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Abstract
Key message FHB resistance shared pleiotropic loci with plant height and anther retention. Genomic prediction 
allows to select for genomic background reducing FHB susceptibility in the presence of the dwarfing allele Rht-D1b.
Abstract With the high interest for semi-dwarf cultivars in wheat, finding locally adapted resistance sources against Fusar-
ium head blight (FHB) and FHB-neutral reduced height (Rht) genes is of utmost relevance. In this study, 401 genotypes 
of European origin without/with dwarfing alleles of Rht-D1 and/or Rht24 were analysed across five environments on FHB 
severity and the morphological traits such as plant height (PH), anther retention (AR), number of spikelets per ear, ear 
length and ear density. Data were analysed by combined correlation and path analyses, association mapping and coupling 
single- and multi-trait genome-wide association studies (ST-GWAS and MT-GWAS, respectively) and genomic prediction 
(GP). All FHB data were corrected for flowering date or heading stage. High genotypic correlation (rg = 0.74) and direct 
path effect (0.57) were detected between FHB severity and anther retention (AR). Moderate correlation (rg = − 0.55) was 
found between FHB severity and plant height (PH) with a high indirect path via AR (− 0.31). Indirect selection for FHB 
resistance should concentrate on AR and PH. ST-GWAS identified 25 quantitative trait loci (QTL) for FHB severity, PH 
and AR, while MT-GWAS detected six QTL across chromosomes 2A, 4D, 5A, 6B and 7B conveying pleiotropic effects on 
the traits. Rht-D1b was associated with high AR and FHB susceptibility. Our study identified a promising positively acting 
pleiotropic QTL on chromosome 7B which can be utilized to improve FHB resistance while reducing PH and AR. Rht-D1b 
genotypes having a high resistance genomic background exhibited lower FHB severity and AR. The use of GP for estimat-
ing the genomic background was more effective than selection of GWAS-detected markers. We demonstrated that GP has 
a great potential and should be exploited by selecting for semi-dwarf winter wheat genotypes with higher FHB resistance 
due to their genomic background.

Introduction

Wheat (Triticum aestivum L.) is one of the most cultivated 
cereal crops worldwide and serves as a staple food for mil-
lions of people. However, the production of wheat is ham-
pered by several diseases, including Fusarium head blight 

(FHB) caused by numerous Fusarium species, with Fusar-
ium graminearum Schwabe and F. culmorum (W.G. Smith) 
Sacc. being the most predominant in Central Europe. FHB 
causes severe yield losses and contaminates the grains with 
several mycotoxins including deoxynivalenol (DON) which 
is one of the most frequently detected in wheat (Righetti 
et al. 2021; Topi et al. 2021). DON makes the grain unsuit-
able for flour and malt and is also toxic for non-ruminant 
animals (Windels 2000). Damages due to FHB in wheat are 
likely to increase with the rising temperatures and higher 
atmospheric carbon dioxide  (CO2) caused by climate change 
(Timmusk et al. 2020; Miedaner and Juroszek 2021; Hay 
et  al. 2022). Fungicides and DON-reducing technolo-
gies used as traditional measures to control FHB disease 
increase production costs, with no significant positive 
return on grain yield (Wilson et al. 2018). Most effective 
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and environmentally friendly strategies integrate appropriate 
agronomic practices and enhanced host resistance.

Breeding for resistance against FHB in European winter 
wheat faces several challenges related to the complex genetic 
architecture of the trait (Jiang et al. 2015; Ruan et al. 2020) 
and requires intensive breeding effort and accurate breed-
ing strategies (Buerstmayr et al. 2020). FHB resistance is 
controlled by multiple medium- and small-effect quantita-
tive trait loci (QTL) which are vulnerable to the changing 
environmental conditions due to QTL-environment interac-
tions (Miedaner and Juroszek 2021). To date, more than 500 
QTL have been reported for FHB from different breeding 
populations and were further clustered into 65 QTL with 
unique physical positions through a recent meta-analysis by 
Venske et al. (2019). Additionally, morphological traits such 
as plant height and anther retention or extrusion were shown 
to passively contribute to FHB resistance (Mesterházy 1995; 
Buerstmayr et al. 2020; Xu et al. 2020), and relationships 
between FHB resistance and morphological traits have been 
extensively reported using correlation coefficients (Buerst-
mayr and Buerstmayr 2015; Steiner et al. 2019b; Ruan et al. 
2020; Xu et al. 2020). Although correlation analysis helps 
measure the degree of association between two traits, it does 
not explain causes and effects of the relationship (Dewey and 
Lu 1959; Ozukum et al. 2019). In addition, the existence of 
strong correlation between two traits might be due to the 
presence of one or many other traits which strengthen the 
complexity of the interactions. Understanding the complex 
interactions between FHB resistance and morphological 
traits requires the use of appropriate statistical approaches 
like path analysis, also referred to as structural equation 
modelling (SEM) or covariance structural equation model-
ling (CSEM).

Path analysis is a causal multivariate modelling approach 
which complements simple correlation analysis by unravel-
ling the nature and magnitude of the observed relationships 
among traits (Wright 1934). It exploits observed correlations 
to estimate standardized direct and indirect effects contrary 
to the standard multivariate modelling which ignores causal 
relationships among variables and combines all effects 
together (Valente et al. 2013). Path effects estimated using 
correlations are unitless and interpreted as standardized 
regression slopes, allowing for comparison of the relative 
importance of different variables (Stage et al. 2010). There-
fore, a direct path effect of a particular morphological trait 
on FHB resistance would indicate how much an increase 
of one unit in the standard deviation of that trait directly 
changes the standard deviation of FHB resistance. On the 
contrary, an indirect path effect would indicate how much a 
particular morphological trait changes the standard deviation 
of FHB resistance depending on the presence of other mor-
phological traits. The selection for FHB resistance using the 
indirect path of a trait requires the simultaneous integration 

of one or several other traits. Based on comparison between 
the two types of effect, the breeder can decide which paths 
and morphological traits are more important to be consid-
ered for improving FHB resistance using correlated traits 
for higher genetic progress. Hence, a combined correlation 
and path analysis has several advantages including setting 
reliable criteria for multiple-trait selection, minimizing risks 
of components compensation and guiding in planning of 
experiments (Usman et al. 2017; Khan et al. 2022). Path 
analysis was used by researchers to depict complex associa-
tions among yield and related traits in several crop species 
including wheat (Baye et al. 2020; Hinson et al. 2022) and 
maize (Toebe and Cargnelutti 2013).

Plant height in wheat is controlled by at least 150 QTL 
scattered across the whole wheat genome (Mao et al. 2010), 
and 25 Rht genes with more than 30 dwarfing alleles are 
reported (Sanchez-Garcia and Bentley 2019). They became 
very popular after their introduction during 1960s and 1970s 
to initiate the “Green Revolution” in developing countries 
(Hedden 2003) but also to breed short-strawed wheat in 
industrial countries. Major Rht genes are Rht-B1 (syn. Rht1), 
Rht-D1 (syn. Rht2) and Rht24, located on chromosomes 4B, 
4D and 6A, respectively (Würschum et al. 2017; Tian et al. 
2022). The wild type is named “a” and the height-reducing 
mutant “b”. Rht-D1b and Rht24b were more frequently 
found in Central European wheat germplasm than Rht-
B1b. Rht genes have been widely used in commercial wheat 
breeding to develop semi-dwarf varieties which are preferred 
to tall genotypes because of their lodging resistance, higher 
nitrogen fertilizer use efficiency, increased tillers, higher 
harvest index and grain yield (Zhao et al. 2022).

Unfortunately, Rht-B1b and Rht-D1b were associated 
with FHB susceptibility and lower anther extrusion (Lu et al. 
2013; Hales et al. 2020). Miedaner et al. (2019) and Zhang 
et al. (2021) suggested the use of major FHB-resistant QTL 
through marker-assisted introgression to counterbalance the 
negative FHB effect of semi-dwarf genotypes. Meanwhile, 
it has also been demonstrated that major non-adapted FHB 
resistance QTL (Fhb1, Fhb2, Fhb5) provide only a partial 
resistance (Su et al. 2019), and their introgression was not 
equally effective across different backgrounds (Brar et al. 
2019) and requires considerable breeding efforts. Breeders 
must also consider a larger number of medium- and small-
effect QTL in locally adapted cultivars for all traits analysed 
here, so-called genomic background (Brar et al. 2019) in 
order to aim for local, short-strawed wheat cultivars with 
higher FHB resistance. The genomic background refers to all 
locally adapted genes which are likely to influence the phe-
notype controlled by a particular gene of interest (Yoshiki 
and Moriwaki 2006). In wheat, all genes of a genotype which 
are capable of influencing the reduction effect of major Rht 
genes on plant height can be considered as genomic back-
ground for the plant height in that genotype and similarly 
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for FHB resistance and AR. Numerous medium- and small-
effect loci have been reported for FHB resistance and anther 
retention, but their potential to counterbalance the negative 
effect major Rht genes such as Rht-D1 and possible exploi-
tation in practical breeding have been poorly investigated.

