to the exotic parents were detected for grain yield and related traits in wheat.
Abstract Grain yield, thousand-grain weight, screenings and hectolitre weight are important wheat yield traits. An under-
standing of their genetic basis is crucial for improving grain yield in breeding programmes. Nested association mapping 
(NAM) populations are useful resources for the dissection of the genetic basis of complex traits such as grain yield and 
related traits in wheat. Coupled with phenotypic data collected from multiple environments, NAM populations have the 
power to detect quantitative trait loci and their multiple alleles, providing germplasm that can be incorporated into breeding 
programmes. In this study, we evaluated a large-scale wheat NAM population with two recurrent parents in unbalanced trials 
in nine diverse Australian field environments over three years. By applying a single-stage factor analytical linear mixed model 
(FALMM) to the NAM multi-environment trials (MET) data and conducting a genome-wide association study (GWAS), we 
detected 98 stable marker-trait associations (MTAs) with their multiple alleles. 74 MTAs had 127 alleles that were derived 
from the exotic parents and were absent in either of the two recurrent parents. The exotic alleles had favourable effects on 
46 MTAs of the 74 MTAs, for grain yield, thousand-grain weight, screenings and hectolitre weight. Two NAM RILs with 
consistently high yield in multiple environments were also identified, highlighting the potential of the NAM population 
in supporting plant breeding through provision of germplasm that can be readily incorporated into breeding programmes. 
The identified beneficial exotic alleles introgressed into the NAM population provide potential target alleles for the genetic 
improvement of wheat and further studies aimed at pinpointing the underlying genes.

Introduction

Grain yield (GY) determines the efficiency of wheat produc-
tion and food security. In wheat breeding, the main focus is 
to increase GY. Being the result of many processes occurring 
within the plant and their interaction with the environment, 
GY is directly and indirectly influenced by other traits. Often 
traits that directly and indirectly influence GY are used in 
wheat breeding to improve GY. In Australia, there are three 
traits which are key targets for wheat breeding: thousand-
grain weight (TGW), screenings (SCG), and hectolitre 
weight (HW). TGW, defined as the weight of one thousand 
seeds selected at random, is an essential trait that directly 
influences GY increase under both favourable and stressful 
environments (Kuchel et al. 2007). SCG are the proportion 
of wheat grains that falls through a 2-mm slotted screen 
after a defined number of shakes/agitations. SCG are nega-
tively correlated with GY and can be used as a yield-related 
trait, especially under stressful conditions when seeds can be 
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smaller. Some genotypes produce more SCG under stressful 
conditions than others. In Australia, SCG are an important 
trait because they greatly determine the commercial value 
and flour yield of wheat. HW is another crucial trait in deter-
mining the commercial value of wheat. Being the weight of 
100 L, it is an indicator of grain quality (cleanness, plump-
ness and packing density) and flour yield. Understanding 
the genetic basis of TGW, SCG and HW together with GY 
are critical for improving GY in breeding programmes (Wu 
et al. 2012).

GY and related traits are controlled by many genes and 
highly influenced by the environment. The quantitative 
nature of these traits coupled with the limited knowledge 
of their genetic architecture presents a challenge to their 
improvement through breeding. In an endeavour to under-
stand the genetic basis of these traits and improving their 
trait values through breeding, linkage analysis in bi-parental 
mapping populations (Kuchel et al. 2007; Li et al. 2021; 
Maphosa et al. 2014) and genome-wide association studies 
(GWAS) in diversity panels (Garcia et al. 2019; Schmidt 
et al. 2020) have been employed. Though successful in 
identifying quantitative trait loci (QTL), each of these map-
ping populations has their limitations. Bi-parental popula-
tions lack allelic diversity and have low resolution (Yu et al. 
2008). Diversity panels have allelic diversity and high reso-
lution but are limited by the confounding effects of popula-
tion structure (Zhang et al. 2010). Nested association map-
ping (NAM) populations are valuable genetic resources that 
combine the strengths of bi-parental populations and diver-
sity panels (Myles et al. 2009; Poland et al. 2011). NAM 
populations have the advantages of high allelic diversity, 
high mapping resolution and low sensitivity to population 
structure (Yu et al. 2008). In addition to enabling map-
ping of QTL, NAM populations also complement conven-
tional breeding approaches by increasing genetic diversity 
and providing useful germplasm to breeding programmes 
(Scott et al. 2020). In the development of NAM popula-
tions, a diverse set of founder lines, typically more than ten, 
are crossed to one or more well-characterised and/or locally 
adapted elite line(s) (Chidzanga et al. 2021; Fragoso et al. 
2017; Yu et al. 2008). The resultant  F1 goes through at least 
four generations of selfing to produce recombinant inbred 
lines (RILs) whose genomes are mosaics of the parental 
genomes (Yu et al. 2008). Shuffling of the parental genomes 
breaks down population structure, introduces recent recom-
binations and creates new allele combinations (McMullen 
et al. 2009). This aids in detecting small effect QTL and rare 
alleles from specific parents (McMullen et al. 2009).

When coupled with phenotypic evaluations in diverse 
environments, NAM populations present a more powerful 
approach for detecting QTL. However, NAM populations 
tend to be large, with as many as 6280 lines being reported 
(Kidane et al. 2019) and are therefore difficult to evaluate at 

one time due to constraints in space, time, labour and funds. 
As a result, NAM populations are evaluated in unbalanced 
(not all genotypes in all environments), multi-environment 
trials (MET). Though it is common practice in plant breed-
ing to evaluate genotypes in METs, the unbalanced nature of 
the trials and the presence of genotype by environment inter-
actions (GEI) pose a challenge in the analysis of MET data 
(Smith and Cullis 2018) and consequently QTL mapping. 
Considering the advantages presented by NAM multi-envi-
ronment QTL mapping, it is crucial to have a genetic and 
statistical model that appropriately models the genetic vari-
ance across environments and genetic covariance between 
pairs of environments to increase the power to detect QTL. 
One such model is the one-stage factor analytic linear 
mixed model (FALMM) (Beeck et al. 2010; Gogel et al. 
2018; Smith and Cullis 2018). The FALMM accounts for 
the covariances of the G × E effects between environments 
using unknown common factors, which are estimated from 
the data. Pedigree information (Oakey et al. 2006, 2007) can 
also be included into the model enabling the portioning of 
G × E effects into additive and non-additive G × E effects, 
and their respective between environment genetic variances 
matrices can be modelled with separate FA models (Oakey 
et al. 2007; Smith and Cullis 2018). The model also accom-
modates unbalanced data and the individual trial designs 
to accurately explore and exploit GEI (Beeck et al. 2010). 
Applying the FALMM to NAM MET data fully exploits the 
benefits of the NAM in QTL mapping.

In the present study, we aimed to understand the genetic 
basis of GY, TGW, SCG and HW in the large-scale OzNAM 
wheat population (Chidzanga et al. 2021) that was grown 
and evaluated under diverse Australian conditions for three 
years, by applying a single-stage FALMM to NAM MET 
data and then conducting a genome-wide association study 
(GWAS).

