
Vol.:(0123456789)1 3

Theoretical and Applied Genetics (2022) 135:4391–4407 
https://doi.org/10.1007/s00122-022-04227-4

ORIGINAL ARTICLE

Choosing the right tool: Leveraging of plant genetic resources 
in wheat (Triticum aestivum L.) benefits from selection of a suitable 
genomic prediction model

Marcel O. Berkner1  · Albert W. Schulthess1  · Yusheng Zhao1  · Yong Jiang1  · Markus Oppermann1  · 
Jochen C. Reif1 

Received: 21 June 2022 / Accepted: 17 September 2022 / Published online: 1 October 2022 
© The Author(s) 2022

Abstract
Key message  Genomic prediction of genebank accessions benefits from the consideration of additive-by-additive 
epistasis and subpopulation-specific marker effects.
Abstract Wheat (Triticum aestivum L.) and other species of the Triticum genus are well represented in genebank collections 
worldwide. The substantial genetic diversity harbored by more than 850,000 accessions can be explored for their potential 
use in modern plant breeding. Characterization of these large number of accessions is constrained by the required resources, 
and this fact limits their use so far. This limitation might be overcome by engaging genomic prediction. The present study 
compared ten different genomic prediction approaches to the prediction of four traits, namely flowering time, plant height, 
thousand grain weight, and yellow rust resistance, in a diverse set of 7745 accession samples from Germany’s Federal ex situ 
genebank at the Leibniz Institute of Plant Genetics and Crop Plant Research in Gatersleben. Approaches were evaluated based 
on prediction ability and robustness to the confounding influence of strong population structure. The authors propose the 
wide application of extended genomic best linear unbiased prediction due to the observed benefit of incorporating additive-
by-additive epistasis. General and subpopulation-specific additive ridge regression best linear unbiased prediction, which 
accounts for subpopulation-specific marker-effects, was shown to be a good option if contrasting clusters are encountered in 
the analyzed collection. The presented findings reaffirm that the trait’s genetic architecture as well as the composition and 
relatedness of the training set and test set are major driving factors for the accuracy of genomic prediction.

Introduction

Initial endeavors to systematically collect seed samples of 
landraces of crop plant species were already made more 
than 100 years ago (Vavilov 1997). These efforts laid the 
foundation for ex situ conservation of crop plant diversity in 
genebanks worldwide. Until today, these collections of plant 
genetic resources (PGR) were steadily increasing to about 
7.4 million accessions of historical cultivars, landraces, and 
wild relatives of crop plant species (FAO 2010). Globally, 
the Triticum genus accounts for more than 11 percent of 
all preserved accessions and thus, wheat (Triticum aestivum 

L.) and its closely related species outnumber all other plant 
species (FAO 2010). Such a large share of Triticum acces-
sions implies a broad coverage of the biodiversity existing in 
wheat as well as of the wide adaptation to various climatic 
conditions, which was acquired in at least 10,000 years of 
cultivation and breeding (Salamini et al. 2002; Pont et al. 
2019). Moreover, these large number undoubtedly also 
reflects the vital importance of wheat for human nutrition 
(OECD/FAO 2021). These broad collections of wheat PGR 
and the mentioned genetic diversity could offer plenty of 
opportunity to identify donors with beneficial alleles, which 
are yet undeployed in elite breeding programs. It has always 
been proposed that leveraging the potential of genebank 
collections will facilitate the continuous success in breed-
ing to sustain an increasing world population in a changing 
climate. This aspect gains importance since the germplasm 
pool in wheat breeding has diminished in genetic diversity 
(Reif et al. 2005; Pont et al. 2019) due to several decades of 
continuous and strong selection (Fu and Somers 2009) which 
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was accompanied by a reduction in effective population size 
in wheat cultivars (Joukhadar et al. 2017). This erosion of 
genetic diversity in breeding populations was conjectured 
to be one of the reasons for stagnation in breeding gains 
(Venske et al. 2019). In stark contrast, studies on PGR report 
a limited scope of exploitation in breeding so far (Tanksley 
and McCouch 1997; Mascher et al. 2019). Other authors 
highlighted mainly the breeding efforts on targeted intro-
gression of specific genes and allele mining for an improve-
ment in qualitative traits (Sharma et al. 2021). However, 
PGR have scarcely been considered for an informed and 
targeted application as crossing partners in order to recover 
narrow breeding populations and to enrich genepools with 
diverse allelic variation. Among multiple obstacles regard-
ing the exploitation of wheat PGR, insufficient or lacking 
phenotypic information with respect to economically mean-
ingful traits was the major restriction preventing a wide and 
informed use of PGR in pre-breeding programs (McCouch 
et al. 2013; Dempewolf et al. 2017; He et al. 2022).

The large number of present accessions limits the sys-
tematic and holistic evaluation of entire wheat collections 
in field experiments and thus, quantity and quality of the 
available phenotypic data per accession face strong limi-
tations. For most wheat accessions, phenotypic data were 
either generated in separate experiments of limited scope 
or when accessions were propagated in order to refill seed 
stocks (Mascher et al. 2019). In the latter case, phenotyping 
was restricted to high-heritable traits such as plant height 
(PH), flowering time (FT), or thousand grain weight (TGW). 
Based on the wheat collection of the Federal ex situ Gen-
ebank of Agricultural and Horticultural Crops hosted by the 
Leibniz Institute of Plant Genetics and Crop Plant Research 
in Gatersleben (IPK Genebank), Philipp and collaborators 
(2019) recently demonstrated the possibility to integrate his-
toric data of multiple regeneration cycles despite its com-
plex non-orthogonal structure by calculating best linear 
unbiased estimates (BLUE). The IPK Genebank character-
ized 12,754 wheat accessions based on historic data for FT, 
PH and TGW (Philipp et al. 2019). Nevertheless, 36% of 
the wheat accessions at the IPK Genebank still lack BLUE 
for these rather standard traits and consequently, their true 
potential for these traits still remains unknown to research 
and breeding.

In recent years, genomic-based approaches were widely 
proposed to predict or verify the phenotype of PGR (Yu 
et al. 2016; Crossa et al. 2017; Mascher et al. 2019; Gonza-
lez et al. 2021; Jiang et al. 2021). The underlying rationale 
of proposing these approaches was the tremendous decrease 
in the cost for genotyping in recent years; with some authors 
reporting even a change by more than 100,000-fold in two 
decades (Akdemir and Isidro-Sánchez 2019). On the other 
hand, costs for phenotyping have not changed much in the 
respective timeframe (Akdemir and Isidro-Sánchez 2019). 