Herter et  al. (2018) evaluated segregating materials 
derived from a biparental cross between two German winter 
wheat cultivars, “Solitär x Bussard”, and demonstrated that 
Rht24b was not associated with FHB resistance. This was 
recently confirmed in a large European winter wheat germ-
plasm by Miedaner et al. (2022) who also found that Rht24b 
did not affect FHB resistance. Therefore, strategies to 
develop FHB-resistant varieties with semi-dwarfing alleles 
should reconsider the choice of such Rht genes. This gives 
the opportunity to develop marker arrays and strategies to 
facilitate the exploitation of FHB-neutral Rht genes in breed-
ing programmes. However, given the complex interactions 
among morphological traits and their passive contribution 
to FHB resistance (Buerstmayr et al. 2020), a clear under-
standing of the effect of Rht24b on morphological traits, like 
anther retention or extrusion, is required. Furthermore, the 
choice of Rht genes could also be driven by breeding objec-
tives and the extent to which FHB-neutral Rht genes reduces 
the plant height compared with other genes.

In this study, we aimed to (i) describe the nature and 
magnitude of the complex interactions between FHB resist-
ance and morphological traits, including plant height, anther 
retention, number of spikelets per ear, ear length and ear 
density using combined correlation and path analyses; (ii) 
dissect the genetic architecture of FHB severity, plant height 
and anther retention, thus uncovering the genetic basis of 
the complex interactions among these traits through a joint 
implementation of single- and multi-trait genome-wide 
association study (GWAS), and genomic prediction (GP); 
and (iii) separate for each trait, the effects of Rht genes and 
genomic background (GB), evaluating the potential of GB 
in selecting FHB-resistant genotypes with short Rht alleles 
based on the single-trait GWAS and genetic estimated 
breeding values (GEBV) from the GP. GB refers to all QTL 
affecting the traits, except those associated with plant height 
on chromosomes 4D and 6A corresponding to Rht-D1 and 
Rht24 genes, respectively.

Materials and methods

Plant materials and field experiments

The materials consisted of 401 winter wheat cultivars 
from European origin (Table S1). These cultivars were 
evaluated in Germany at three locations in 2020 and two in 
2021, resulting in five environments (location × year com-
binations) in total. In 2020, the cultivars were evaluated 

in Hohenheim (HOH) near Stuttgart (9.12° E, 48.42° N; 
400 m above sea level [a.s.l]), Oberer Lindenhof (OLI) near 
Reutlingen (9.18° E, 48.28° N; 700 m a.s.l), and Wohlde 
(WOH) near Bergen (9.98° E, 52.80° N; 80 m a.s.l). In 2021, 
field experiments were conducted in HOH and OLI only. 
At each location, the cultivars were randomized using an 
incomplete lattice design with two replicates. Experimental 
units were planted in double rows of 0.9 m length in WOH 
and single rows of 1.2 m length in HOH and OLI. Experi-
ments were sown with a density of 40 kernels/row in WOH 
and 60 kernels/row in HOH and OLI.

Artificial inoculations

Inoculum of the highly aggressive single-spore isolate FC46 
(IPO 39-01) of F. culmorum (Snijders and Perkowski 1990) 
was produced on autoclaved wheat kernels as described in 
detail by Miedaner et al. (1995, 1996). Prior to inoculation, 
the Fusarium suspension was diluted to a concentration of 
2 ×  105 spores  mL−1. Approximately 100 mL  m−2 of the 
diluted inoculum was applied using an adapted agricultural 
sprayer (Hege 75, Waldenbuch, Germany). Inoculations 
were repeated four to five times at intervals of two to three 
days to inoculate each genotype at least once during mid-
anthesis. The first inoculations were done when early culti-
vars started flowering.

Phenotypic data collection

Eight traits were recorded: Fusarium head blight severity 
(FHB severity, %), plant height (PH, cm), anther retention 
(AR, %), ear length (EL, cm), number of spikelets per ear 
(NS, spikelets  ear−1), ear density (ED, spikelets  cm−1), days 
to flowering (DTF, days) and heading stage (HS). Days to 
flowering, the number of days when 75% of heads showed 
extruded anthers after May 1, was assessed in all environ-
ments except in WOH. Heading stage (1–9) was recorded 
on one a single day (different dates in different environ-
ments) and is equal to BBCH stage 51–59 (Meier 2001). 
Plant height was recorded for each plot after flowering. FHB 
severity was rated as the percentage of infected spikelets 
(0–100%) of each head, averaged across all plants of a plot. 
The first rating started at the onset of symptom develop-
ment about 15–20 days after inoculation and was repeated in 
intervals of three to five days until the first signs of ripening. 
We rated each time the total number of infected spikelets per 
plot. This rating approach at different stages in the develop-
ment of the plants under field conditions helped to evaluate 
the combination of both type I (incidence) and type II (symp-
tom development) FHB resistance in one number (Nannuru 
et al. 2022). Anther retention was assessed as percentage 
of retained anthers per spike according to Atashi-Rang and 
Lucken (1978). Five spikes per plot were harvested five to 
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seven days after flowering and frozen in paper bags to do 
the assessment in off-season. Retained anthers of two lateral 
florets of eight central spikelets were counted on each of the 
five spikes. In contrast to Atashi-Rang and Lucken (1978), 
anthers located between the lemma and palea, and partially 
extruded, were counted as retained. From the same spikes, 
the number of spikelets per ear  (NSi) was counted and ear 
(spike) length  (ELi, cm) was measured. Ear density  EDi was 
calculated as the number of spikelets per centimetre:

AR, EL and ED were estimated plot-wise by averaging 
values over the five spikes.

Genotyping and molecular analysis

DNA isolation and genotyping were done by SGS Institut 
Fresenius, TraitGenetics Section (https:// trait genet ics. com/ 
index. php/ conta ct, Gatersleben, Germany) from seed sam-
ples of the 401 genotypes. Genotyping was done using an 
Illumina 25 K Infinium single-nucleotide polymorphism 
(SNP) array which produced a total of 24,145 SNP mark-
ers. About 58 and 14% of the markers overlapped, respec-
tively, with 90 K iSelect and 820 K  Axiom® arrays, which 
are publicly available at CerealsDB (http:// www. cerea lsdb. 
uk. net/ cerea lgeno mics/ Cerea lsDB) (Wilkinson et al. 2020). 
SNPs were filtered by removing markers with minor allele 
frequency (MAF) < 0.05 and call rate < 80%. This narrowed 
down the marker data to 19,969 polymorphic and high-qual-
ity SNPs with a total of 0.7% of missing data. SNPs were 
coded as − 1, 0 and 1 corresponding to AA, Aa and aa. 
A represented the major allele, while a denoted the minor 
allele. Heterozygous loci were replaced with missing val-
ues, and the data were imputed using the Wright’s equilib-
rium approach (Wright 1922). SNPs filtering, coding and 
imputation were conducted using the raw.data function in 
the snpReady R package (Granato et al. 2018). Start and 
end physical positions (Table S6) of the markers sequences 
were obtained by blasting against the International Wheat 
Genome Sequencing Consortium (IWGSC) reference 
sequence (IWGSC RefSeq) v.2.1 which is accessible at 
the Research Unit in Genomics-Info (URGI) of the French 
National Institute for Agriculture, Food and Environment 
(INRAE) (https:// wheat- urgi. versa illes. inra. fr/ Seq- Repos 
itory/ Assem blies) (Zhu et al. 2021).