Materials and methods

Plant material and experimental design

In our previous study, we describe the development of 
the OzNAM population by crossing and backcrossing 73 
diverse exotic parents (selected for diversity in terminal 
drought and heat stress, nitrogen use efficiency and origi-
nating from countries with dry and hot weather condi-
tions) to two Australian elite varieties Gladius and Scout 
(Chidzanga et al. 2021). We also demonstrated the utility 
of the population in QTL mapping by mapping QTL for 
maturity and plant height using a subset of the popula-
tion consisting of 530 lines (Chidzanga et al. 2021). In this 
study, we used a total of 2530 RILs from 124 NAM fami-
lies, derived from the OzNAM population (Chidzanga et al. 
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2021) and twenty-eight check varieties (Supplementary 
Table 1) to evaluate in multi-environment trials (MET) and 
map marker-trait associations for GY, TGW, SCG and HW. 
For each NAM family, there were 8–51 RILs. Due to the 
size of the NAM population and the challenges of evaluating 
the entire population at once in a single trial, the population 
was split into three sets of varying sizes. Each set was evalu-
ated under field conditions in a single environment in the 
first year before a subset of each set was selected for further 
evaluation in at least two sites in subsequent years. Selection 
of the subsets was carried out as described in Chidzanga 
et al. (2021). Overall, there were 12 trials located in South 
Australia, Western Australia and New South Wales during 
the years from 2017 to 2020. Details of the NAM METs are 
given in Table 1. Trials 17RSW-NAM_A, 18RSW-NAM_A, 
18DND-NAM_A and 19RSW-NAM_A were reported in 
our previous study with regard to maturity and plant height 
data (Chidzanga et al., 2021). In the current study, we report 
on new traits measured from previously reported trials and 
new trials. Therefore, all the phenotypic data reported in 
this study are new.

Trials were rainfed and managed following local prac-
tices. Environmental data (e.g. temperature and rainfall) 
were collected from weather stations less than 5 km from 
each trial site (Supplementary Table 2). In this study, a 
trial was defined as a combination of year, site and NAM 
set evaluated and is synonymous with environment. Each 
trial was sown in a row-by-range array and was designed 
as a partially replicated experimental design (Cullis et al. 
2006). In total, there were 8688 plots across the 4 years. 
Some check varieties had additional replication of up to 

ten plots in a single trial. Trials were unbalanced, and 
check varieties were used to improve connectivity of the 
genotypes across trials. Six of the twenty-eight check vari-
eties were present in all trials (Supplementary Table 1). To 
further improve the concurrence of varieties between tri-
als, trials that were grown adjacent to each other in a par-
ticular site were combined during analysis. As a result, the 
number of trials was reduced from twelve to nine. Table 2 
lists all the trials and their new names. The overall con-
nectivity between trials differed with traits as some traits 
was not measured in all trials.

Table 1  Number of NAM RILs from each of the three sets of the OzNAM population and the calendar years, multi-environment trial (MET) 
years, geographic locations and sowing dates for each of the twelve trials

Due to the size of the NAM population and the challenges of evaluating the entire population at once in a single trial, the population was split 
into three sets of varying sizes (A, B, C). Each set was evaluated under field conditions in a single environment in the first year before a subset of 
each set was selected for further evaluation in at least two sites in subsequent years (MET years)

Set Number of RILs Year Evaluation Site State Latitude Longitude Sowing date Trial name

Calendar MET

A 530 2017 1 Roseworthy SA − 34.521957 138.662206 18/05/2017 17RSW-NAM_A
238 2018 2 Roseworthy SA −  34.515090 138.668496 18/05/2018 18RSW-NAM_A
238 2018 2 Dandaragan WA − 30.685308 115.665099 07/06/2018 18DND-NAM_A
238 2019 3 Roseworthy SA − 34.514273 138.689983 18/05/2018 19RSW-NAM_A
238 2019 3 Lockhart NSW − 35.07866 146.77468 30/05/2019 19LKH-NAM_A

B 1268 2018 1 Roseworthy SA − 34.484985 138.682256 02/07/2018 18RSW-NAM_B
537 2019 2 Roseworthy SA − 34.514273 138.689983 18/05/2019 19RSW-NAM_B
539 2019 2 Dandaragan WA − 30.685308 115.665099 25/05/2019 19DND-NAM_B
229 2020 3 Moora WA − 30.63072 116.07587 21/05/2020 20MRA-NAM_B

C 376 2019 1 Roseworthy SA − 34.514273 138.689983 23/05/2019 19RSW-NAM_C
366 2019 1 Dandaragan WA − 30.685308 115.665099 25/05/2019 19DND-NAM_C
229 2020 2 Moora WA − 30.63072 116.07587 21/05/2020 20MRA-NAM_C

Table 2  List of the nine NAM multi-environment trial (MET) Envi-
ronments defined by a combination of their associated year, site and 
NAM set

Year Site NAM set Year*Site*NAM set 
(environment)

2017 Roseworthy Set A 17RSW-NAM_A
2018 Dandaragan Set A 18DND-NAM_A
2018 Roseworthy Set A 18RSW-NAM_A
2018 Roseworthy Set B 18RSW-NAM_B
2019 Dandaragan Set B 19DND-NAM_B
2019 Dandaragan Set C 19DND-NAM_C
2019 Lockhart Set A 19LKH-NAM_A
2019 Roseworthy Sets A, B and C 19RSW-NAM_ABC
2020 Moora Sets A and B 20MRA-NAM_BC



4440 Theoretical and Applied Genetics (2022) 135:4437–4456

1 3

2.2 Phenotyping

Phenotypic data were collected from plots for GY, TGW, 
SCG and HW. GY was measured as the mass of the har-
vested grain per plot converted to tonnes per hectare, TGW 
(g) was measured as the weight of a sample of one thousand 
grains, and SCG was measured by collecting and weigh-
ing the proportion of material (including wheat grains and 
chaff) from a test sample that fell through a 2-mm sieve 
after 40 shakes. SCG was expressed as a percentage of the 
sample weight. HW was measured by weighing the grain 
collected from a levelled 500 ml measuring container of a 
chondrometer (Graintec Scientific Pty Ltd, Australia) and 
converting the weight to kilograms per hectolitre (kg/HL). 
In the 19RSW-NAM_ABC trial, TGW was not measured for 
the B and C sets and so the TGW of the 19RSW-NAM_ABC 
trial is comprised of NAM set A only. HW was not measured 
in the 18RSW-NAM_B trial due to the trial being harvested 
late and therefore being deemed as unrepresentative.