Therefore, implementation of robust procedures of genomic 
prediction might populate genebank catalogues with pheno-
typic estimates in a rapid and cost-efficient manner (Yu et al. 
2016; Gonzalez et al. 2021; Jiang et al. 2021; Schulthess 
et al. 2021). A wide range of prediction approaches has been 
presented (Jannink et al. 2010); however, their suitability 
and a proof-of-concept for large collections of wheat PGR 
needs to be examined. Such assessment should mainly focus 
on the reliability of the predicted phenotypic data since it 
is a potential drawback of the approach. Knowing all this 
information, genomic prediction can bridge the gap between 
ex situ conservation of genetic diversity and its purposeful 
exploitation in breeding.

All genomic prediction models share a common basic 
concept with different assumptions about the parameters. 
Models deduce an assumed association between genotype 
and trait based on a set of genotypes with known genotypic 
and phenotypic information. This set of genotypes is referred 
to as training set (Akdemir and Isidro-Sánchez 2019). The 
information is applied to predict phenotypic values for geno-
types that just have genotypic but no phenotypic informa-
tion. This set of genotypes is called the test set (Akdemir and 
Isidro-Sánchez 2019). On closer examination, it neverthe-
less appears obvious that considerable differences among 
models lie in assumed characteristics of the set of genotypes 
or of the trait such as the genetic architecture. While some 
approaches assume the validity of the infinitesimal model, 
such as genomic best linear unbiased prediction (G-BLUP) 
(VanRaden 2008), other models assign more weight to a lim-
ited number of markers due to the assumed presence of few 
major quantitative trait loci, for instance weighted best linear 
unbiased prediction (W-BLUP) (Bernardo 2014; Zhao et al. 
2014). For other approaches, assumptions are that markers 
have different effect on the phenotype depending on their 
genetic background, meaning the presence of epistasis or 
depending on other characteristic of the genotype such as 
populations structure or breeding type. Examples for mod-
els with these specific assumptions are extended genomic 
best linear unbiased prediction (EG-BLUP) (Jiang and Reif 
2015) and general and subpopulation-specific additive ridge 
regression best linear unbiased prediction (GSA-RRBLUP) 
(Li et al. 2017), respectively. Considering the contrasting 
assumptions of the models, we hypothesized that the suita-
bility of the respective approach is trait-specific and depends 
on the composition of the collection under investigation.

The main objective of this investigation was to evaluate 
different genomic prediction approaches to fill the above-
explained gaps and shortcomings in characterization of PGR 
based on the example of four quantitative traits, namely 
FT, PH, TGW and yellow rust resistance (YR). More spe-
cifically, we aimed to (1) compare ten genomic prediction 
approaches, accounting for differences in the trait’s genetic 
architecture, based on the prediction ability for the four 
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traits, (2) investigate the population structure within the 
analyzed set of PGR as well as its influence on the predic-
tion, and (3) predict missing phenotypic data for all acces-
sion samples based on the most suitable approach for the 
respective trait.

Material and methods

Plant material, phenotypic data and genomic data

The present study was conducted on a diverse set of 7651 
accessions which are part of the Triticum collection of the 
IPK Genebank. The selected set of accessions has recently 
been published by Schulthess and collaborators (2021), who 
performed the selection of accessions with the intentions 
to exclusively incorporate winter wheat (Triticum aestivum 
L.). For nine accessions, the taxonomic affiliation has been 
updated during the conductance of the aforementioned 
research. While one accession was revealed to be a wheat 
interspecific hybrid, another eight accessions belonged to 
different species of the Triticum genus. Nevertheless, these 
accessions were still included in the present study, since this 
problem can be expected to occur in genebank genomics. 
Passport data about the origin of all 7,651 accessions were 
used as it has been presented by Schulthess and collabora-
tors (2021).

The 7651 genebank accessions were used to generate 
7745 distinguishable accession samples (Schulthess et al. 
2021). Briefly, every accession was grown in a single-row 
plot in the first year in order to select a single ear of one 
plant, which represented the dominant phenotype. The 
selected ear was isolated by bagging before flowering. In 
few cases, two contrasting morphotypes occurred per acces-
sion and thus, each morphotype was considered for isolation 
with one ear of one representative plant. In the following 
year, seeds of the selected ears were propagated in an ear-
to-row fashion.

Phenotypic data of the traits FT, PH, TGW, and YR, 
incorporated as BLUE, were derived from two differ-
ent sources. BLUE for the traits FT, PH, and TGW were 
used as published by Philipp and collaborators (2019). As 
described in the aforementioned study, these BLUE were 
derived from curation and analysis of historical phenotypic 
data which was gathered during seed regeneration in the IPK 
Genebank. The number of available BLUE differed between 
accessions due to the origin of the data and the associated 
non-orthogonal structure of seed regeneration. While the 
aforementioned study presented BLUE per accession, the 
current study relied on developed accession samples and 
thus, we proceed on the assumption that the BLUE are 
equally valid for the accession and the respective accession 
sample. If two accession samples were generated from one 

accession, both were represented with the same BLUE value. 
While BLUE values for FT were present for 4593 accession 
samples, BLUE values for PH and TGW were only present 
for 4,564 accession samples and 4280 accession samples, 
respectively (SFig.1). BLUE for the trait YR, which were 
present for 6300 accessions samples, were retrieved from 
Schulthess and collaborators (2021). These BLUE values 
originated from a series of twelve recently executed field 
trials relying on naturally occurring yellow rust infection. 
According to Philipp and collaborators (2019), FT, PH, and 
TGW were recorded in days after the  1st of January, cm 
(including awns), and g, respectively, while YR levels were 
reported according to an official 1 (absence of disease symp-
toms) to 9 (fully infected plants) scoring scale (Schulthess 
et al. 2021).

Genotyping-by-sequencing profiles of all 7745 acces-
sion samples were recently published by Schulthess and 
collaborators (2021). Concisely, DNA was extracted from 
seedlings by applying a silica-membrane technology, paral-
lelly digested with two restriction enzymes and ligated to 
adapters with barcode sequences. Sequencing engaged either 
an Illumina Hiseq-2500 or a NovaSeq 6000 system. After 
sequencing, reads were trimmed to 30 bp and aligned to 
the sequence of the reference genome var. Chinese Spring 
v1.0 (IWGSC 2018) for SNP calling. Marker information 
was trimmed based on the homozygous calls for both major 
and minor allele. Later, SNP variants with > 10% missing 
values, < 10 homozygous genotypes for each allele, or > 1% 
heterozygosity were discarded. Missing data were subse-
quently imputed based on the dominant allele, and markers 
were afterward re-filtered for minor allele frequencies ≥ 1%. 
After all these steps, 17,118 SNP variants were retained in 
the final marker matrix used for downstream analyses.