Phenotypic data analysis

For each plot, arithmetic mean of repeated ratings of FHB 
severity was calculated and included in the statistical analy-
sis as described by Mesterházy (1995). Estimated individual 

(1)EDi=
NSi

ELi

value was validated when the corresponding coefficient of 
variation of error was below 5%. Outliers were removed 
from the data using the Bonferroni–Holm method (Bernal-
Vasquez et al. 2016). Variance components, genetic coef-
ficient of variation, broad-sense heritability and best linear 
unbiased estimations (BLUEs) were calculated for each of 
the eight traits, based on a mixed linear model:

where yijkl is the phenotype of the ith genotype in the jth 
environment within the kth block of the lth replicate; gi is the 
effect of the ith genotype; ej is the effect of the jth environ-
ment; geij is the effect of the interaction between the geno-
type and the jth environment; bk is the effect of the kth block; 
rl is the effect of the lth replicate; and εijkl is the residual 
error on the phenotype of the ith genotype in the jth envi-
ronment within the kth block of the lth replicate. To adjust 
for the impact of repeated artificial inoculations on early 
flowering genotypes (higher inoculum dose after flowering), 
days to flowering was added as a cofactor (fixed effect) to the 
mixed linear model for calculating FHB severity. Because 
days to flowering was not assessed in WOH, the model was 
further extended by adding heading stage as a second cofac-
tor in order to correct FHB severity. This correction reduced 
the correlation coefficient between FHB severity and days 
to flowering from − 0.32 to − 0.16. Similarly, the correla-
tion between FHB severity and heading stage was reduced 
from 0.29 to 0.11. The genotype was treated as fixed effect, 
while block, replicate, environment and genotype-environ-
ment interaction were included as random effects. Variance 
components were firstly estimated for all genotypes as one 
group. Secondly, genotypes were grouped based on Rht 
genes and variances components were estimated to describe 
the extend of genetic variation within each group for PH, 
FHB severity and AR. Prior to genotypes grouping, a single-
trait genome-wide association study was conducted on each 
trait to identify significant markers associated with PH on 
chromosomes 4D and 6A, which correspond to Rht-D1 and 
Rht24 genes. Based on the presence/absence of Rht-D1b and 
Rht24b, genotypes were categorized into four Rht groups, 
namely NoRht, Rht24b, Rht-D1b and Rht24b + Rht-D1b. 
NoRht was composed of genotypes with tall alleles of both 
genes. Rht24b included genotypes carrying Rht24b only, 
while Rht-D1b was constituted of genotypes with Rht-D1b 
only. Similarly, Rht24b + Rht-D1b included genotypes pos-
sessing semi-dwarfing alleles of both genes. Dummy vari-
ables (0, 1) as described by Piepho et al. (2006) were created 
to separate genotypes, and genotype-dummy interaction was 
added to the model to estimate variance components within 
each Rht group. For dummy = 1, the interaction between 
genotype and dummy estimates variance components within 
the respective group. Significance of variance components 

(2)yijkl = gi + ej + bk + rl + geij + �ijkl

https://traitgenetics.com/index.php/contact
https://traitgenetics.com/index.php/contact
http://www.cerealsdb.uk.net/cerealgenomics/CerealsDB
http://www.cerealsdb.uk.net/cerealgenomics/CerealsDB
https://wheat-urgi.versailles.inra.fr/Seq-Repository/Assemblies
https://wheat-urgi.versailles.inra.fr/Seq-Repository/Assemblies
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was calculated using a likelihood ratio test (LRT) based on 
factor-wise comparisons of a model with all factors and a 
model without the respective factor (Stram and Lee 1994; 
Morrell 1998). Environment-specific (heterogeneous) vari-
ances were fitted for replicate, block and residual effects. 
Harmonic means of environment-specific residual variances 
were calculated and reported. The mixed linear models were 
fitted using the ASReml-R package v.4.1.0 (Gilmour et al. 
2015). Only adjusted means (BLUEs) of the corrected FHB 
severity and other traits across the five environments (loca-
tion × year combinations) were considered for further analy-
ses (Table S1).

Broad-sense heritability (H2) was estimated for each trait 
following the procedure described by Piepho and Möhring 
(2007):

where �2
G

 is the genotypic variance and v̄BLUE
Δ…

 is the mean 
variance of the difference of two adjusted means (BLUEs). 
The genetic coefficient of variation  (CVG) was calculated for 
each trait as follows:

where �2
G

 is the genotypic variance and x is the mean of 
BLUEs of the trait. Coefficient of variation of error  (CVε) 
was also calculated for each trait by replacing the genotypic 
variance by the residual variance ( �2

�
 ) in Eq. (4). All analyses 

were performed in R software, v.4.1.3 (R Core Team 2021).

Correlation and path analysis

Genotypic correlations were calculated between pairs of 
traits by fitting a bivariate mixed linear model as follows:

where yijkl is the phenotypic value of the first trait; y’ijkl is 
the phenotypic value of the second trait; gi is the effect of 
the ith genotype; ej is the effect of the jth environment; geij 
is the effect of the interaction between the ith genotype 
and the jth environment; bk is the effect of the kth block; 
rl is the effect of the lth replicate; and εijkl is the residual 
error. Bivariate models were fitted with unstructured vari-
ance–covariance using the corh-option for the genotype, 
environment and genotype by environment interaction and 
diagonal variance–covariance for replicate and blocks. 
In addition to genotypic correlations, Pearson’s product-
moment correlations analysis was performed based BLUEs 

(3)H2 =
�2
G

�2
G
+

v
BLUE

Δ…

2

(4)CVG =

√
�2
G

x

(5)
[
yijkl
y�
ijkl

]
= gi + ej + bk + rl + geij + �ijkl

and the results plotted using the GGally package v.2.1.2. 
Correlation coefficients were classified and interpreted as 
described by Zou et al. (2003).

The genotypic correlations were used to perform path anal-
ysis between FHB severity, as response variable, and morpho-
logical traits such as PH, AR, EL and NS included as explana-
tory variables in agricolae R package v.1.3–5 (De Mendiburu 
2016). The analysis was based on standardized partial regres-
sions which used observed genotypic correlations to estimate 
direct and indirect path effects as illustrated diagrammatically 
in detail in Fig. 1 (Wright 1918, 1934; Dewey and Lu 1959). 
For simplicity, PH, AR, EL and NS were coded as 1, 2, 3, and 
4, respectively. The path model was fitted as follows:

where 𝛽  is the standardized regression slope, representing 
the direct effect estimators; Y is the vector of genotypic cor-
relations between FHB severity and morphological traits; 
X is the genotypic correlation matrix among morphological 
traits; and ε is a vector of residual errors. To estimate the 
direct effect of each exploratory variable on FHB severity, 
we minimized the residual least squares and took its deriva-
tive with respect to 𝛽  , creating a system of normal equations 
as described by Toebe and Cargnelutti (2013):

(6)Y = 𝛽 X + 𝜀

(7)𝛽 =
�
X�X

�−1
X�Y =

⎡⎢⎢⎢⎣

p15
p25
p35
p45

⎤⎥⎥⎥⎦

Fig. 1  Representation of the nature of the interactions among traits. 
a = path diagram illustrating direct and indirect effects; b = simultane-
ous structured equations matrix showing relationships between cor-
relations and path coefficients. Double-arrowed lines indicate mutual 
association as measured by genotypic correlations (rij), and single-
arrowed lines represent direct path effects (pij)
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where X’ and X−1 are the transpose and inverse of the cor-
relation matrix X, respectively; p15, p25, p35 and p45 are the 
direct path effects of PH, AR, EL and NS on FHB sever-
ity, respectively. Afterwards, the indirect path effects were 
estimated using structured equations (Dewey and Lu 1959) 
linking the correlation coefficients and the direct path effects 
as follows:

where ri5 is the genotypic correlation coefficient between the 
ith trait and FHB severity; pi5 is the direct path effect of the 
ith trait on FHB severity; and ∑rikpk5 is the summation of 
indirect path effects of the ith trait on FHB severity via all 
other k traits. We obtained four structured and simultaneous 
equations which defined a matrix of direct (diagonal ele-
ments) and indirect path (off-diagonal elements) effects of 
morphological traits on FHB severity (Fig. 1b). Coefficient 
of determination (R2) of the path model was estimated as:

where r15, r25, r35 and r45 are the genotypic correlations 
between FHB severity and PH, AR, EL and NS, respectively. 
The direct effect (pres) of the residual factors was calculated 
as the part of the variation of FHB severity which was not 
explained by PH, AR, EL and NS (Toebe and Cargnelutti 
2013). That is,

The residual factors referred to all other variables 
which contribute to the variation of FHB severity and 
were not included in the path model. Similar to the 
standard multivariate modelling, the existence of high 
multicollinearity among exploratory variables can lead 
to significant biases in the estimates of path effects and 
result in a wrong interpretation of existing causal rela-
tionships among the variables (Stage et al. 2010; Toebe 
and Cargnelutti 2013). Therefore, we investigated the 
multicollinearity among exploratory variables by calcu-
lating the variance inflation factor (VIF). In doing this, 
a linear regression was fitted for each variable on other 
variables, and the respective multiple R2 ( R2

mult
 ) was used 

to calculate VIF as:

Multicollinearity was considered as high, if VIF > 5 
(Olivoto et al. 2017).

(8)ri5 = pi5 +
∑

rikpk5

(9)R2 = r15p15 + r25p25 + r35p35 + r45p45

(10)pres =
√
1 − R2

(11)VIF =
1

1 − R2
mult

Population structure and genome‑wide association 
studies

Polymorphic and high-quality SNP markers obtained after 
the filtering were used to investigate the population struc-
ture of the 401 genotypes, using the snpdgsPCA() function 
available in SNPRelate R package v.1.26 (Zheng 2015). 
Scatter plots illustrating the structure of the population 
were built for the first two principal coordinates using the 
ggplot2 package v.3.3.5 (Wickham et al. 2021).