Statistical analysis

Phenotypic data from all the trials were analysed in R 
using the R package ASReml-R version 4.1. Individual raw 
plot data across all the trials were combined and analysed 
in a one-stage factor analytic linear mixed model analysis 
(FALMM) with pedigree information (Smith et al. 2001; 
Oakey et al. 2007; Kelly et al. 2007; Gogel et al. 2018; 
Smith et al. 2021). The pedigree information added to the 
model enabled the G × E effects to be portioned into addi-
tive and non-additive effects. The mathematics, genetic 
variance and covariance structures of the model including 
pedigree information are described in Beeck et al. (2010) 
and Gogel et al. (2018). In general, the residual effects of 
each trial were modelled by including terms that account 
for the randomisation processes used in the trial design 
and using spatial methods to account for plot-to-plot varia-
tion (Gilmour et al. 1997; Stefanova et al. 2009). Once the 
spatial structures for each trial were appropriately mod-
elled and outliers removed, a factor analytic linear mixed 
model of order 2 (FA2 model) (Smith et al. 2001) was 
used to model the genotype by environment effects. The 
factors of the additive and non-additive FA model were 
increased until at least 80% of the total additive variance 
was accounted for. The analysis generated genetic correla-
tions between pairs of trials and these correlations were 
used as a measure of the G × E interactions (GEI). Outliers 
were detected using standardised conditional residuals and 
were removed to reduce bias of estimates. Because the 
trials were unbalanced, best linear unbiased predictions 
(BLUPs) (Robinson 1991) of the random genotype effects 
from the FA2 model were used to predict trait values for 

genotypes that were not present in any given trial. BLUPs 
for GY, TGW, SCG and HW from the FA2 model were 
used to perform the GWAS.

Genotyping and construction of multi‑allelic 
single‑nucleotide polymorphism linkage 
disequilibrium (SNPLDB) markers

In our previous study, we describe the genotyping of the 
NAM population using a targeted genotype by sequencing 
approach to produce both SNP markers and multi-allelic 
haplotype markers (Chidzanga et al. 2021). Here, we make 
use of the tGBS SNP markers of Chidzanga et al. (2021) 
to generate multi-allelic SNP linkage disequilibrium 
(SNPLDB) markers using the SNPLDB function of the 
RTM-GWAS programme as described in He et al. (2017). 
Before the SNPLDB markers were generated, the 16,439 
tGBS SNPs were filtered to remove dominant markers, 
markers called in < 80% of the samples and markers with 
heterozygosity > 6% resulting in 11,277 SNP markers. To 
cater for the two recurrent parent structure of the OzNAM, 
SNPLD programme was customised following three steps. 
First, genomic blocks were defined based on all NAM 
RILs. Second, unique haplotypes of a block were deter-
mined and numbered based on all parental lines. Finally, 
the haplotype of the NAM RILs was mapped to paren-
tal haplotype according to the pedigree. If the haplotype 
of inbred line did not match its parental haplotypes, then 
it was mapped to the most similar parental haplotypes 
(Jianbo He, National Centre for Soybean Improvement, 
Nanjing Agricultural University, personal communica-
tion). The resulting 5419 SNPLDB markers were then used 
to construct a genetic similarity matrix and map QTL.

Nested association mapping‑based GWAS

A genetic similarity coefficient (GSC) matrix for esti-
mation and correction of population structure was con-
structed from the SNPLDB markers as described in He 
et al. (2017). The top 10 eigenvectors with the largest 
eigenvalues of the GSC matrix were used as covariates 
for the correction of population structure in the GWAS. 
The restricted two-stage multi-locus multi-allele GWAS 
(RTM-GWAS) procedure (He et al. 2017) was used to map 
marker-trait associations in 1466, 1863 and 2066 NAM 
RILs for HW, TGW and SCG and GY, respectively. A sig-
nificance level of p ≤ 0.001 was used for the two stages of 
RTM-GWAS described by He et al. (2017). The markers 
that were detected by GWAS as significantly associated 
with the respective traits were reported as marker-trait 
associations (MTAs) in this study.
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Results

Phenotypic variation

The BLUPs for GY, TGW, SCG and HW ranged from 0.2 
to 5.1 t/ha, 15.8 to 57.2 g, 0 to 25.8%, 67.0 to 85.8 kg/hl, 
respectively, across all the environments. Figure 1 shows 
the distribution of the BLUPs for the four traits in the 
NAM RILs in comparison with the check varieties in dif-
ferent environments. The performance of some the NAM 
RILs was comparable to the performance of the check vari-
eties and the recurrent parents for all the traits. Two NAM 
RILs (SCEP20-006 and SCEP43-005) had consistently 
higher GY than most of the check varieties and both the 
recurrent parents in at least four environments. SCEP20-
006 had a consistently higher predicted GY in all of the 
nine environments, while SCEP43-005 had high GY in 
four of the environments (Fig. 1a). Supplementary Table 3 
records the allele effects and allelic combinations at all 
significant yield MTA for SCEP20-006 and SCEP43-005. 
The TGW for the two-high yielding RILs was above aver-
age in each environment. Phenotypic correlations among 
the four traits are shown in Fig. S1. TGW had moderate 
positive correlations with GY and HW, while SCG was 
negatively correlated with all the other three traits. There 
was a weak positive correlation between GY and HW.

The performance of the NAM RILs and the check varie-
ties differed with environment. For GY, TGW, SCG and 
HW, the environments in which the genotypes performed 
better were 17RSW-NAM_A, 18DND-NAM_A,19RSW-
NAM_ABC and 18DND-NAM_A, respectively (Fig. 1; 
Supplementary Table 4). For all traits, the performance 
was low in 20MRA-NAM_BC compared to the other 
environments. The performance of the check varieties in 
response to different environments followed the same pat-
tern as the performance of the NAM RILs (Fig. 1).

The differences in the environments were further 
highlighted by the percentage of variation accounted for 
(%VAF) by the two factors of the FALMM we used to 
analyse the MET data. For GY, the %VAF factor_1 for the 
additive effects ranged from 14.6 to 99.9% meaning that it 
did not consistently explain the greater amount of variation 
in all sites. This indicates the presence of GEI. For TGW, 
the first factor accounted for more than 76% of the additive 
variance for all the sites indicating low GEI. For SCG, the 
first factor for additive effects accounted for at least 60% 
of the variance for all sites except for 17RSW_NAM_A 
and 18RSW-NAM_A while for HW at least 65% of the 
variance was explained by the first factor in all sites except 
for 19DND-NAM_C,19RSW-NAM_ABC and 20MRA-
NAM_BC. The FA2 model generally showed a good fit 

for all the traits in most sites as evidenced by the high total 
%VAF the additive effects (Table 3).

Genetic correlations (rg) between paired 
environments

The genetic correlations (rg) between pairs of environ-
ments give a measure of the level of GEI between paired 
environments. Higher rg, indicates similar performance 
of genotypes between paired environments and hence 
low GEI. rg between paired environments showed differ-
ent patterns for different traits (Fig. 2). For GY (Fig. 2a), 
the rg between environments ranged from − 0.24 to 0.96. 
20MRA-NAM_BC had low correlation with the other 
sites except 19DND-NAM_B, 19RSW-NAM_ABC and 
19LKH-NAM_A. 18DND-NAM_A also had low correla-
tion (rg < 0.6) with all the trials except 18RSW-NAM_A 
and 18RSW-NAM_B. Trial 19DND-NAM had high cor-
relation (rg ≥ 0.66) with all the trials except 18DND-
NAM_A. The Roseworthy trials were generally highly 
correlated (≥ 0.7) with each other. 18RSW-NAM_A and 
18DND-NAM_A were also highly correlated. For TGW 
(Fig. 2b), all the trials were highly correlated with each 
other, the rg ranged from 0.8 to 0.99. For SCG (Fig. 2c), 
rg ranged from − 0.03 to 0.98. Trial 17RSW-NAM_A 
had low correlation (rg ≤ 0.57) with all the trials except 
18RSW-NAM_A. 19RSW-NAM_ABC had high correla-
tion (rg ≥ 0.68) with all trials except 17RSW-NAM_A. For 
HW (Fig. 2d), the rg ranged from 0.1 to 0.97. 20MRA-
NAM_BC and 19DND-NAM_C had low correlations 
(rg ≤ 0.56) with the other trials except with each other and 
19DND-NAM_B and 19LKH-NAM_A.