Analysis of population structure

The population structure of the examined PGR collection 
was analyzed in a two-step approach. First, the pairwise 
Rogers’ distances (Rogers 1972) were calculated based on 
the genomic data. Second, principal coordinate (PCo) analy-
sis (Gower 1966) was performed on the pairwise Rogers’ 
distances and the first PCo was plotted against the second 
and third PCo, respectively. Subsequently, the number of 
ancestral populations was more precisely determined by 
using the R package LEA (Frichot and François 2015). 
Based on the result of the PCo analysis, the possible range 
of ancestral populations was already assumed to be rather 
low. Thus, the “snmf” function was applied for up to 20 
ancestral populations, k ranging from 1 to 20, and under the 
model assumption that the hexaploid wheat could be treated 
as diploid. This model was run with 200 iterations and with 
100 independent repetitions. The fit of the solved models 
was evaluated based on the cross-entropy criterion. For all 
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genotypes, admixture between subpopulations was retrieved 
engaging the “Q” function of the LEA package. For the sake 
of simplicity, all accession samples were assigned to sub-
populations based on the respective ancestral population 
with the highest admixture coefficient.

The Euclidean distance between the genotypes was calcu-
lated on the BLUE for the four traits following the approach 
described by Sneath and Sokal (1973). In order to avoid any 
distortion due to the incomplete data structure, Euclidean 
distances were only calculated for the subset of 3,921 acces-
sion samples which have BLUE for the four traits treated in 
this study.

Genomic prediction approaches

Ten genomic prediction approaches were assessed in the 
present study. The most basic genomic prediction approach 
tested in the current study was G-BLUP (VanRaden 2008). 
The model accounts for additive genetic effects which 
are explained by the relationship among the n genotypes 
included in the set,

where y is an n-dimensional vector of BLUE for the trait of 
interest, 1n represents an n-dimensional vector of ones and 
� denotes the overall mean of the set. g and e are n-dimen-
sional vectors of additive genotypic values and residuals, 
respectively. Both are considered as random parameters 
having multivariate normal distribution g ∼ N(0,G�2

g
 ) and 

e ∼ N(0, I�2
e
 ). The covariance matrix G is modeled by the 

additive genomic relationship matrix, which was computed 
following the first method described by VanRaden (2008), 
I is an n-dimensional identity matrix, �2

g
 is the genetic vari-

ance and �2
e
 is the residual variance.

EG-BLUP can be considered as an extension of the 
G-BLUP model which additionally accounts for additive-by-
additive epistatic effects (Jiang and Reif 2015). The model 
has the form (Henderson 1985):

where y , 1n , � , g , and e are as described above. In addition 
to (1), the n-dimensional vector g1 is a random parameter 
which accounts for additive-by-additive effects between 
genotypes with g1 ∼ N(0,H�

2
g1

 ). H is the epistatic genomic 
relationship matrix which is approximately calculated as 
H = G#G where “ # ” denotes the Hadamard product (Jiang 
and Reif 2015; Martini et al. 2016).

W-BLUP is another derivation of the G-BLUP model 
which includes associated genetic markers as additional ran-
dom or fixed parameters (Bernardo 2014; Zhao et al. 2014). 
These markers were identified with a genome-wide associa-
tion study which was performed with the R package rrBLUP. 

(1)y = 1n� + g + e,

(2)y = 1n� + g + g1 + e,

The significance of the found associations was tested based 
on a significance level of 5% alongside engaging the sim-
pleM method (Gao et al. 2008) in order to account for multi-
ple testing. Thereafter, further analysis addressed the impact 
of the significantly associated markers on the trait. ASReml-
R (Butler et al. 2018) was used to estimate the proportion of 
the overall phenotypic variance explained by each signifi-
cantly associated marker. The W-BLUP model described by 
(Bernardo 2014; Zhao et al. 2014) has the form

where g is the n-dimensional vectors of additive genotypic 
values with g ∼ N(0,Gr�

2
g
 ). Gr is similarly computed as 

above; however, the included set of markers was reduced by 
the r markers defined based on the genome-wide association 
study. While FG is a n × r matrix which codes for the allele 
content of the reference allele at a certain locus, a

F
 is the 

associated vector of additive effects assumed as fixed in the 
present study. Four different settings of W-BLUP were tested 
in the current study; they only differed in the approach of 
defining the set of  r markers, denoted by S . Firstly, S com-
prised one marker with the strongest association even if the 
association was not statistically significant. Secondly, S was 
the one marker among all significantly associated markers 
which explained most of the trait’s variance. Thirdly, the 
significantly associated markers were first sorted according 
to their explained phenotypic variance in a descending order. 
Then, S included the first r markers which together explained 
at least 10% of the phenotypic variance and r is the smallest 
number with this property. Fourthly, all significantly associ-
ated markers were considered.

GSA-RRBLUP is based on the assumption that the effect 
of a marker differs depending on the genotype and more 
precisely, that effects are more similar between genotypes 
belonging to the same subpopulation (Li et al. 2017). Sub-
population were defined as described earlier, and thus, every 
genotype had reported admixture coefficients for the differ-
ent subpopulations as well as one subpopulation with the 
strongest affiliation. Four different settings of GSA-RRB-
LUP were tested in the present study. The first two mod-
els only considered the genotype’s affiliation to one of the 
three subpopulations or five subpopulations, respectively 
k = 3 or 5 . These models had the form,

where Z is a n × m matrix which codes for the allele con-
tent of the reference allele, where m is the total number of 
markers, and a is the m-dimensional vector of additive ran-
dom effects of the m markers. ZSk is a matrix, similar to ZA , 
which codes for the allele content of the reference allele in 
those genotypes which were assigned to the kth subpopula-
tion while the remaining genotypes were represented here 

(3)y = 1n� + g + FGaF + e

(4)y = 1n� + ZAa + ZS1aS1 +…+ ZSkaSk + e (k = 3 or 5),
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with 0. aSk is the m-dimensional vector of additive random 
marker effects specific in the kth subpopulation.

In contrast to the above two models, the remaining two 
accounted for admixture between the three, and five sub-
populations, respectively:

ZSadmk
 is a n × m matrix derived from ZA by element-wise 

multiplication with an n-dimensional vector of admix-
ture coefficients for the kth subpopulation, and aSadmk

 is the 
m-dimensional vector of related random effects especially 
valid in the kth subpopulation.