To dissect the genetic architecture of FHB sever-
ity, PH and AR, single genome-wide association study 
(ST-GWAS) analysis was performed based on all 19,969 
SNP markers with MAF ≥ 0.05 to identify significant 
marker–traits associations (MTAs), using the Bayesian-
information and Linkage-disequilibrium Iteratively Nested 
Keyway (BLINK) method available in the Genomic Asso-
ciation and Prediction Integrated Tool (GAPIT) R package 
v.3.1.0 (Wang and Zhang 2021). BLINK is a multi-locus 
GWAS method which was demonstrated to outperform 
in both speed and statistical power other methods such 
as the fixed and random model circulating probability 
unification (FarmCPU) and mixed linear model (MLM) 
(Huang et al. 2019; Wang and Zhang 2021). In contrary to 
FarmCPU, BLINK works directly on the markers instead 
of bins, thereby removing the assumption that causal loci 
are evenly distributed across the genome. BLINK includes 
two fixed effects models  (FEM1 and  FEM2) and one filter-
ing process, which are performed iteratively (Huang et al. 
2019). The filtering process consists in sorting all markers 
and selecting the first t most significant markers referred to 
as pseudo-quantitative trait nucleotides (QTNs) (based on 
indicated threshold) that are not in linkage disequilibrium 
(Pearson’s correlation < 0.7) as covariates. Based on this, 
the two FEMs can be written as follows:

where yi is the BLUE across environments of the ith geno-
type; Si1, Si2, …, Sik are the genotype scores of k pseudo-
QTNs, initiated as an empty set; b1, b2, …, bk are the respec-
tive effects of the pseudo-QTNs; Sij is the genotype score 
of the ith genotype and jth marker; dj is the corresponding 
effect of the jth marker; and ei is the residual with ei ~ N(0, 
�2
�
). In  FEM1, Sijdj represents a testing markers term where 

all remaining markers are tested one at a time. In  FEM2, all 
t pseudo-QTNs selected after the filtering are re-examined 
together using the Bayesian information content (BIC) as 
an optimization criterion. Afterwards, k out of the t pseudo-
QTNs with the best BIC values are selected and included in 
 FEM1 as covariates to test the remaining markers.

(12)
FEM1 ∶ yi = Si1b1 + Si2b2 + Si3b3 + … + Sikbk + Sijdj + �i

(13)
FEM2 ∶ yi = Si1b1 + Si2b2 + Si3b3 + … + Sikbk + �i
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As BLINK method does not automatically make a clear 
separation between major- and small-effect QTL (pseudo-
QTNs selected are retested together and some are also 
removed in  FEM2), we implemented two ST-GWAS analy-
ses (ST-GWAS1 and ST-GWAS2) on each of the trait. In 
ST-GWAS1, all markers were included in the analysis, while 
in ST-GWAS2 significant MTAs identified on chromosomes 
4D (Rht-D1) and 6A (Rht24) from ST-GWAS1 were used as 
covariate variable to increase the detection of small-effect 
markers. In wheat, the use of Rht markers as covariate vari-
ables in BLINK was reported to increase the number of sig-
nificant markers (Merrick et al. 2022). Significant MTAs 
were identified based an exploratory threshold of − log10 (p 
value) = 6 and a Bonferroni-corrected threshold of − log10 
(p value) = 6.30. The corrected Bonferroni threshold (p 
value) was determined as follows:

where α = 0.01 is the type 1 error and Me is the number of 
markers included in the analysis. The total proportion of 
genetic variation (pG) explained by significant markers for 
each trait was determined as follows (Utz et al. 2000):

where R2
adj

 is the adjusted R2 and H2 is the broad-sense herit-
ability of the trait. The adjusted R2 was estimated by fitting 
a multiple linear regression model as follows:

where y is  the BLUEs and  snpi,  snpj, and  snpk are  the 
SNP markers identified by ST-GWAS with threshold of 
 snpi >  snpj > … >  snpk (Gaikpa et al. 2020). Individual pG 
values were calculated using the sum of squares (SS) from 
the analysis of variance of the linear model (Würschum et al. 
2015) as:

where  SSsnp is the sum of squares of individual SNP and 
 SStotal is the total sum of squares of the model. The sum of 
squares was estimated using the SS type II to avoid changes 
in the estimates due to SNPs order in the model. Additive 
effects were estimated by fitting individual SNP in the linear 
model one at a time as described by Gaikpa et al. (2020).

Additionally, pleiotropic loci between FHB severity, 
PH and AR were investigated by performing a multi-trait 
GWAS (MT-GWAS) using the multi-trait mixed-model 
(MTMM) method proposed by Korte et al. (2012). MT-
GWAS was implemented in ASRemL-R package v.4.1.0 

(14)p value =
�

Me

(15)pG =
R2
adj

H2

(16)y = snpi + snpj + … + snpk + �

(17)pG =
SSsnp

SStotal × H2
× 100

between FHB severity and PH (FHB vs PH), FHB severity 
and AR (FHB vs AR) and PH and AR (PH vs AR). For 
each pair of traits, the MTMM was:

where y1 and y2 are the phenotypes of the first and second 
traits, respectively; Si is a vector of 1 for all values belong-
ing to the ith trait; µi is a vector of fixed effects including 
the mean of the ith trait; X is the vector of SNP markers; β 
is the vector of common effects between the two traits; α is 
the vector of interaction effects; and υ is a random variable 
capturing both the error and genetic random effects such as 
the kinship matrix (K). To identify causal loci with common 
effects (COM) as well as opposite/interaction effects (IE) 
on each pair of traits, we performed three generalized least 
squares (GLS) F tests (Korte et al. 2012). Firstly, the full 
model was tested against a null model where β = 0 and α = 0 
in order to identify the combination of both COM and IE 
loci. Secondly, COM loci were detected by testing the model 
with α = 0 against the null model. Thirdly, the model with 
β = 0 was tested against the full model to identify IE loci. 
Significant effects were identified based on the same explor-
atory and Bonferroni-corrected threshold used in ST-GWAS. 
This helped to further reduce potential false positives due to 
inflation of p values from F tests as found by Merrick et al. 
(2022). The genotypic correlation between traits pertaining 
to each pleiotropic locus (rsnp) was estimated by fitting the 
significant markers as fixed effects in the bivariate model 
described in Eq. (5). Markers were fitted consecutively one 
after the other starting from the highest p value to the lowest; 
that is, threshold of  snpi >  snpj > … >  snpk. In that order, the 
genetic correlation attributable to the jth SNP was the differ-
ence between the correlation of the model after fitting the ith 
SNP and the one detected after the jth SNP. Furthermore, the 
proportion of genetic correlation explained by each pleio-
tropic locus was calculated as:

where pCi is the proportion of genotypic correlation 
explained by the ith SNP and rg is the total genotypic cor-
relation obtained from Eq. (5).

For both ST-GWAS and MT-GWAS, the genomic rela-
tionship matrix was estimated using the kinship algorithm, 
VanRaden (2008) in GAPIT v.3.1.0. The kinship matrix 
(K) was fitted as covariate variable in each GWAS model. 
Quantile–quantile (Q–Q) plots were used to evaluate the 
power of the model in controlling false positives and nega-
tives. Q–Q plots having a straight line, close to 1:1 on 
the diagonal, with a sharp upward deviated tail, indicate 

(18)
[
y1
y2

]
=

2∑
i=1

Si�i + X� + (X + Si)� + �

(19)pCi =
rsnpi

rg
× 100
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a good control of both false positives and negatives by 
the model and confirm the existence of true MTAs (Kaler 
et al. 2020). Q–Q and Manhattan plots were drawn using 
the R package CMplot v.4.0.0 (Yin et al. 2021). Moreover, 
linkage disequilibrium (LD) patterns were also investi-
gated by calculating R2 values between pairs of significant 
markers to identify chromosomal positions of unmapped 
SNP markers. Markers were considered to be in LD when 
R2 ≥ 0.70.