Detection of marker‑trait associations

In this study, we used a GWAS approach to map marker-
trait associations (MTAs) for GY, TGW, HW and SCG in 
the NAM population. We detected a total of 98 significant 
MTAs for the four traits (Tables 4, 5, 6, 7). Seventy-four 
MTAs had alleles that were derived only from the exotic 
parents and were not found in either of the two recurrent 
parents (Figs. 3, 4, 5, 6). The exotic alleles had favourable 
effects at 46 of the 74 MTAs (Figs. 3, 4, 5, 6). One MTA 
was common between GY and HW, and another MTA 
was common between HW and SCG. SCG (Table 6) had 
the highest number (33) of MTAs detected, while HW 
(Table 8) had the least (15). The exotic parents showed 
diversity in the detected MTA for each trait. Each of the 
MTAs detected for HW had a genetic contribution (R2) 
greater than 2%. In the following, we present the QTL for 
each trait separately.
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Fig. 1  Boxplots showing the distribution of phenotypic BLUPs for 
the NAM RILs and check varieties for a GY b TGW c SCG d HW in 
nine environments. Boxplots for check varieties are shown in green, 
and boxplots for the NAM RILs are shown in brown. The red and 
blue dotted lines indicate the BLUP for the Gladius and Scout recur-

rent parents, respectively, Gladius and Scout had the same TGW in 
19DND-NAM_C. For the GY boxplots, the purple and black arrows 
indicate SCEP20-006 and SCEP43-005, respectively. Hectolitre 
weight was not measured in 18RSW-NAM_B
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Fig. 1  (continued)
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GY

We identified 23 MTAs for GY which were spread across 
13 of the wheat's chromosomes (Table 4). The most signif-
icant of these had -log P significance level of 16.7 on chro-
mosome 2B. The genetic contribution (R2%) of each MTA 
ranged from 1.0 to 6.1% with a total of 44.9%. (Table 4). 
The chromosome 2B MTA had the greatest genetic con-
tribution of 6.09% and was located 3 Mb from the Ppd-B1 
locus. One MTA on chromosome 7A had a genetic con-
tribution of 1.27% and was found to be collocated with a 
cluster of yield QTL that was detected in a study by Quar-
rie et al. (2006).

The number of alleles per MTA ranged from 2 to 12 with 
a total of 67 alleles (Table 4; Fig. 3). Thirty-three alleles 
were related to positive increases in GY of up to 284 kg/
ha, and 34 alleles were related to GY reductions of up to 
247 kg/ha. Together, exotic parents contributed 33 alleles 
that were distinct from the recurrent parents’ alleles. These 
exotic alleles were present at 19 MTAs and included the 
most favourable allele related to an increase of 284 kg/ha 
in GY and the least favourable allele that reduced GY by 
247 kg/ha. The exotic alleles had favourable effects at eight 
QTL (Fig. 3). The exotic parents showed diversity in the 23 
MTAs particularly on one MTA located on chromosome 7A 
where up to ten different exotic alleles were detected. Some 

Table 3  Percentage variation 
accounted from the FA2 model 
for additive effects in GY, TGW, 
SCG and HW in each of the 
nine environments

Trait Trial Additive genetic effects

%vaf factor_1 %vaf factor_2 Total %vaf

Yield 17RSW-NAM_A 65.1 0.232 65.4
18DND-NAM_A 52.3 31.7 84.0
18RSW-NAM_A 91.8 8.22 100
18RSW-NAM_B 99.954 0.046 100
19DND-NAM_B 80.2 19.8 100
19DND-NAM_C 52.8 0.049 52.8
19LKH-NAM_A 26.0 28.8 54.8
19RSW-NAM_ABC 50.2 16.7 66.8
20MRA-NAM_BC 14.6 85.4 100

TGW 17RSW-NAM_A 89.5 10.5 100
18DND-NAM_A 86.6 5.22 91.8
18RSW-NAM_A 97.6 2.36 100
18RSW-NAM_B 88.2 2.73 91.0
19DND-NAM_B 94.9 0.087 95.0
19DND-NAM_C 91.2 8.81 100
19LKH-NAM_A 93.4 6.65 100
19RSW-NAM_ABC 98.1 1.94 100
20MRA-NAM_BC 76.5 1.28 77.8

Screenings 17RSW-NAM_A 22.7 43.84 66.5
18DND-NAM_A 96.8 3.23 100
18RSW-NAM_A 40.3 59.7 100
18RSW-NAM_B 89.2 0.198 89.4
19DND-NAM_B 87.0 13.0 100
19DND-NAM_C 62.4 37.6 100
19LKH-NAM_A 77.6 4.82 82.5
19RSW-NAM_ABC 97.5 2.50 100
20MRA-NAM_BC 64.3 0.555 64.9

HW 17RSW-NAM_A 68.0 22.4 90.5
18DND-NAM_A 77.9 0.119 78.1
18RSW-NAM_A 77.2 5.14 82.4
19DND-NAM_B 85.6 14.4 100
19DND-NAM_C 34.6 65.4 100
19LKH-NAM_A 66.1 33.9 100
19RSW-NAM_ABC 51.9 8.96 60.9
20MRA-NAM_BC 39.4 9.31 48.7
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exotic alleles were rare, being found in only one exotic par-
ent (Fig. 3).

TGW 

For TGW, we identified 27 MTAs with a - log P significance 
level ranging from 3.2 to 13.8. Twenty-six MTAs mapped 
to 14 chromosomes and 1 MTA mapped to an unassigned 
region of the genome (Table 5). The genetic contribution 
(R2%) per MTA ranged from 0.7 to 3.9% with a sum total of 
41.3% of the phenotypic variation (Table 5). The number of 
alleles per MTA ranged from 2 to 8 alleles with a total of 67 

alleles with both positive and negative allele effects. Thirty-
three alleles were associated with TGW increases of up to 
1.6 g, while 34 alleles were associated with TGW decreases 
of up to 2.6 g (Fig. 4). Twenty-five alleles with effects 
ranging from − 2.64 g to 1.65 g were unique to the exotic 
parents and were present in 14 MTAs (Fig. 4). The exotic 
allele had favourable effects on TGW at 11 MTAs. Figure 4 
shows the allele effect distribution and the allele constitution 
of the NAM parents for the 27 MTAs. The exotic parents 
showed diversity in the MTA. The MTA on chromosome 
6A was the most diverse with seven different exotic alleles. 
A QTL located on chromosome 5A was about 1.7 Mb from 

Fig. 2  Heatmaps of the genetic correlations (rg) between pairs of 
environments estimated from variance–covariance of the FA2 model 
(lower triangle) and number of varieties in common between a pair 

of environments (upper triangle) for a GY b TGW c SCG d HW. Col-
ours for the lower triangle range from dark blue for high positive rg to 
dark red for strong negative rg. High rg means low GEI
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the vernalisation gene (VRN-A1). Two more loci were also 
located close to QTL detected in previous studies (Table 5).