G-BLUP, EG-BLUP, and GSA-RRBLUP were addition-
ally compared in two scenarios, which involve different sub-
sets of accession samples. Each subset comprised only those 
two subpopulations which were most contrasting based on 
the Rodgers’ distances and Euclidean distances, respectively.

Cross‑validation and evaluation of genomic 
prediction

The genomic prediction approaches were evaluated based on 
the prediction ability in a fivefold cross-validation. Briefly, 
all genotypes with BLUE were randomly divided into five 
equally sized parts of which four parts were assigned to 
the training set while the test set comprised of the remain-
ing part. Before prediction, the BLUE of the test set have 
been masked and therefore, prediction relied exclusively 
on the training set. The procedure was continued until each 
of the five part had once been assigned to the test set. In 
order to calculate the prediction ability, the predicted val-
ues for the five test sets were combined and compared with 
the BLUE. The resulting Pearson correlation coefficient 
equals the prediction ability. This procedure was repeated 
100 times independently for the four traits. Per trait, the dif-
ferent genomic prediction models were tested based on the 
same 100 subdivisions of genotypes in order to avoid any 
bias. For W-BLUP, the genome-wide association study was 
performed within each training set of the respective cross-
validation. For GSA-RRBLUP, the assignment of genotypes 
to subpopulation was performed only once with the entire set 
because it did not use any phenotypic data and hence, would 
not affect the validity of cross-validation.

For the comparison of the two most contrasting subpopu-
lation, all accession samples of both contrasting subpopula-
tions were included even though the subpopulations might 
be different in size. This is a more realistic representation 
of the conditions in genebank collections. Additionally, 
the prediction models were tested with an equal number of 
accession samples from the two subpopulations in order to 
avoid any bias of different sizes. The equal size was obtained 
by random selection of accession samples from the larger 

(5)
y = 1n� + ZAa + ZSadm1

aSadm1
+…+ ZSadmk

aSadmk
+ e (k = 3 or 5)

subpopulation. In both cases, the assignment to the five 
equally sized parts of one fivefold cross-validation was 
done independently per subpopulation and subsequently, 
corresponding parts were combined. This strategy aimed 
to minimize bias in sampling from the two subpopulations.

The entire computational work was performed in the R 
environment engaging R version 4.0.2. The R code for all 
prediction models was published in the e!DAL online reposi-
tory (Arend et al. 2014).

Results

Population structure showed strong admixture 
between subpopulations

Two different analyses were performed in order to obtain 
an overview of the genetic diversity in the panel of 7745 
accession samples. The results for the first three PCo of the 
Roger’s distance matrix are depicted in Fig. 1. The majority 
of the accession samples were shown to be part of one clus-
ter while one smaller subgroup of accession samples could 
easily be distinguished based on the first PCo. Based on 
the cross-entropy criterion (SFig. 2), the most explanatory 
numbers of ancestral populations ranged from three to five. 
Due to this reason, two different scenarios were followed 
throughout this study: one scenario assuming three ancestral 
populations and the other involving five ancestral popula-
tions. For both scenarios, admixture coefficients were inves-
tigated in comparison with other accession samples originat-
ing from the same country (Fig. 2). The main result in this 
respect was that the vast majority of the accessions samples 
could not unconditionally be assigned to a single ancestral 
population, but the analyzed collection was rather strongly 
affected by admixture of several ancestral populations.

Ancestral populations were clearly associated with a geo-
graphic origin. In both scenarios, the most distinct ancestral 
population was dominantly represented by accession sam-
ples which derived from Asian countries such as Iran, China, 
Nepal, and Pakistan. These accessions samples coincide 
with those of the aforementioned outgroup which was torn 
apart by the first PCo. Thus, these accessions were geneti-
cally most distinct from the majority of other genotypes. All 
other accession samples were mainly of European origin 
or were at least genetically similar to these accession sam-
ples. Assuming the presence of five ancestral populations, 
the four remaining ancestral populations were dominant in 
accessions samples originating from countries in Southern 
Europe (such as Italy, Greece, former Yugoslavia, and Alba-
nia), Western Europe (mainly France), Central Europe (such 
as Germany and Sweden) and Eastern Europe (such as the 
former Soviet Union, former Czechoslovakia, and Austria). 
It is particularly worth a mention that the latter group also 
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included most accessions which originated from the USA. 
Accession samples from some countries were, however, 
well represented in two ancestral populations. As an exam-
ple, some accession samples from Poland were assigned to 
the ancestral population from Central Europe, while many 
others were assigned to the ancestral population from East-
ern Europe. Subpopulations were named according to the 
predominate region of origin (Southern European, Western 
European, Central European, Asian, and Eastern European). 
For both scenarios, subpopulations were not equal in size 
(SFig. 3). This structure of accession samples was not only 
apparent based on the genotype but was also reflected in the 
distribution of phenotypic characteristics which were domi-
nant in the respective subpopulation (SFig. 4).

Quality of prediction enhanced by EG‑BLUP 
and GSA‑RRBLUP

Ten genomic prediction approaches were evaluated based 
on their prediction abilities for the traits FT, PH, TGW, and 
YR. While large differences in the prediction ability were 
encountered between traits regardless of the applied model, 
differences between models for the prediction of one spe-
cific trait were less pronounced (Fig. 3). FT was most accu-
rately predicted by the application of GSA-RRBLUP with 
the incorporation of admixture and the assumed presence 
of five subpopulations. The prediction ability of this pre-
diction approach was found to be 0.85% higher compared 
with G-BLUP, the widely used standard model. In addition, 

both GSA-RRBLUP approaches for five subpopulations 
outperformed all other approaches; however, accounting for 
admixture leads to a slight increase in prediction ability by 
0.002 (STab. 1). Contrastingly, EG-BLUP outperformed all 
alternative models concerning the prediction for the remain-
ing three traits. In more detail, the prediction abilities of 
EG-BLUP exceeded those of G-BLUP for PH, TGW, and 
YR by 0.65%, 1.6%, and 1.89%, respectively. The prediction 
ability of EG-BLUP surmounted those of GSA-RRBLUP by 
0.06%, 0.44% and 0.72% for the traits PH, TGW, and YR. 
The preconditions of each of the four W-BLUP approaches 
were not met for TGW and YR. For the latter trait, only three 
of the four W-BLUP strategies could be evaluated (Fig. 3) 
because the sum of all significant markers did not always 
account for at least 10% of the variation in the trait. For 
TGW, the absence of significant marker trait association was 
found to be a strong limitation to the implementation of most 
W-BLUP approaches. Due to this fact, the performance of 
only one W-BLUP approach could be assessed for TGW 
(Fig. 3).