Genomic prediction and marker‑assisted selection

Genomic prediction analysis was performed using the mixed 
linear ridge regression model in the rrBLUP package v.4.6.1 
(Endelman 2011). The model  (GP1) included all markers as 
random effects and was fitted as follows:

where Y is the vector of BLUEs; β is a vector of fixed effect 
such as the grand mean; Z is the design matrix; u ~ N(0, A 
�2
�
) is the vector of random markers effects; A is a relation-

ship matrix and the residuals are normal with constant vari-
ance; and ε is a vector of residual errors.  GP1 model was 
validated using the fivefold cross-validation approach where 
the training and validation sets were constituted by splitting 
the phenotypic and genotypic data into five sets, consisting 
of 80–81 genotypes each (Gaire et al. 2022). Sampling was 
repeated 50 times, and  GP1 model was run for each set to 
determine the genomic prediction ability (rMG) and accuracy 
(rMG/H) for each of the traits. Genomic prediction ability 
was the Pearson correlation coefficient between predicted 
and observed phenotypes for each of the five validation sets 
(Ould Estaghvirou et al. 2013). Moreover, the prediction 
accuracy was determined for each validation set as described 
by Ould Estaghvirou et al. (2013):

where H2 is the broad-sense heritability of the trait. rMG 
and rMG/H values were averaged over the five validation 
sets to obtain the prediction ability and accuracy of each  GP1 
model. Additionally, we evaluated the potential of marker-
assisted selection (MAS) using only significant markers 
from ST-GWAS which explained at least 5% of the genetic 
variation. MAS prediction was done based on the markers 
effects deducted from the  GP1 model, and the prediction 
accuracy was calculated.

(20)Y = � + Zu + �

(21)rMG/H=
rMG√
H2

Estimation of genomic background effect for PH, 
FHB severity and AR and selection of resistant 
genotypes with Rht‑D1b

Based on the ST-GWAS, we evaluated the contribution of 
GB to FHB severity, PH and AR using the additive effects 
and estimates of total genetic variation (pG values) explained 
by GB and Rht markers. pG values were estimated sepa-
rately for GB and Rht markers by fitting a linear regression 
model and using the adjusted R2 as described in Eq. (15). 
In addition, a second genomic prediction model  (GP2) was 
built and the prediction ability  (rMG) and accuracy (rMG/H) 
were evaluated following the fivefold approach. Training 
and validation sets were the same as described for  GP1. In 
 GP2, significant MTAs for PH on chromosomes 4D and 6A 
were used as covariates, and the prediction accuracy was 
estimated for each trait based on small-effect markers only. 
 GP2 was fitted as follows:

where Y is the vector of BLUEs; β is the vector of fixed 
effects of the covariates; X and Z are the design matrices; 
u ~ N(0, A �2

�
) is the vector of random markers effects; A 

is a relationship matrix and the residuals are normal with 
constant variance; and ε is a vector of residual errors. Fur-
thermore, we selected the ten best genotypes with low FHB 
severity and Rht-D1b allele based on the calculation of 
genetic estimated breeding values (GEBV) using the effects 
of random markers from the  GP2 model as:

where Y0 and Z0 are the vectors of GEBV and design matrix 
of the genotypes, respectively. The correlation between 
the GEBV-based approach and stacking of additive effects 
(SAE) of GB markers from ST-GWAS was also determined 
in order to check the relative effectiveness of GWAS for 
exploiting genomic background. SAE was calculated only 
for GB markers which explained at least 5% of genetic 
variation.

Results

Considerable genetic variation was found for FHB 
severity and morphological traits

Genetic coefficients of variation  (CVG) were low for DTF, 
HS, EL, NS and ED and moderate to high for PH, FHB 
severity and AR (Table 1). The higher  CVG observed for 
AR was due to the considerable existing genetic variation 
among the genotypes. The coefficient of variation due to 

(22)Y = X� + Zu + �

(23)Y0 = Z0u
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error  (CVε) was low for all traits (Table 1). Genetic vari-
ances ranged from 0.03 to 6.9 for DTF, HS, EL, NS and ED 
and were higher (97.4–489.4) for PH, FHB and AR. The 
genotype–environment interaction (GEI) was significant and 
generally lower than the genetic variance. Depending on the 
trait, GEI variance was 1.5–22.2-fold lower than the genetic 
variance. Broad-sense heritability estimates were very high 
(> 0.9) for all traits.

Correlations and path coefficients depict 
the contribution of morphological traits to FHB 
severity

Density plots of BLUEs across environments showed 
nearly normal distribution for all traits (Fig. 2). Linear 
relationships with significant phenotypic correlations 
were observed among traits. FHB severity was positively 
and highly correlated with AR (rp = 0.70) and nega-
tively and moderately correlated with PH (rp = − 0.62). 
The outlying point in the scatter plot FHB severity/AR 
belongs to the cleistogamic cultivar “Anapolis” that has 
a very high AR (99.6%) and a low FHB severity (20.9%). 

Table 1  Descriptive statistics, 
variance components and broad-
sense heritability estimates for 
all traits

PH plant height, FHB Fusarium head blight severity, DTF  days to flowering, HS heading stage, AR anther 
retention, EL  ear length, NS  number of spikelets per ear, ED   ear density, CVG, CVε genetic and error coef-
ficient of variation, respectively, �2

G
 , �2

GE
 and �2

�
 refer to genotypic and genotype × environment interaction 

and residual variances, respectively, H2 = broad-sense heritability. All variance components were signifi-
cant at p  <  0.001

Trait Unit Mean Range CVG (%) CVε (%) Variance components H2

�2

G
�2

GE
�2

�

PH cm 91.40 52.42 10.80 3.31 97.40 5.89 9.13 0.97
FHB % 37.78 58.29 29.53 11.81 124.43 35.58 19.90 0.92
DTF Days 43.58 7.60 3.49 1.56 2.31 0.31 0.46 0.91
HS BBCH stage 53.41 12.64 4.93 2.26 6.94 1.41 1.46 0.94
AR % 55.72 89.10 39.70 11.41 489.39 80.70 40.43 0.95
EL cm 10.55 5.40 8.26 3.79 0.76 0.06 0.16 0.95
NS Spikelets  ear−1 22.46 8.39 6.30 1.99 2.00 0.09 0.20 0.97
ED Spikelets  cm−1 2.15 1.28 8.06 0.00 0.03 0.02 0.00 0.96

Fig. 2  Pearson’s product-
moment correlation analysis 
among traits *, **, ***sig-
nificant at p  < 0.05, 0.01 and 
0.001, respectively. PH = plant 
height, FHB = FHB severity, 
AR = anther retention, EL = ear 
length, NS = number of spike-
lets per ear, ED = ear density.
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PH was negatively and moderately correlated with AR 
(rp = − 0.53), while NS showed positive and low cor-
relation with EL (rp = 0.39) and ED (rp = 0.37). Highly 
negative phenotypic correlations were detected between 
EL and ED (rp = − 0.71) (Fig. 2). Phenotypic correla-
tions between FHB severity and EL and NS were sig-
nificant, but low. At the genetic level, the correlations 
were negative and moderate between FHB severity and 
PH (rg = − 0.64), PH and AR (rg = − 0.55) and negatively 
high between ED and EL (rg = − 0.70). Genotypic correla-
tions were positively high between FHB severity and AR 
(rg = 0.74) and low between NS with EL (rp = 0.38) and 
ED (rp = 0.37) (Table 2).

The causal system formed by PH, AR, EL and NS 
explained 67.04% of the variation of FHB severity 
(Table 3). Path effect due to residual factors was 0.56. 
The direct effect of AR (0.57) was 3.3-fold higher than 
its indirect paths and similar to the residual effect. The 
indirect effect of PH via AR (− 0.31) was slightly higher 
than its direct effect (− 0.28), but both effects were lower 
than the residual effect. Direct and indirect effects of EL 
were considerably lower than the residual effect, while 
effects of NS were not significant. Inflation due to mul-
ticollinearity among PH, AR, EL and NS was negligible 
(VIF < 2), showing that estimates of direct and indirect 
effects and coefficient of determination were accurate 
(Table 3).