SCG

We identified 33 MTAs for SCG which mapped to 16 chro-
mosomes with a -log P significance level ranging from 3.1 
to 9.3 (Table 6). Each MTA had a genetic contribution (R2%) 
ranging between 0.6% and 2.9%, with a sum total of 43.5% 
of the phenotypic variation (Table 6). In total, there were 
100 alleles for the 33 MTAs and the number of alleles per 
MTA ranged from 2 to 6. Figure 5 shows the distribution of 
allele effects and the allelic diversity of the NAM parents for 
SCG. The estimated allele effects ranged from − -1.2 to 3%. 
Sixty-four alleles reduced SCG, while 36 alleles increased 
SCG. Fifty-three out of the 100 alleles were unique to the 
exotic parents and were present at 28 MTAs with estimated 
effects ranging from − 1.2 to 3% (Fig. 5). The favourable 
effects of the exotic alleles were present on 22 MTAs. Three 
MTAs had four different exotic alleles.

HW

We identified 15 MTAs for HW which mapped to chromo-
somes 2B, 2D, 3B, 3D (two MTAs), 4A (two MTAs), 4B 
(three MTAs), 4D, 5B, 6A and 6B (two MTAs) with a  −log 
P significance level ranging from 3.0 to 9.9 (Table 8). One 
MTA on chromosome 3D co-located with a QTL for SCG, 
and another MTA on chromosome 4D co-located with an 
MTA for GY. Each MTA had a genetic contribution (R2%) 
ranging between 2.4 and 9.3%, with a sum total of 58.1% of 
the phenotypic variation (Table 8). Figure 6 shows the distri-
bution of allele effects and the allelic diversity of the NAM 
parents for HW. There was a total of 35 alleles for the 15 
MTAs, and the number of alleles per MTA ranged from 2 to 
4. The favourable alleles were associated with HW increases 
of up to 2.5 kg/hL, and the unfavourable alleles were associ-
ated with a decrease of up to 1.1 kg/hL in HW. The exotic 
NAM parents contributed sixteen alleles which were present 
at 13 MTAs (Fig. 6). One of the exotic alleles was associated 
with the largest increase in HW. The exotic parents showed 

Table 4  Detected MTA for GY 
across multiple environments 
and the related chromosome 
(Chr), position in base pairs 
(bp), number of alleles, 
significance level (p value) and 
the genetic contribution (R2%)

Positions are based on the IWGSC genome assembly of Chinese Spring version 2.0. For markers in a link-
age disequilibrium block the position is given as a range. QTL are sorted by R2%
a MTA located 3 Mb from the Ppd-B1 locus
b MTA collocated with HW MTA
c MTA collocated with a cluster of yield QTL reported by (Quarrie et al. 2006)

Marker Chr Position (bp) Number 
of alleles

p value R2%

2B_66375367a 2B 66,375,367 2 1.92E−17 6.09
7A_7172023_7208443 7A 7,172,023–7,208,443 12 2.02E−06 4.77
6B_728342120_728342222 6B 728,342,120–728,342,222 2 3.28E−09 3.02
2B_648514736_648514762 2B 648,514,736 648,514,762 3 1.13E−06 2.67
4B_628802048_628802085 4B 628,802,048–628,802,085 2 2.85E−08 2.64
6A_18574197_18574259 6A 18,574,197–18,574,259 3 4.17E−06 2.32
1B_380392174_380392241 1B 380,392,174–380,392,241 2 1.22E−06 2.02
6A_617787001 6A 617,787,001 2 6.79E−06 1.72
2D_66027934_66043070 2D 66,027,934–66,043,070 3 9.28E−05 1.67
U_32182937_32183075 Unassigned 32,182,937–32,183,075 2 9.24E−06 1.66
4A_717784243_717784254 4A 717,784,243–717,784,254 3 1.57E−04 1.60
7B_712188505 7B 712,188,505 2 1.33E−05 1.57
7A_713738551_713738636 7A 713,738,551–713,738,636 3 3.19E−04 1.57
1D_20667547 1D 20,667,547 2 7.82E−05 1.37
4D_3710824_3712177b 4D 3,710,824–3,712,177 4 6.83E−04 1.35
6B_720049944_720049993 6B 720,049,944–720,049,993 3 3.10E−04 1.27
7A_448350899c 7A 448,350,899 2 1.58E−04 1.27
2D_649542155_649542231 2D 649,542,155–649,542,231 2 1.36E−04 1.23
6A_90201988_90202009 6A 90,201,988–90,202,009 4 6.05E−04 1.16
2B_159661561 2B 159,661,561 2 2.48E−04 1.06
3D_1809335 3D 1,809,335 2 6.75E−04 1.01
3B_201138103_201138212 3B 201,138,103–201,138,212 2 8.39E−04 0.98
6B_455373752 6B 455,373,752 2 6.33E−04 0.97
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diversity in MTA, but the MTA for HW was not as diverse 
as some of the MTA detected for the other three traits.

Discussion

As global climate changes, the severity and frequency of 
drought and heat stress on crop production are expected 
to increase. Drought and heat stress are the major abiotic 
stresses limiting wheat production globally. Drought is 
when a plant experiences water stress at levels that are suf-
ficient to affect plant growth rates (Lobell et al. 2015). Heat 
stress is when temperature rises beyond a threshold level 
for a period of time sufficient to cause irreversible dam-
age to plant growth and development (Wahid et al. 2007). 
Wheat is very sensitive to heat stress and the effect of heat 
stress depends on the timing (wheat growth stage during 
heat stress) and length of exposure to heat stress (Akter and 

Rafiqul Islam 2017). Under heat stress conditions, wheat 
yields are reduced due to a reduction in the duration of the 
flowering and grain filling stages (Kamrun et al. 2010). Heat 
stress occurring at the flowering stage usually reduces the 
number of grains, while heat stress at the grain filling stage 
reduces the grain weight (Kamrun et al. 2010). In Australia, 
drought and heat are regular climatic features, and their 
impact on wheat yield is more pronounced when drought 
coincides with heat waves above 32 °C during heading and 
grain filling stages. In a bad year, drought can reduce wheat 
yields in Australia by 50% (Roy et al. 2021). In 2006, wheat 
yields decreased by 46% from the long-term mean due to 
drought (FAO 2013). With an average annual production 
worth $7.1 billion (GRDC 2018), drought can cost the Aus-
tralian economy around $3.2 billion. Australian wheat is 
grown in the wheat belt that extends from the southwest of 
Western Australia, through South Australia, Victoria, New 
South Wales and into Southern Queensland (Zeleke 2021) 