EG‑BLUP with less advantage when facing 
pronounced population structure

Since the composition of genebank collections can strongly 
be affected by population structure, genomic prediction 
models were tested with respect to the robustness on two 
subsets of the collection. These subsets comprised accession 
samples of only two strongly contrasting subpopulations. 

Fig. 1  Results of the principal coordinate (PCo) analysis based on the 
Rogers’ distances. Plots show the second and third PCo, respectively, 
plotted against the first PCo. Colors mark the association of accession 
samples with one of the five subpopulations with following color-
code: red: Southern European Subpopulation, blue:  Western  Euro-

pean  Subpopulation, green:  Central  European  Subpopulation, pur-
ple: Asian Subpopulation, orange: Eastern European Subpopulation. 
The numbers between brackets indicate the percentage of variation 
explained by the different PCo
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The pairwise contrast between the already defined subpopu-
lations was independently evaluated based on the genetic 
distances which were given by the Rogers’ distances and 
separately based on the phenotypic distances which were 
specified by the Euclidean distances. Mutual comparisons 
of the mean distances between subpopulations are presented 
in STab. 2. Based on the Rogers’ distances, the Western 
European subpopulation and the Asian subpopulation were 
most distinct. While the Central European subpopulation 
and the Asian subpopulation were most disparate based on 
the phenotypic distances.

Suitability of EG-BLUP and GSA-RRBLUP without 
an adjustment for admixture was compared within all 
accession samples of the contrasting subpopulations. 
G-BLUP was additionally included in the comparison as 

a well-known standard approach. For the evaluation, pre-
diction abilities were calculated separately for the acces-
sion samples of a specific subpopulation as well as for the 
combined set, as it was done in the previous comparison 
for the entire collection. Including all accession samples 
of both subsets, the combined prediction ability was high-
est for EG-BLUP in the prediction of PH and YR (Figs. 4, 
5). For example, EG-BLUP outperformed G-BLUP for 
the prediction of YR and PH by 1.31% and, respectively, 
0.35% in the set with the Central European subpopulation 
and the Asian subpopulation. In contrast, GSA-RRBLUP 
showed an overall higher combined prediction ability for 
the prediction of the traits FT and TGW (Figs. 4, 5). In 
the set with the Western European subpopulation and the 
Asian subpopulation, the performance of GSA-RRBLUP 

Fig. 2  Ancestry proportions of 6225 genotypes displayed separately 
per country of origin. While the upper plot depicts the scenario 
involving the presence of three subpopulations (k = 3), the lower plot 
shows the ancestry proportions of the scenario of the presence of five 
subpopulations (k = 5). With respect to all 7745 accession samples, 

these plots do not display those accession samples which originate 
from countries with less than 20 associated accession samples (139 
accession samples from 25 countries) as well as those from unknown 
origin (1381 accession samples)
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exceeded those of G-BLUP for the prediction of FT and 
TGW by 0.1% and 0.54%, respectively. Therefore, the 
overall advantage of EG-BLUP which was shown in the 
previous section could not be proven to be completely 
resilient in collections with strong population structure. 
For all traits, the combined prediction ability of the best 
prediction model differed considerably between both sets 
of contrasting subpopulations. A difference in prediction 
ability of 0.0971 was found when applying GSA-RRBLUP 
for the prediction of FT (STab. 3, STab. 4). Similarly, a 
difference of 0.0543 was observed for the prediction of PH 
with EG-BLUP. Differences between both sets of acces-
sion samples were by number rather meaningful, while 
the differences between tested models remained often 
small. These differences can be considered even more sur-
prising since both sets of subpopulations contained the 
Asian subpopulation and thus, a large overlap of acces-
sion samples was present. A different ranking of genomic 
prediction models was revealed based on the prediction 
abilities for each subpopulation. For the Central European 

subpopulation as well as the Western European subpopu-
lation, EG-BLUP lead to the highest prediction abilities 
regardless of the trait (Figs. 4, 5). In stark contrast, each 
prediction model outperformed the remaining two for at 
least one trait in the Asian subpopulation. For the given 
dataset, the results indicate that the suitability of genomic 
prediction models depends on the composition of acces-
sion samples.

The three prediction models were additionally tested in 
a scenario including an equal number of both subpopula-
tions in order to exclude this bias in the training and test 
sets. For the Western European and the Asian subpopula-
tion, EG-BLUP showed the best performance for the traits 
PH and YR based on the combined prediction ability and 
GSA-RRBLUP had the highest combined prediction abil-
ity for FT and TGW (SFig. 5, STab. 5). EG-BLUP outper-
formed the other two models for the prediction of all four 
traits in the set of the Central European and Asian sub-
population (SFig. 6, STab. 6). Overall, EG-BLUP might 
thus particularly benefit if biases of the subpopulation’s 

Fig. 3  Prediction abilities for ten different genomic prediction models 
applied on the traits flowering time (FT), plant height (PH), thousand 
grain weight (TGW), and yellow rust resistance (YR). The prediction 

abilities were calculated as the correlations between observed and 
predicted trait performance using 100 complete runs of fivefold cross-
validation
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sizes are excluded. This is, however, not realistic for the 
application of genomic prediction in genebank collections.

Populating the genebank catalogue with genomic 
prediction reveals large diversity

Based on the information of the previously described com-
parison, the outperforming models of the overall comparison 
were used in order to predict phenotypic values of the four 
traits for the entire collection of 7,745 accession samples. 
While PH, TGW, and YR were predicted with EG-BLUP, FT 
was predicted with the GSA-RRBLUP considering admix-
ture. In general, genomic predictions revealed the presence 
of large diversity in all four traits (Fig. 6). Distributions of 
predicted phenotypes of the training set diverged from the 
distribution found for the test set with respect to two charac-
teristics: Firstly, variation in the predicted phenotypes was 
shrunken toward the mean of the test set compared with the 
training set. This was particularly pronounced for the trait 
TGW. Secondly, the mean as well as median of the distri-
butions were shifted in the test set in comparison with the 
training set. While the traits FT and PH were the clearest 

examples of the latter finding, only minor differences were 
observed for the traits TGW and YR.

All preditions of the four traits were made publicly avail-
able and can be found and downloaded at the search portal for 
phenotypic data as part of the Genebank Information System 
of the IPK (https:// geneb ank. ipk- gater sleben. de). These predic-
tions are reported in association with the initial accession, and 
thus, records of 7563 accessions are enriched with predictions.