Several marker‑trait associations (MTAs) were 
detected by genome‑wide association (GWA) studies

The first two principal coordinates (PCs) indicated that the 401 
genotypes included in the study were not structured (Fig. S1). 
Therefore, we corrected in the GWAS for relatedness among 
genotypes using the kinship matrix and did not include PCs. 
The ST-GWAS was performed to depict the genetic architec-
ture of FHB severity, PH and AR (Table S2). Considering 
all traits, a total of 25 significant MTAs were identified, of 
which seven were specific to ST-GWAS1, seven to ST-GWAS2 
and eleven common to both models (Fig. 3a, b). The use of 
Rht markers as covariate variables in ST-GWAS2 identified 
additional small-effect MTAs for all traits. Particularly, the 
number of small-effect MTAs increased from four to seven 
for AR, while two new MTAs were identified for FHB sever-
ity. In total, eight, eleven and nine MTAs were identified for 
PH, FHB severity and AR, respectively (Table S2). One MTA 
was common to PH and FHB severity, one to PH and AR and 
two to FHB severity and AR. MTAs explained 69.7, 60.7 and 
44.2% of total genetic variation for PH, FHB severity and AR, 
respectively. Markers rs20873 on chromosome 4D linked to 
Rht-D1 and rs10110 on chromosome 6A linked to Rht24 were 
major MTAs for PH (Fig. 3a, b), which explained 45.2 and 
10.8% of genetic variation, respectively. In addition, rs20873 
conveyed the largest reduction effect of − 7.02 cm on PH. For 
FHB severity, major MTAs were rs20873, rs5192 on chromo-
some 7B and rs3647 on chromosome 5A. Likewise, rs20873 

Table 2  Genotypic correlation 
coefficients among traits, 
excluding days to flowering and 
heading stages that both were 
used as covariates (rg, above 
diagonal), and corresponding 
standard errors (SE, below 
diagonal)

PH plant height, FHB  Fusarium head blight, AR anther retention, EL ear length, NS number of spikelets 
per ear, ED ear density. All correlation coefficients were significant at p < 0.001

Traits FHB severity PH AR EL NS ED

FHB severity − 0.64 0.74 − 0.30 − 0.24 0.09
PH 0.03 − 0.55 0.18 0.24 0.02
AR 0.02 0.04 − 0.05 − 0.11 − 0.03
EL 0.05 0.05 0.05 0.38 − 0.70
NS 0.05 0.04 0.05 0.04 0.37
ED 0.05 0.05 0.05 0.02 0.04

Table 3  Direct and indirect path 
effects of morphological traits 
on FHB severity

PH plant height, AR anther retention, EL ear length, NS number of spikelets per ear, FHB Fusarium head 
blight; rg  genotypic correlation, VIF  variance inflation factor
*, **, ***Significant at p  < 0.05, 0.01 and 0.001, respectively

Traits rg VIF Direct effects Indirect effects

PH AR EL NS

PH − 0.64 1.47 − 0.28** − 0.31 − 0.04 − 0.01
AR 0.74 1.40 0.57*** 0.15 0.01 0.01
EL − 0.30 1.19 − 0.21* − 0.05 − 0.03 − 0.01
NS − 0.24 1.21 − 0.03 − 0.07 − 0.06 − 0.08
Residual effect (βres) = 0.56 Coefficient of determination (R2) = 0.67
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was the major MTA identified for AR, explaining 22.7% of 
genetic variation. rs20873 increased FHB severity and AR by 
about 6 and 12%, respectively. The false discovery rates were 
very low (FDR < 0.05) for identified MTAs.

The MT-GWAS identified a total of six pleiotropic loci 
distributed on chromosomes 2A, 4D, 5A, 6B and 7B. All 
six were detected between FHB severity and PH (Table 4a), 
four between FHB and AR (Table 4b) and three between 
PH and AR (Table 4c). In comparison with the ST-GWAS 
from BLINK, the marginal trait from the MT-GWAS iden-
tified three additional MTAs on chromosomes 4D, 6B and 
5A for FHB severity, one on chromosome 5A for PH and 
one on chromosome 4D for AR. However, the MT-GWAS 
identified three MTAs for FHB severity, one for PH and 
three for AR, which were also detected by ST-GWAS. Three 
out of the six MTAs detected for FHB versus PH exhibited 
positive contribution to the genotypic correlation and thus 
exerted common effects on FHB severity and PH (Table 4a). 
Inversely, the remaining three MTAs showed negative geno-
typic correlations, revealing their opposite effects on both 
traits. Marker rs9660 on chromosome 4D was associated 
with FHB severity only, but it exerted an opposite effect 
on the two traits. Similarly, all common effects MTAs were 
associated with FHB severity only. Common effect MTAs 
explained 6.3–26.6% of the genotypic correlation between 
FHB severity and PH, while 3.1–6.3% of the correlation was 
attributable to interaction effects MTAs (Table 4a). For FHB 
versus AR, all four MTAs identified by the full model had 
common effects with 1.4–14.9% of the genotypic correla-
tion explained between FHB severity and AR (Table 4b). 
Although marker rs5192 on chromosome 7B was specific 
to FHB severity, it had a common effect on both traits. For 
PH versus AR, two out of the three MTAs identified by the 
full model had opposite effects with 5.5–56.4% of the geno-
typic correlation explained between the two traits (Table 4c). 
Marker rs7788 that was specific to AR had a common effect 
on both PH and AR with 10.9% of the genotypic correlation 
explained.

In both ST-GWAS and MT-GWAS, the inspection of 
Q–Q plots of the two GWAS revealed a good control of 
false positives and negatives, demonstrating the existence 
of true MTAs controlling the genetic architecture of each 
trait as well as their interactions (Figs. S2–S5). The linkage 
disequilibrium analysis revealed strong linkage (R2 = 0.9) 
between markers rs19377 and rs13973 located on chromo-
some 5B for PH (Fig. S6). Very low R2 values were observed 
among all other MTAs.

Significant differences were observed 
among groups of genotypes

NoRht, Rht24b, Rht-D1b and Rht24b + Rht-D1b repre-
sented, respectively, 23.7, 27.7, 14.9 and 33.7% of our 

materials (Table 5). Furthermore, considerable genetic 
variation was observed within each group for PH, FHB 
severity and AR (Table 5). For PH, the genetic variance 
was 2.5–6.1-fold higher in NoRht compared with other 
groups. The lowest genetic variance was observed in Rht-
D1b for PH. However, in FHB severity, the genetic vari-
ance was 1.3–1.3-fold higher in Rht-D1b than in NoRht 
and Rht24b. The genetic variance was also 1.5–1.6-fold 
higher in Rht24b + Rht-D1b compared with NoRht and 
Rht24b which had similar variation for FHB severity. 
Genetic variance was high and similar among groups for 
AR. Genotype–environment interactions were signifi-
cant and relatively low for the three traits in all groups. 
Comparative analysis among the four groups revealed 
statistically significant differences for all traits (Fig. 4). 
Genotypes were on average shorter in Rht24b + Rht-D1b 
and taller in NoRht. In Rht24b, genotypes were taller than 
those in Rht-D1b and Rht24b + Rht-D1b. Contrary to PH, 
FHB severity was on average lower in NoRht and Rht24b 
than in Rht-D1b and Rht24b + Rht-D1b. FHB severity 
was statistically identical between NoRht and Rht24b, 
and Rht-D1b and Rht24b + Rht-D1b, respectively. Simi-
lar to FHB severity, the average AR was lower in NoRht 
and Rht24b compared with Rht-D1b and Rht24b + Rht-
D1b, respectively. No significant difference was found for 
AR between NoRht and Rht24b, as well as Rht-D1b and 
Rht24b + Rht-D1b. The reduction effect of Rht alleles on 
PH was moderately correlated with FHB severity and AR. 
Highly negative reduction effect was associated with high 
FHB severity and AR.

Genomic prediction (GP) exhibited high prediction 
ability (rMG) and accuracy (rMG/H) for FHB severity, 
PH and AR

Genomic prediction ability and accuracy averaged over 
the five validation sets were greater than 0.7 depending on 
the trait (Table S3). FHB severity and AR showed similar 
and lower prediction accuracy than PH. Genotypes with 
Rht-D1b and Rht24b alleles were distributed across all 
the validation sets, showing a good representation of the 
genetic variation in each set (Table S4). This guaranteed 
the accurate estimation of both  rMG and  rMG/H, resulting 
in low standard errors of the estimates across validation 
sets (Table S3). In contrary, the prediction accuracy of 
marker-assisted selection based on SNP markers with 
pG ≥ 5% was moderate for all traits, with the lowest value 
(0.4) observed in AR (Fig. 5).  GP1 including all available 
markers increased the prediction accuracy by about 0.2, 
0.3 and 0.2 for FHB severity, AR and PH, respectively.



4314 Theoretical and Applied Genetics (2022) 135:4303–4326

1 3



4315Theoretical and Applied Genetics (2022) 135:4303–4326 

1 3

Genomic background affects PH, FHB severity 
and AR

The contribution of GB to the genetic variation was differ-
ent among the three traits (Fig. 6). The total proportion of 
genetic variation explained by GB markers was higher for 
FHB severity than PH and AR (Fig. 6a). Contrary to PH, 
GB markers had higher contribution to the genetic varia-
tion of FHB severity and AR than Rht markers (Fig. 6a). 
Ten, eight and six GB markers were found for FHB severity, 
AR and PH, respectively (Fig. 6b). Non-Rht markers which 
explained at least 5% of the genetic variation were rs5192, 
rs3647 and rs13165 for FHB severity, rs3629 and rs8776 
for AR and rs13233 for PH (Fig. 6b). Reduction effects 
exerted by GB markers were relatively high for all traits 
(Fig. 7a–c). The cumulative reduction effect (CRE) calcu-
lated from markers with pG ≥ 5% was − 5.7 cm, − 11.2% and 
− 14.3% for PH (Fig. 7a), FHB severity (Fig. 7b) and AR 
(Fig. 7c), respectively. CRE was about twofold lower than 
the additive effects of Rht markers for PH. Inversely, the 
CRE exerted by GB markers on FHB severity and AR was 
1.3–1.9-fold higher than the increase effect of Rht markers 
(Fig. 7b, c). Results of the second genomic prediction  (GP2) 
implemented using Rht markers as covariates showed mod-
erate prediction accuracy for the three traits (Table S5). This 
showed that the estimated contribution of GB was higher in 
the three traits with  GP2 compared with GWAS. The high-
est accuracy was observed for AR, while the lowest value 
was obtained in PH, confirming the trend revealed by the 
GWAS. Standard errors were also low for  GP2, indicating a 
high consistency of the prediction accuracy among the five 
validation sets.