Table 5  Detected MTA 
for TGW across multiple 
environments and the related 
chromosome (Chr), position 
in base pairs (bp), number 
of alleles, significance level 
(p value) and the genetic 
contribution (R2%)

Positions are based on the IWGSC genome assembly of Chinese Spring version 2.0. For markers in a link-
age disequilibrium block the position is given as a range. QTL are sorted by R2%
a  MTA located about 1,7 Mb from the VRN−A1 locus

Marker Chr Position (bp) Number of 
alleles

p value R2%

1A_345236551_345236609 1A 345,236,551–345,236,609 3 1.42E−14 3.9
1B_453277174 1B 453,277,174 2 5.79E−14 3.6
1B_648041208 1B 648,041,208 2 2.16E−11 2.8
1B_659785655 1B 659,785,655 2 26.34E−11 2.7
2A_416624589 2A 416,624,589 2 22.18E−10 2.5
2A_467148109 2A 467,148,109 2 4.92E−09 2.3
4B_547022941_547023043 4B 547,022,941–547,023,043 2 5.70E−05 1.9
2A_778090764_778090821 2A 778,090,764–778,090,821 3 1.00E−07 1.7
2B_219584253_219584263 2B 219,584,253–219,584,263 3 4.58E−07 1.5
2D_576814975_576814976 2D 576,814,975–576,814,976 2 5.36E−07 1.5
2D_111243530 2D 111,243,530 2 7.15E−07 1.5
4A_676054017 4A 676,054,017 2 4.00E−05 1.4
7A_678873375_678873432 7A 678,873,375–678,873,432 2 2.04E−04 1.2
5A_451757200_451758745 5A 451,757,200–451,758,745 4 6.85E−05 1.2
4A_711020075_711021153 4A 711,020,075–711,021,153 2 4.02E−05 1.1
4A_41891852 4A 41,891,852 2 1.70E−05 1.1
3A_15382758_15382770 3A 15,382,758–15,382,770 2 1.08E−05 1.1
3D_22677332_22677381 3D 22,677,332–22,677,381 2 2.56E−05 1.0
4B_599612896 4B 599,612,896 2 6.54E−05 1.0
6A_486096824 6A 486,096,824 2 2.79E−04 1.0
5B_688365352_688365370 5B 688,365,352–688,365,370 3 3.10E−04 0.9
5A_587461221a 5A 587,461,221 2 2.32E−04 0.8
6A_617787076_617787223 6A 617,787,076–617,787,223 8 3.67E−04 0.8
7A_676009485 7A 676,009,485 2 2.25E−04 0.8
5A_673080140 5A 673,080,140 2 2.82E−04 0.8
7B_687302718_687302718 7B 687,302,718–687,302,718 3 8.62E−04 0.7
Unknown_16712610_16712709 16,712,610–16,712,709 2 5.14E−04 0.7
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and is mostly produced under rainfed/dryland conditions 
which makes it more prone to drought and heat stresses. 
Furthermore, the Australian wheat growing environments 
are highly variable mainly due to fluctuations in rainfall over 
years and regions. Differences in soil type, day length and 
sowing time over regions also contribute to the variability of 
the Australian wheat growing regions. In the present study, 
wheat was grown and evaluated in nine trials grown across 
the Australian wheat belt over three years.

The variability of environments was evident in this 
study as both the NAM RILs and check varieties per-
formed differently in each environment. For the NAM set 

A trials, for example, average GY was higher in the Rose-
worthy 17RSW-NAM_A trial followed by the Dandaragan 
18DND-NAM_A, the Roseworthy 18RSW-NAM_A and 
the Lockhart 19LKH-NAM_A trials, respectively (Fig. 1). 
The check varieties also followed the same trend in these 
trials. In general, the Roseworthy 2017 and Dandaragan 
2018 trials experienced a good season with above-aver-
age rainfall, while in 2019, the Lockhart trial experienced 
drought and heat stress (Supplementary Table 1). While 
the performance differences of the NAM RILs can be 
attributed to differences in weather data (rainfall and tem-
perature), differences in soil type, day length and sowing 

Table 6  Detected MTA for SCG 
across multiple environments 
and the related chromosome 
(Chr), position in base pairs 
(bp), number of alleles, 
significance level (p value) and 
the genetic contribution (R2%)

Positions are based on the IWGSC genome assembly of Chinese Spring version 2.0. For markers in a link-
age disequilibrium block the position is given as a range. QTL are sorted by R2%
a  MTA collocated with HW

Marker Chr Position (bp) Number of 
alleles

p value R2%

4A_711017464_711020153 4A 711,017,464–711,020,153 3 5.02E−10 3.0
5D_550233101_550269437 5D 550,233,101–550,269,437 3 1.15E−07 2.8
1D_493762451_493762578 1D 493,762,451–493,762,578 2 1.12E−08 2.4
5A_50720731_50794095 5A 50,720,731–50,794,095 5 9.18E−08 1.9
6D_489372836_489372970 6D 489,372,836–489,372,970 3 3.56E−08 1.9
2B_755415035_755415065 2B 755,415,035–755,415,065 3 3.10E−07 1.9
3A_688991451_688994636 3A 688,991,451–688,994,636 3 2.66E−05 1.8
7B_602841854_602841896 7B 602,841,854–602,841,896 3 2.09E−05 1.7
1B_314905740_314905753 1B 314,905,740–314,905,753 2 1.37E−06 1.7
3A_730943_731111 3A 7309,43–731,111 2 2.24E−06 1.6
3B_384909506_384909593 3B 384,909,506–384,909,593 4 3.15E−04 1.6
6B_695978335_695980151 6B 695,978,335–695,980,151 5 2.82E−05 1.5
2D_13900212_13995826 2D 13,900,212–13,995,826 2 2.50E−05 1.3
3D_1283757_1283901a 3D 1,283,757–1,283,901 3 3.12E−04 1.3
1B_557926149_557926283 1B 557,926,149–557,926,283 5 3.08E−05 1.2
3A_654050880 3A 654,050,880 2 9.07E−04 1.2
3A_559323958 3A 559,323,958 2 5.36E−04 1.1
4A_746323361 4A 746,323,361 3 1.08E−04 1.1
2B_430316549_430316565 2B 430,316,549–430,316,565 2 3.24E−05 1.1
5A_120042044 5A 120,042,044 2 5.16E−06 1.1
3B_27074464_27074547 3B 27,074,464–27,074,547 2 2.79E−05 1.0
3A_14346502 3A 14,346,502 2 6.62E−04 0.9
7A_6662829_6662857 7A 6,662,829–6,662,857 3 1.43E−04 0.9
7A_82083717_82085053 7A 82,083,717–82,085,053 6 6.99E−05 0.9
7B_650430264_650432400 7B 650,430,264–650,432,400 6 4.57E−04 0.9
3B_12798505_12798582 3B 12,798,505–12,798,582 4 2.94E−04 0.8
2A_24435790 2A 24,435,790 2 1.72E−04 0.8
7A_715229696_715229780 7A 715,229,696–715,229,780 2 2.23E−04 0.8
7A_697487664_697584845 7A 697,487,664–697,584,845 4 1.46E−04 0.8
1B_517466055 1B 517,466,055 2 4.99E−04 0.8
3A_722869171_722876258 3A 722,869,171–722,876,258 4 8.33E−04 0.7
2A_715219861 2A 715,219,861 2 4.60E−04 0.7
5B_464573000_464573015 5B 464,573,000–464,573,015 2 7.77E−04 0.6
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times might also have contributed to the differences in the 
performance of NAM RILs and check varieties in these 
trials.