Discussion

Limitations regarding  agronomically relevant information 
about PGR were identified as major obstacles to the exploi-
tation of PGR as donors in breeding. Genomic approaches 
have been proposed to surmount this problem, and the aim of 
the present study is the identification of best practices to pre-
dict phenotypic values in diverse collections of wheat PGR. 
Critical evaluation of the proposed approaches intended to 
focus on possible obstacles associated with population struc-
tures in genebank collections.

Fig. 4  Prediction abilities for three different genomic prediction 
models applied to the traits flowering time (FT), plant height (PH), 
thousand grain weight (TGW), and yellow rust resistance (YR) to the 
accession samples of two subpopulations (Subp.) which are most dis-

tinct based on the Rogers’ distances. The prediction abilities were cal-
culated as the correlations between observed and predicted trait per-
formance using 100 complete runs of fivefold cross-validation

https://genebank.ipk-gatersleben.de
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Population structure reflects history of cultivation 
and breeding

Admixture between different ancestral populations has been 
shown to strongly affect the analyzed collection of genebank 
accessions. This finding is in accordance with previous work 
on the French genebank collection of wheat (Balfourier et al. 
2019). The authors pinpointed two main factors driving 
admixture in wheat. Firstly, the impact of migration pro-
cesses was concluded to be important for the period before 
systematic breeding. Secondly, large impact was assigned 
to the intentional crossing of wheat from different origin 
in breeding programs. Arguably, both effects account for 
the admixture, which was observed in the present study. As 
an illustration, the prominent presence of Eastern European 
germplasm in accession samples which originated from 
the USA could be explained by the introduction of Rus-
sian and Ukraine germplasm which could endure the con-
tinental climate in the former prairies of the USA (Paulsen 
and Shroyer 2008). Part of this germplasm was brought by 

immigrants from Eastern Europe in the second half of the 
nineteenth century (Quisenberry and Reitz 1974), while 
others introductions can be traced back to targeted expedi-
tions by the United States Department of Agriculture to the 
Russian Empire (Paulsen and Shroyer 2008). The impact 
of breeding could for instance be related to the presence of 
Southern European germplasm in some accession samples 
from China. More than 30 modern Italian cultivars were 
used as crossing parent in Chinese breeding programs in 
the second half of the twentieth century (Zheng 1993) and 
more than 700 Chinese wheat cultivars were found to origi-
nate from these breeding activities (Zheng 1993). In conclu-
sion, the demonstrated admixture represented the diverse 
history of the worldwide cultivation of wheat which started 
with domestication some 10,000 years ago (Salamini et al. 
2002; Pont et al. 2019) and continues in modern breeding 
and agriculture.

Despite the pronounced presence of admixture, up to 
five distinct subpopulations could be identified within the 
analyzed collection and this distinction had impact on 

Fig. 5  Prediction abilities for three different genomic prediction 
models applied to the traits flowering time (FT), plant height (PH), 
thousand grain weight (TGW), and yellow rust resistance (YR) to 
the accession samples of two subpopulations (Subp.) which are most 

distinct based on the Euclidean distances calculated from phenotypic 
information. The prediction abilities were calculated as the correla-
tions between observed and predicted trait performance using 100 
complete runs of fivefold cross-validation
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phenotypic differences between subpopulations. The dif-
ferentiation between the Asian subpopulation and the four 
European subpopulations, as indicated by the first PCo, 
agrees with previous analysis of other wheat genebank col-
lections (Balfourier et al. 2019; Pont et al. 2019) and recent 
results for the IPK wheat genebank using alternative analy-
sis approaches (Schulthess et al. 2021). The fertile cres-
cent, as the center of origin of wheat, forms the nucleus 
for the spread of wheat toward east and west, respectively 
(Balfourier et al. 2019; Pont et al. 2019). These opposite 
directions of dissemination resulted in two main clades in 
which all European and, respectively, Asian wheat acces-
sions originate. Balfourier and collaborators (2019) drew 
this conclusion based on a collection exclusively incor-
porating landraces. In contrast, the analyzed collection of 
7,745 accession samples represent not only landraces but 
also cultivars, which were bred throughout the twentieth 
century. Therefore, the above described admixture pre-
vented the precise subdivision into subpopulations along 
regional and cultural borders. This irresolution can be 
seen in line with previous work on global collections of 
wheat, which assigned about four fifth of the genetic vari-
ation to differences within subpopulations, while differ-
ences between subpopulations were consequently found 
less dominant (Joukhadar et al. 2017). Nevertheless, the 

distinction into subpopulations can be considered mean-
ingful for the present analysis, since the overall aim was 
to incorporate this information into genomic prediction. 
This specific aim was also the motivation to assign all 
accession samples to the respective subpopulations based 
on the highest ancestry proportion even if the omission of 
highly admixed genotypes would often be performed in 
phylogenetic studies.

Accounting for additive‑by‑additive epistasis 
increases quality of prediction

Ten different genomic prediction approaches were tested for 
their performance to predict the phenotype in a diverse set of 
wheat PGR. With cross-validation, the EG-BLUP approach 
showed the best performance for the prediction of PH, TGW, 
and YR. The EG-BLUP approach also performed best for 
the prediction of PH and YR in two subsets of the collection 
which comprised two contrasting subpopulations. In contrast 
to the G-BLUP model, EG-BLUP has been shown to account 
not only for additive effects but also for additive-by-additive 
epistasis (Jiang and Reif 2015). Therefore, the superiority 
of EG-BLUP could depend on the genetic architecture of 
the trait under investigation. The importance of additive-
by-additive epistasis was found in many studies on wheat 

Fig. 6  Predictions of flowering time (FT), plant height (PH), thou-
sand grain weight (TGW), and yellow rust resistance (YR) for the 
entire set of 7745 accession samples. Predictions are depicted sepa-