Genotypes with low FHB severity in the presence 
of Rht‑D1b were selected using genomic 
background

Depending on Rht groups, GEBV from GP was positively 
correlated (r = 0.64–0.77) with stacking of additive effects 
(SAE) of GB markers with  pG ≥ 5% (Fig. 8). However, sev-
eral genotypes with same SAE (i.e. − 14.42) exhibited dif-
ferent GEBV. The phenotypic performances of the ten best 
genotypes selected based on GEBV from the genomic pre-
diction  (GP2) in Rht-D1b and Rht24b + Rht-D1b groups are 
summarized in Table 6. The negativity and size of the effects 

of GB markers as measured by GEBV describe the degree 
of resistance GB for FHB severity. Thus, highly negative 
GEBV for FHB severity indicates higher resistance GB, 
whereas positive GEBV indicates low GB or susceptibil-
ity GB. Genotypes with the lowest observed FHB severity 
exhibited negatively high GEBV for FHB severity carry-
ing Rht-D1b allele only (e.g. Faktor and Anapolis), or the 
combination Rht24b + Rht-D1b alleles (e.g. Kranich and 
Kamerad) (Table 6). More resistant genotypes within each 
Rht group also showed negatively high GEBV with lower 
observed AR, except Anapolis which had a highly positive 
GEBV for AR and the highest observed AR at all. Taller 
genotypes had positive GEBV for PH.

Discussion

Through a combined correlation and path analysis, we pro-
vided a first insight into the nature and magnitude of the 
complex interactions between FHB resistance and morpho-
logical traits including plant height and anther retention. 
ST-GWAS, MT-GWAS and genomic prediction were imple-
mented to depict the genetic architecture of FHB severity, 
anther retention and plant height and understand the effect 
of alternative Rht genes on FHB resistance. Additionally, 
multi-trait GWAS was conducted to identify positively and 
negatively pleiotropic loci controlling complex interactions 
among traits. The ST-GWAS and genomic prediction helped 
to evaluate for the first time the contribution of genomic 
background to each trait and its potential to improve FHB 
resistance in wheat genotypes with semi-dwarfing allele 
Rht-D1b.

Existence of high path effects set criteria 
for effective indirect selection for FHB resistance

FHB severity exhibited high positive correlation with anther 
retention and moderate negative correlation with plant height 
at both phenotypic and genotypic levels. Similar observa-
tions were reported by Buerstmayr and Buerstmayr (2015); 
Steiner et al. (2019b) and Ruan et al. (2020). Buerstmayr 
and Buerstmayr (2015) reported that FHB severity was posi-
tively correlated with anther retention (0.63) and negatively 
with plant height (− 0.39). Previous investigations on anther 
extrusion, the opposite of anther retention, also highlighted 
negative correlation of − 0.45 to − 0.64 (Lu et al. 2013) and 
− 0.55 to − 0.74 (Xu et al. 2020). Recently, Nannuru et al. 
(2022) also reported negative moderate correlations between 
FHB severity with anther extrusion (− 0.48) and plant height 
(− 0.43) in Nordic spring wheat. Our results confirmed that 
anther retention was negatively correlated with plant height, 
indicating the existence of shared genetic control between 
the two traits in winter wheat in contrary to Nannuru et al. 

Fig. 3  Manhattan plots highlighting significant marker–trait associa-
tions (MTAs) for single-trait genome-wide association studies (ST-
GWAS): a = ST-GWAS1 including all markers and b = ST-GWAS2 
without markers linked to plant height on chromosomes 4D (Rht-D1) 
and 6A (Rht24). The blue dotted line corresponds to an exploratory 
threshold of − Log 10(p) = 6, while the red plain line represents the 
Bonferroni-corrected threshold cut-off of alpha = 0.01 (color figure 
online)

◂
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(2022) who found a lower correlation (0.16) between plant 
height and anther extrusion. The differences in the strength 
of the correlations across studies are an evidence that inter-
actions among the traits are also affected by environment and 
breeding material characterized by diverse genetic factors.

The causal system formed by morphological traits includ-
ing anther retention and plant height explained up to 67% 
of the phenotypic variation of FHB severity in this study. 
This confirms the importance of morphological traits in the 
passive resistance mechanism against FHB disease in winter 
wheat (Mesterházy 1995; Buerstmayr et al. 2020; Xu et al. 
2020). The effect due to residual factors was high (0.56) 
and can be attributed to specific unshared local genetic fac-
tors which had considerable influence on FHB severity. The 
existence of high direct path of 0.57 between FHB severity 
and anther retention indicates that any increase by 1% in 
the standard deviation of anther retention implies a direct 
increase of 0.57% in the standard deviation of FHB severity 

independently from other traits. This finding exhibits anther 
retention as a major indicator trait to be included in multiple-
trait breeding strategies to aim for FHB-resistant cultivar 
development in wheat. Particularly, when the breeder’s inter-
est is not in other traits, an indirect selection using anther 
retention is likely to yield FHB-resistant cultivars (Fer-
nandes et al. 2018; Moreno-Amores et al. 2020). However, 
path effects between plant height and FHB severity were 
lower than the residual and the direct effect of anther reten-
tion, indicating that plant height as a sole trait does not have 
considerable contribution to the variation of FHB sever-
ity. It is worth noting that the indirect path effect of plant 
height via anther retention was higher than its direct effect 
on FHB severity, and this can be explained by the associa-
tion between plant height and anther retention and under-
lying genetic factors. A decrease of 1 cm in the standard 
deviation of plant height in a cultivar would cause a direct 
increase of 0.28% in the standard deviation of FHB severity 

Table 4  SNP markers 
associated with common 
(COM), interaction effects (IE) 
and the full model (FULL) on 
plant height (PH), FHB severity 
and anther retention (AR) from 
MT-GWAS

Chr chromosome, Pos physical position on the wheat reference genome RefSeq v.2.1, UA/FA unfavourable 
allele /favourable allele, FAF favourable allele frequency, Y1 = first trait, Y2 = second trait, FHB = Fusarium 
head blight, rsnp = genotypic correlation between Y1 and Y2 pertaining to each marker, pC = proportion of 
genotypic correlation explained by each marker. Values highlighted in bold  are negative logarithm of p 
value [− Log 10(p)] which were higher than the Bonferroni-corrected threshold cut-off of 6

Marker Chr Pos UA/FA FAF COM IE FULL Y1 Y2 rsnp pC (%)

a. FHB severity (Y1) versus PH (Y2)
rs20873 4D 19.19 G/T 0.49 2.00 29.08 29.37 30.21 16.75 − 0.17 26.56
rs9660 4D 195.24 G/A 0.15 0.75 9.13 8.40 7.92 1.20 − 0.04 6.25
rs9869 6B 459.72 T/G 0.22 7.09 2.52 8.15 6.92 0.02 0.04 6.25
rs22296 5A 681.46 T/C 0.40 1.45 6.47 6.61 7.45 7.01 − 0.05 7.81
rs5192 7B 661.18 A/G 0.66 6.00 1.54 6.00 7.00 2.44 0.02 3.12
rs7788 2A 419.17 A/G 0.36 6.39 0.72 6.00 10.82 2.50 0.04 6.25
b. FHB severity (Y1) versus AR (Y2)
rs20873 4D 19.19 G/T 0.49 17.60 0.47 16.75 16.75 12.62 0.11 14.86
rs9660 4D 195.24 G/A 0.15 8.38 0.34 7.62 7.92 6.08 0.03 4.05
rs7788 2A 419.17 A/G 0.36 6.00 0.57 6.55 7.19 7.19 0.01 1.35
rs5192 7B 661.18 A/G 0.66 7.00 2.71 6.20 6.44 0.70 0.03 4.05
c. PH (Y1) versus AR (Y2)
rs20873 4D 19.19 G/T 0.49 2.65 30.42 31.31 30.21 12.62 − 0.31 56.36
rs22296 5A 681.46 T/C 0.40 1.67 6.50 6.83 7.45 2.11 − 0.03 5.45
rs7788 2A 661.18 A/G 0.36 6.11 1.31 6.14 0.82 8.19 0.06 10.91