The FA2 model we used to analyse the MET data con-
firmed the presence of substantial G × E interaction of the 
additive effects particularly for GY and to a lesser extend 
SCG and HW. This is apparent with the proportions (%VAF) 
of additive genetic variance explained by the two factors 
individually and in combination (Table 3) and the genetic 
correlation heatmaps (Fig. 2 a, c, d) for these traits. For GY, 
Table 3 shows heterogeneity in the %VAF between sites 
for the two factors. GY is a complex trait whose expression 
is influenced by the environment. Hence, the presence of 
GEI for GY is expected. For TGW, factor_1 (Table 3) of 
the FA2 model explains most of the variation for all the 
environments and, in combination, both factors explain close 
to 100% variation for all the sites. The genetic correlation 
(Fig. 2b) between pairs of environments was also greater 
than 0.8 between all the environments. This shows lack of 
GEI for this trait. The nature of the lack of GEI for TGW 
and the stability of TGW across different environments and 
years can be attributed to the fact that TGW is under strong 
genetic control (Zanke et al. 2015). High heritability esti-
mates and major stable QTL have been reported for TGW 
(Schierenbeck et al. 2021; Yang et al. 2020).

In plant breeding, the interaction between the environ-
ment and the genotype poses a challenge in the development 
of improved varieties especially when there is a significant 
change in the ranking of genotypes across environments 
(Cooper and DeLacy 1994). Phenotypic evaluation of 
genetic material for important traits in METs provides a way 
of effectively measuring G × E and identifying stable geno-
types and environments suited for specific genotypes (Elias 
et al. 2016; Smith et al. 2021). In this study, we also iden-
tified NAM RILs SCEP20-006 and SCEP43-005 (Fig. 1a; 
Supplementary Table 3) which showed stable GY perfor-
mance across multiple environments. These RILs show 
that besides enhancing QTL mapping, NAM populations 

can provide germplasm that can be incorporated into wheat 
breeding programmes.

Detection of MTA through GWAS

Wheat is adapted to diverse geographical regions of the 
world because of its genetic potential to synchronise its 
flowering time with favourable environmental conditions 
(Kamran et al. 2014). This photoperiod response mechanism 
is crucial for maximising GY and is partly controlled by the 
Ppd-A1, Ppd-B1, and Ppd-D1 genes located on the short 
arms of chromosomes 2A, 2B and 2D, respectively (Scarth 
and Law 1984). We detected an MTA on chromosome 2B 
(Table 4) which we speculate might be associated with the 
Ppd-B1 locus considering it explains the highest amount of 
the phenotypic variation and is only about 3 Mb from Ppd-
B1. Quarrie et al. (2005) and Quarrie et al. (2006) reported 
the presence of yield QTL on chromosomes 7A and 7B. 
Similarly, in this study, we detected three MTAs for GY on 
chromosome 7A (Table 4), one of which is in close proxim-
ity with a cluster of highly significant yield QTL reported 
by Quarrie et al. (2006). In a Drysdale × Gladius RIL popu-
lation, Maphosa et al. (2014) detected a GY and two SCG 
QTL with cfd36, wPt-7984 and wPt-3150 as their closest 
markers, respectively. We detected three MTAs for GY, SCG 
and HW (Tables 4, 6, 8) which are also close to these mark-
ers based on the markers’ IWGSC RefSeq v2.1 (Zhu et al. 
2021) genome positions (Blake et al. 2019). Maphosa et al. 
(2014), reported marker cfd36 to be on chromosome 2A, and 
however, a search in the GrainGenes database (Blake et al. 
2019) shows its location to be on chromosome 2D about 
661 Kb from our SCG MTA on chromosome 2D. Likewise, 
the wPt-7984 marker was reported to be on chromosome 
3B, but its position according to the GrainGenes database 
is on chromosome 3D about 1 Mb from our 3D MTA that 
is common between SCG and HW (Tables 6, 8). Since the 
population used by Maphosa et al. (2014) shares a common 
parent, Gladius, with the OzNAM, it is possible that these 

Table 7  Location of MTA which coincide with previously reported QTL/genes from other studies

Positions are based on the IWGSC genome assembly of Chinese Spring version 2.0. For markers in a linkage disequilibrium block, the position 
is given as a range

Marker Chr:Pos Trait Closest previously reported QTL/Gene

2B_66375367 2B: 66,375,367 GY Ppd-B1 (Scarth and Law 1984)
7A_448350899 7A: 448,350,899 GY SSR locus Xbarc108 (Quarrie et al. 2006)
5A_587461221 5A: 587,461,221 TGW VRN-A1 (Trevaskis et al. 2003)
4A_717784243_717784254 4A: 717,784,243 −717,784,254 GY wPt-3150 (Maphosa et al. 2014)
3D_1809335 3D: 1,809,335 GY wPt-7984 (Maphosa et al. 2014)
2D_13900212_13995826 2D:13,900,212–13,995,826 SCG SSR locus cfd36 (Maphosa et al. 2014)
1A_345236551_345236609 1A:345,236,551–345,236,609 TGW Qtgw.caas-1AL (Yang et al. 2020)
1B_648041208 1B: 648,041,208 TGW QYld.aww-1B.2 (Tura et al. 2020)
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MTAs are the same. Gladius has a favourable allele at these 
loci, and however, in some instances, the allele is not the 
most beneficial. It is also possible that the MTA we detected 
and MTA detected by Maphosa et al. (2014) are homeologs.

The VRN-A1 loci in wheat influence floral activation and 
consequently GY (Trevaskis et al. 2003). We detected an 
MTA for TGW located close to the VRN-A1 locus on chro-
mosome 5A (Table 5). Since TGW is a major component of 

GY, it is possible that the VRN-A1 loci also influence TGW. 
We also found a QTL on chromosome 1A that was within 
the detected interval of a TGW QTL (Qtgw.caas-1AL) pre-
viously reported by Yang et al. (2020). Another QTL on 
chromosome 1B was close to a yield QTL (QYld.aww-1B.2) 
previously identified by Tura et al. (2020).