rately for accession samples with known phenotypic values, the train-
ing set (TRS), and accession samples without phenotypic information 
regarding the trait of interest which are named test set (TS)
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(Martini et al. 2016; Jiang et al. 2017; Raffo et al. 2022) but 
by extension also for other autogamous plant species such as 
Arabidopsis (Arabidopsis thaliana L.) (Reif et al. 2009) and 
pigeonpea (Cajanus cajan (L.) Millsp.) (Saxena et al. 2021) 
and furthermore, also in doubled haploid lines of rapeseed 
(Brassica napus L.) (Bocianowski et al. 2017) and maize 
(Vojgani et al. 2021). Due to the absence of dominance 
effects in wheat inbred lines, additive-by-additive epistasis 
is of large importance (Raffo et al. 2022). On the other hand, 
differences in the genetic architecture might go hand in hand 
with the selection of genotypes which were included in the 
training set (Würschum et al. 2017). Raffo and collaborators 
(2022) concluded that the beneficial effect of the incorpora-
tion of additive-by-additive epistasis would depend on the 
relationship between genotypes of the training and test sets. 
This cannot be confirmed based on the present genebank col-
lection, which arguably show a low real relationship due to 
the longtime of diversification accompanied by a break up of 
haplotype blocks and a reduced linkage disequilibrium. This 
fact, however, serves as an argument to a contrasting line of 
reasoning, which does not assign the found benefit of epi-
static terms to the genetic architecture of the trait. The epi-
static model term can account for purely additive effects if 
markers are not in complete linkage disequilibrium with the 
respective causative locus (de los Campos et al. 2019). This 
illusive epistatic effect has two driving factors. Firstly, the 
effect increases in importance in larger populations because 
the interactions between marker can better be detected (de 
los Campos et al. 2019). Secondly, a relatively low number 
of markers with a low coverage leads to an overestimation 
of the epistatic term (Schrauf et al. 2020). Both factors could 
clearly affect the present results due to the large number of 
accession samples which were genotyped with genotyping-
by-sequencing technology which is known to have lower 
resolution than other sequencing methods. In conclusion, 
the benefit of EG-BLUP can neither clearly be assigned to 
the trait genetic architecture nor revealed as an artifact of the 
linkage disequilibrium and/or marker coverage. Neverthe-
less, the model accounting for additive-by-additive epistasis 
was shown to increase prediction ability and thus, be suit-
able for application in genebank genomics.

In contrast to EG-BLUP, the importance of the trait’s 
genetic architecture in the respective training set can clearly 
be inferred from the obstacles faced regarding W-BLUP. 
The implementation of some W-BLUP approaches was 
prevented by the absence of strong marker trait association 
which account for large variation in TGW and YR, respec-
tively. This finding highlights the pronounced quantitative 
nature of both traits, and consequently, there are many loci 
which can explain small portion of the variation in the trait.

Accounting for population structure may be more 
beneficial with less admixture

Most genomic prediction approaches assume constancy of 
marker effects in all genotypes of the training set and test 
set. Depending on the structure of the analyzed population, 
this assumption might, however, not be correct due to vari-
ation in genetic interactions or in linkage of markers with 
the respective allele (de los Campos and Sorensen 2014). 
These variations might most likely attain a maximum in 
diverse genebank collections in which population structure 
are more pronounced if compared to, e.g., breeding popula-
tions. GSA-RRBLUP was reported to account for subpopu-
lation-specific variation in marker-effects (Li et al. 2017) and 
with this intention, this model was included in the presented 
comparison. This approach outperformed all other predic-
tion approaches for the trait FT in the comparisons involving 
all accession samples as well as both sets of contrasting sub-
populations. Different alleles for the same genes for flower-
ing and reproduction could be prevailing in the five subpopu-
lations, and therefore, the ability to assign different effects 
to each allele might hypothetically cause the advantage of 
GSA-RRBLUP. Accessions originating from or adapted to 
regions with different climates and latitudes have evolved or 
been indirectly selected for different systems to initiate the 
reproductive phase (Kamran et al. 2014). In their review, 
Kamran and collaborators (2014) presented a diverse allelic 
variation for the major gene systems vernalization and pho-
toperiod and further, dominance of some patterns of allelic 
combinations was reported depending on the region of ori-
gin. Additionally, analysis of 410 fairly modern European 
wheat cultivars has revealed the presence of copy number 
variations in some major genes which are associated with the 
variation in flowering time (Langer et al. 2014). Such class 
of variation cannot be properly displayed by genotyping-
by-sequencing markers, and therefore, this allelic variation 
could only be accounted for by allowing differences in the 
marker effect. The presence of such variation in a specific 
group of accession sample remains, however, hypothetical 
unless otherwise proven. Nevertheless, the genetic architec-
ture of a trait in different subgroups can be pinpointed as a 
driving factor for the prediction with GSA-RRBLUP.

The presented results indicate that GSA-RRBLUP would 
have been more effective in the presence of a more pro-
nounced population structure. In contrast to the overall com-
parison, GSA-RRBLUP showed improved performance rela-
tive to EG-BLUP for the reduced set of accession samples 
with increased genetic and phenotypic distances, respec-
tively. The model could have outperformed EG-BLUP in 
the overall comparison if the entire collection would have 
shown a more pronounced structure. Most accessions in the 
analyzed collection were of European origin, and the Asian 
subpopulation was the only really distinct outgroup. Studies 
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on other genebank collections indicate that the Asian part 
of the global diversity in wheat was underrepresented in 
the analyzed collection (Balfourier et al. 2019; Pont et al. 
2019), which was arguably further reinforced by focusing 
on winter wheat. However, the focus on certain regions of 
origin will most certainly be present in most genebanks due 
to the history of collection as well as a focus on national 
breeding programs. Generally, the choice for GSA-RRBLUP 
should be made individually based on the prominence of the 
structure in training set and test set, respectively.

To the best of our knowledge, the present study is the 
first implementation of GSA-RRBLUP for the prediction 
of genebank accessions. Moreover, the novelty of incor-
poration of ancestry proportions as a factor of admixture 
between different subpopulations was shown to be a promis-
ing approach if separation of subpopulations was not strict 
due to historic exchange or migration with a few examples 
given above. Both factors, dissemination and exchange as 
well as separation and clustering, were important factors 
for many crop species. For instance, rice (Oryza sativa L.) 
has a pronounced population structure with two major sub-
species japonica and indica (Gutaker et al. 2020) and two 
additional subgroups circumAus and circumBasmati (Santos 
et al. 2019). Additionally, less dominant admixture has been 
reported that indicate hybridization events at various time-
points (Choi et al. 2017; Santos et al. 2019). Especially in 
these cases of alteration in population structure, GSA-RRB-
LUP accounting for admixture should be further examined 
and might be promising for populating genebank catalogues.

Definition of training set plays major role 
for populating genebank catalogues

We further intended to present the predicted phenotypes for 
all accession samples as a proof-of-concept for the enrich-
ment of genebank catalogues with predicted phenotypes. A 
shift in the mean of the predicted phenotypic values as well 
as a reduction in the variation has been identified between 
the training and test sets of FT, PH, and TGW. The shift in 
the mean is associated with different compositions of the 
training sets. These differences result from the availability 
of historic data which did not equally represent the different 
subpopulations. As an example to the contrary, the training 
set for the prediction of YR was randomly sampled from all 
accessions samples and thus, hardly any difference in the 
mean of the predicted phenotypic value was found (SFig. 7).

Characteristics of training sets largely affect the success 
of prediction which has already been concluded at several 
places above. Firstly, mean and variance of the phenotypic 
values in the training set should be approximately repre-
sentative for the entire collection in order to avoid any bias 
and extrapolation. These considerations on the training set 
would thus be trait specific. Secondly, prediction ability 

is generally positively associated with the size of training 
set relative to the test set (Edwards et al. 2019). Thirdly, 
population structure in the test set and training set can com-
promise the prediction ability (Werner et al. 2020). Under 
the assumption that subpopulations in genebank collections 
and crossing families are relatable, one should include as 
many subpopulations as possible in the training set since 
this is most beneficial if the size of the training set is fixed 
(Edwards et al. 2019). Lastly, the genotypes of the training 
set should be related with those of the test set (Edwards et al. 
2019; Werner et al. 2020), which is surely less pronounced 
in genebank collections than in breeding populations. In 
conclusion, complications could arise since the most suit-
able training set should comprise many genetically similar 
genotypes for every genotype of the test set and in contra-
diction, the training set should represent all subpopulations 
and origins of the entire collection with an economically 
reasonable number of genotypes.

The initial concept of this study builds upon the assump-
tion that the training set would just be defined by the avail-
ability of phenotypic data. In some cases, increasing the 
quality of the training set might leverage the quality of all 
predicted value and thus, additional phenotyping might, 
however, be needed. In this respect, targeted selection of 
genotypes for the training set could be as powerful as the 
selection of the suitable prediction model and urge for fur-
ther investigation in the context of genebanks.

Prospects beyond the explored models

Diverse approaches of genomic prediction have been pre-
sented in the past, each having its specific advantages. The 
ten tested prediction approaches were selected mainly due 
to the aim of providing a ready-to-use solution which can be 
implemented by a large group of applicants in diverse appli-
cations. Nevertheless, other genomic prediction approaches, 
such as Bayesian approaches, multiple-trait genomic pre-
diction, and deep learning approaches, could potentially be 
beneficial.

Bayesian approaches, such as BayesA (Meuwissen et al. 
2001), BayesB (Meuwissen et al. 2001), BayesCπ (Habier 
et al. 2011), and Bayesian LASSO (Legarra et al. 2011), 
have in common that the genetic variance is partitioned 
differently for each marker, allowing thus to model differ-
ent genetic architectures that diverge from the infinitesimal 
model. The concept, although less flexible, is also used by 
adjusting main marker effects in W-BLUP. In contrast to 
the latter approach, Bayesian models do not rely on a two-
step analysis involving a genome-wide association study. In 
a past study on hybrid maize, Li and collaborators (2020) 
demonstrated that BayesB, BayesC or Bayesian LASSO 
could only outperform the two-step approach with fixed 
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effects for the prediction of two of in total ten traits. Simi-
larly, W-BLUP showed better performance than BayesCπ 
for the prediction of heading time and plant height in hybrid 
wheat (Zhao et al. 2014). Therefore, advantages of Bayesian 
approaches are trait specific. Although not explored in the 
current work, the implementation of Bayes approaches in 
addition to alternative methods could therefore be assessed 
according to the trait portfolio specific to each genebank.

Multiple-trait genomic prediction can boost the predic-
tion ability of target traits with low heritability provided a 
genetically correlated indicator trait with higher heritability 
is included in the model (Calus and Veerkamp 2011; Jia 
and Jannink 2012). Considering trait correlations (STab. 7) 
and previously reported heritabilities (Philipp et al. 2019; 
Schulthess et  al. 2021) for PH (0.95), FT (0.92), TGW 
(0.90), and YR (0.82), the prediction ability for the latter 
trait could be improved by shifting to multiple-trait predic-
tion using FT or PH as indicator traits. According to trait 
correlations (STab. 7), taller and/or late flowering wheat 
plants tend to develop less yellow rust symptoms, which 
implies that more accurate predictions due to information 
on PH and/or FT would be more related to “disease escape” 
than “true” resistance. However, FT and PH have optimal 
trait values associated with high yields in combination with 
the specific local agricultural practices (Worland 1996; 
Austin 1999). Nevertheless, wheat breeders would like to 
have sources of resistance which are independent of these 
local requirements. In this context, multiple-trait genomic-
prediction models will be rather counterproductive for the 
informed selection of resistance donors for pre-breeding.

Machine learning approaches can be applied for genomic 
prediction without many initial assumptions on the genetic 
architecture of the trait (González-Camacho et al. 2018). 
Examples of these flexible approaches are artificial neuronal 
networks and random forest (Azodi et al. 2019). Azodi and 
collaborators (2019) compared different machine learning 
models with classical linear approaches on a combination 
of 18 traits and genomic data from six plant species. While 
the benefit of random forest was dependent on the dataset, 
artificial neuronal networks could not outperform the linear 
approaches (Azodi et al. 2019). Moreover, machine learn-
ing models still require much knowledge and computational 
skills from the applicant and furthermore, they are time-
consuming and computationally demanding (Azodi et al. 
2019; Montesinos-López et al. 2021). Thus, deep learning 
will most likely not improve our knowledge of genebank 
collections right now; nevertheless, future research might 
reconsider machine learning due to advances in computa-
tional efficiency as well as user-friendliness.

Conclusion

Genomic prediction can be used in order to populate gen-
ebank catalogues for wheat in a cost-efficient manner. Fur-
thermore, this approach offers potential for a wide range of 
crop species which are harbored in genebanks worldwide. 
Generally, the convincing performance of EG-BLUP and 
GSA-RRBLUP has been shown based on the prediction 
of four test traits. We propose the use of EG-BLUP as 
a standard approach for a wide range of applications in 
genebank genomics and thus, this model might replace 
G-BLUP in this respect. On the other hand, GSA-RRBLUP 
is the preferred choice for more advanced applications if 
strong population structure is present and elevated com-
putational demand does not impose any restriction. The 
success of the genomic prediction was shown to be deter-
mined by the trait’s genetic architecture and the contrast-
ing or similar composition of the training set compared 
to the test set. While the first aspect cannot be altered 
by genebank curators, the latter aspect should receive 
more attention in future. Targeted selection of genotypes 
for phenotyping experiments should be considered as a 
strategy to develop trait-specific training sets. For 7651 
accessions, we enriched the publicly available catalogue 
of the IPK genebank with most accurate predictions of 
the four examined traits. In the future, predicted data for 
even complex traits will become available to research and 
breeding and thus, enable an educated choice of PGR as 
donors. More than one century after initializing genebank 
collections, genomic prediction can enable us to under-
stand and activate the accumulated germplasm.
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