Many of the MTAs we detected in this study are poten-
tially novel, since to the best of our knowledge, no other 

Fig. 3  Distribution of allele effects (upper bar graph) of the detected 
MTA in the NAM RILs and NAM parents allele matrix showing 
allelic diversity in the parents for the detected MTA (lower heatmap) 
for GY. For the distribution of the allele effects, each bar represents 
an allele, the length of the bar denotes the size of the allele effect, 
and each column corresponds to the MTA detected by GWAS for 
GY. Collectively, the number of bars in each column of the bar graph 
corresponds to the number of alleles for the respective MTA. For the 
allele matrix, each row corresponds to the NAM parent, and each col-
umn corresponds to the MTA detected by GWAS for GY and each 
cell of the heatmap denotes an allele. Allele type refers to the source 

of the allele; exotic allele if the allele is only found in the exotic par-
ents and is contributed to the NAM RILs by the exotic parent(s); Gla-
dius allele if the allele in the exotic parent(s) and the NAM RILs is 
the same as the allele for Gladius recurrent parent; Gladius and Scout 
allele if both the recurrent parents share a similar allele and the exotic 
parent and NAM RILs also share the similar allele as Gladius and 
Scout; Scout allele if the allele in the exotic parent(s) and the NAM 
RILs is the same as the allele for Scout recurrent parent. The exotic 
alleles are numbered for each MTA and denote the amount of differ-
ent exotic alleles per MTA
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study has reported the presence of MTA at the same posi-
tions. QTL mapping for phenotypic data measured in 
multiple environments is usually done by analysing geno-
typic values averaged across environments or is performed 
separately for each environment (Garin et al. 2020). These 
methods ignore the genetic correlations between environ-
ments and are therefore prone to increased false positives 
in QTL detection (Piepho 2005). In general, using a correct 
variance–covariance structure for multi-environment data 
improves the detection of QTL (van Eeuwijk et al. 2010). 
Here, for our MET data, we used a one-stage analysis FA2 

model that effectively models genetic variance across envi-
ronments and genetic covariance between pairs of environ-
ments. The FA2 model coupled with the use of a multi-
parent population enabled the detection of new MTA.

Bi-parental populations and diversity panels have been 
the commonly used types of mapping populations in wheat 
QTL mapping studies (Myles et al. 2009). While these 
populations have been successful in detecting significant 
QTL, they are limited compared to multi-parent NAM 
populations (Korte and Farlow 2013; Yu et  al. 2008). 
NAM populations build upon the genetic principles of 

Fig. 4  Distribution of allele effects (upper bar graph) of the detected 
MTA in the NAM RILs and NAM parents allele matrix showing 
allelic diversity in the parents for the detected MTA (lower heat-
map) for TGW. For the distribution of the allele effects, each bar 
represents an allele, and the length of the bar denotes the size of the 
allele effect, and each column corresponds to the MTA detected by 
GWAS for TGW. Collectively, the number of bars in each column 
of the bar graph corresponds to the number of alleles for the respec-
tive MTA. For the allele matrix, each row corresponds to the NAM 
parent, each column corresponds to the MTA detected by GWAS 
for TGW and each cell of the heatmap denotes an allele. Allele type 

refers to the source of the allele; exotic allele if the allele is only 
found in the exotic parents and is contributed to the NAM RILs by 
the exotic parent(s); Gladius allele if the allele in the exotic parent(s) 
and the NAM RILs is the same as the allele for Gladius recurrent 
parent; Gladius and Scout allele if both the recurrent parents share 
a similar allele and the exotic parent and NAM RILs also share the 
similar allele as Gladius and Scout; Scout allele if the allele in the 
exotic parent(s) and the NAM RILs is the same as the allele for Scout 
recurrent parent. The exotic alleles are numbered for each MTA and 
denotes the amount of different exotic alleles per MTA
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bi-parental populations and diversity panels and therefore 
have the advantages of having high allelic diversity, high 
power and resolution for QTL mapping while eliminat-
ing the confounding effect of population structure. NAM 
populations provide an opportunity to effectively capture 
diverse as well as rare alleles per locus from the founder 
lines unlike bi-parental populations (McMullen et  al. 
2009). Often a QTL has multiple alleles per locus and 
these can be easily detected in NAM populations. In this 
study, the NAM population has been valuable in dissecting 
the genetic architecture of grain yield and yield-related 

traits in wheat. Novel MTAs with multiple alleles were 
detected.

In summary, a total of 98 MTAs with multiple alleles 
associated with GY, TGW, SCG and HW were identified 
in this study. To the best of our knowledge, many of the 
MTAs we identified are novel and some of their most 
favourable alleles for each trait originated from the exotic 
parents. Two NAM RILs with superior performance in GY 
in most of the environments provided evidence of positive 
transgressive segregation in the NAM. The results from 

Fig. 5  Distribution of allele effects (upper bar graph) of the detected 
MTA in the NAM RILs and NAM parents allele matrix showing 
allelic diversity in the parents for the detected MTA (lower heatmap) 
for SCG. For the distribution of the allele effects, each bar repre-
sents an allele and the length of the bar denotes the size of the allele 
effect and each column corresponds to the MTA detected by GWAS 
for SCG. Collectively, the number of bars in each column of the bar 
graph corresponds to the number of alleles for the respective MTA. 
For the allele matrix, each row corresponds to the NAM parent, 
each column corresponds to the MTA detected by GWAS for SCG, 
and each cell of the heatmap denotes an allele. Allele type refers 

to the source of the allele; exotic allele if the allele is only found in 
the exotic parents and is contributed to the NAM RILs by the exotic 
parent(s); Gladius allele if the allele in the exotic parent(s) and the 
NAM RILs is the same as the allele for Gladius recurrent parent; 
Gladius and Scout allele if both the recurrent parents share a simi-
lar allele and the exotic parent and NAM RILs also share the simi-
lar allele as Gladius and Scout; Scout allele if the allele in the exotic 
parent(s) and the NAM RILs is the same as the allele for Scout recur-
rent parent. The exotic alleles are numbered for each MTA and denote 
the amount of different exotic alleles per MTA
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this study highlight the value of the NAM population in 
dissecting the genetic architecture of complex traits and 
provide germplasm for breeding programmes. Moreover, 

the study confirms the usefulness of exotic germplasm in 
introducing new and favourable genetic diversity in elite 
wheat gene pools.

Fig. 6  Distribution of allele effects (upper bar graph) of the detected 
MTA in the NAM RILs and NAM parents allele matrix showing 
allelic diversity in the parents for the detected MTA (lower heatmap) 
for HW. For the distribution of the allele effects, each bar represents 
an allele and the length of the bar denotes the size of the allele effect 
and each column corresponds to the MTA detected by GWAS for 
HW. Collectively, the number of bars in each column of the bar graph 
corresponds to the number of alleles for the respective MTA. For the 
allele matrix, each row corresponds to the NAM parent, each column 
corresponds to the MTA detected by GWAS for HW and each cell 
of the heatmap denotes an allele. Allele type refers to the source of 

the allele; exotic allele if the allele is only found in the exotic parents 
and is contributed to the NAM RILs by the exotic parent(s); Gladius 
allele if the allele in the exotic parent(s) and the NAM RILs is the 
same as the allele for Gladius recurrent parent; Gladius and Scout 
allele if both the recurrent parents share a similar allele and the exotic 
parent and NAM RILs also share the similar allele as Gladius and 
Scout; Scout allele if the allele in the exotic parent(s) and the NAM 
RILs is the same as the allele for Scout recurrent parent. The exotic 
alleles are numbered for each MTA and denote the amount of differ-
ent exotic alleles per MTA
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