Table 5  Genotype grouping 
using Rht markers and 
within-group genotypic ( �2

G
 ) 

and genotype × environment 
interaction ( �2

GE
 ) variances

PH plant height, FHB Fusarium head blight, AR anther retention. All variances were significant at 
p < 0.001

Group Size PH (cm) FHB severity (%) AR (%)

�2

G
�2

GE
�2

G
�2

GE
�2

G
�2

GE

NoRht 95 212.55 9.88 103.45 31.44 531.18 96.74
Rht24b 111 84.57 8.63 100.55 34.04 448.51 82.80
Rht-D1b 60 34.65 2.64 131.26 35.69 449.92 80.42
Rht24 + Rht-D1b 135 71.96 2.58 160.05 39.66 512.41 67.74
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and an indirect increase 0.31% via anther retention. This 
demonstrates firstly that the moderate correlation detected 
between plant height and FHB severity was mainly due to 
anther retention, and secondly that plant height per se has 

a high impact on FHB severity, even when the experiments 
are inoculated from above like in this study. As implication, 
plant height should therefore be considered simultaneously 

Fig. 4  Boxplots showing variation of traits among Rht groups. (a) = plant height, (b) = FHB severity, and (c) = anther retention. n = number of 
genotypes, Min = minimum, Max = maximum. Boxplots with the same superscripts are statistically not significant at p < 0.05

Fig. 5  Comparison of predic-
tion accuracies of genomic 
prediction (GP) and marker-
assisted selection (MAS)
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with anther retention in a multiple-trait selection approach 
for the development of semi-dwarf FHB-resistant cultivars.

Combined ST‑GWAS and MT‑GWAS revealed two 
major Rht genes and novel pleiotropic loci for plant 
height, FHB severity and anther retention

Frequency distributions (Fig. 2) already indicated that all 
traits analysed here were quantitatively inherited, i.e. by 
many loci of varying effects. Indeed, a total of eight loci 
that control plant height were identified, with corresponding 

Fig. 6  Contribution of Rht genes and genomic background (GB) markers to plant height, FHB severity and anther retention. a = total genetic 
variation explained by groups of markers, and b = Genetic variation explained by individual markers

Fig. 7  Comparison of addi-
tive effects of Rht alleles and 
reduction effects of alleles by 
genomic background (GB) 
markers on: a = plant height, 
b = FHB severity and c = anther 
retention



4319Theoretical and Applied Genetics (2022) 135:4303–4326 

1 3

genomic regions on chromosomes 2A, 3A, 3B, 4D, 5B and 
6A. Genomic regions of 4D and 6A were attributed to the 
presence of Rht-D1b and Rht24b (Würschum et al. 2015, 
2017; Herter et al. 2018; Khadka et al. 2021; Tian et al. 
2022), respectively, explaining 45.31% and 10.81% of the 
total genetic variation of plant height. This supports findings 
of Würschum et al. (2017), Herter et al. (2018) and Tian 
et al. (2017), who found that Rht24 was the second most 
important Rht gene in Central European and worldwide com-
mercial wheat breeding programmes. Rht-D1 and Rht24 are, 
respectively, gibberellin-insensitive (De Velde et al. 2021) 
and gibberellin-sensitive (Tian et al. 2022) genes responsible 
for reduced plant height in wheat. The other genomic regions 

were also enriched with several medium- and small-effect 
QTL which contribute to plant height. Those small-effect 
QTL represent the genomic background which explains 
existing genetic variation of plant height within Rht groups.

In addition to Rht-D1, a larger number of small-loci 
controlling FHB severity were identified on other genomic 
regions such as 2A, 2B, 4A, 5A, 6A, 6B and 7B, which were 
considered as genomic background contributing the varia-
tion of FHB severity among semi-dwarf genotypes. Several 
FHB resistance QTL were also reported on chromosomes 
2A (He et al. 2016a; Gadaleta et al. 2019), 2B (Sari et al. 
2018; Ollier et al. 2020), 4A (He et al. 2016a; Zhang et al. 
2021; Nannuru et al. 2022), 5A (Steiner et al. 2019a; Ruan 

Fig. 8  Scatter plot showing the 
strength of relationship between 
stacking of additive effects 
(SAE) of genomic background 
(GB) markers from single-trait 
genome-wide association study 
(ST-GWAS) and genomic esti-
mated breeding values (GEBV) 
from genomic prediction (GP). 
SAE was estimated based on 
GB markers with pG ≥ 5%. 
***significant at p < 0.001

Table 6  Ten best semi-dwarf 
genotypes with the highest 
resistance genomic background 
(GB) and low FHB severity

AR anther retention, FHB Fusarium head blight, PH plant height

Genotype Rht group FHB severity (%) AR (%) PH (cm)

GB BLUE GB BLUE GB BLUE

Faktor Rht-D1b − 15.48 20.30 − 38.98 20.21 10.34 100.05
Anapolis Rht-D1b − 11.75 20.86 30.82 99.63 − 5.75 79.30
Kranich Rht24b + Rht-D1b − 12.79 23.12 − 11.10 48.67 − 2.28 82.85
Kamerad Rht24b + Rht-D1b − 10.28 25.40 8.32 72.87 − 5.26 80.70
Toras Rht24b + Rht-D1b − 10.01 27.66 − 19.33 48.82 3.16 89.46
Esket Rht24b + Rht-D1b − 9.31 28.09 − 9.35 55.69 2.68 87.22
Opal Rht24b + Rht-D1b − 9.22 28.09 − 9.50 51.86 4.17 88.68
Pamier Rht24b + Rht-D1b − 9.55 29.34 − 5.15 58.25 − 2.63 81.77
Mikon Rht-D1b − 9.20 29.69 − 34.97 23.39 9.02 92.92
Profilus Rht24b + Rht-D1b − 9.61 30.45 − 1.46 50.52 − 2.07 81.15
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et al. 2020; Sari et al. 2020; Nannuru et al. 2022), 6A (Ruan 
et al. 2020), 6B (Cuthbert et al. 2007; Ollier et al. 2020) 
and 7B (Sari et al. 2018; Ollier et al. 2020). In addition, 
FHB resistance QTL on chromosomes 5A and 7B explained 
more than 7% of the genetic variation each and can be con-
sidered as important locally adapted QTL to improve FHB 
resistance in European winter wheat. The QTL on chromo-
some 5A was linked to marker (AX-158558712) at position 
521 Mbp (Table S6). This falls within the QTL region Qfhb.
nmbu.5A.1 (480–552 Mbp) which was reported through a 
meta-QTL analysis by Venske et al. (2019) and recently 
detected in the European wheat panel by Nannuru et al. 
(2022). For anther retention, in addition to Rht-D1b, several 
medium- and small-effect QTL were detected in genomic 
regions including chromosomes 2A, 3A, 4A, 5A and 7A. 
Previous studies also identified QTL for anther retention on 
chromosomes 3A (Muqaddasi et al. 2019), 4A (Buerstmayr 
and Buerstmayr 2015) and 5A (Buerstmayr and Buerstmayr 
2015; Steiner et al. 2019a; Sari et al. 2020; Xu et al. 2020). 
These QTL, representing the genomic background, contrib-
ute to the adjustments of anther retention, particularly within 
Rht genes groups.

In contrary to Rht24b, Rht-D1b exerted an opposite or 
interaction effect on both plant height and FHB severity. 
Rht-D1b explained more than 26% of the observed nega-
tive genotypic correlation between the two traits. The link-
age disequilibrium analysis revealed an absence of close 
association between QTL identified for the different traits. 
This exhibits Rht-D1 as a major gene conveying a nega-
tively pleiotropic effect on FHB resistance. As indicated 
by Raherison et al. (2020), alleles of negatively pleiotropic 
loci exert favourable effects on one trait and unfavour-
able effects on the other trait depending on the breeding 
objectives. In commercial wheat breeding, the reduction 
effect of Rht-D1b on plant height represents a favourable 
effect, while its increase effect on FHB severity or sus-
ceptibility is perceived as an unfavourable effect. Several 
studies also found that Rht-D1b was highly associated 
with FHB susceptibility (Srinivasachary et al. 2008; Mao 
et al. 2010; Lu et al. 2013; Buerstmayr and Buerstmayr 
2016; He et al. 2016b; Prat et al. 2017; Hales et al. 2020; 
Zhang et al. 2020). Two other interaction effect loci were 
also identified in other regions of chromosomes 4D and 
5A between plant height and FHB severity. The second 
causal locus on chromosome 4D with linked marker Bob-
White_rep_c48828_217 at position 195 Mbp was associ-
ated with FHB severity only, demonstrating the existence 
of mediated negatively pleiotropic loci that contribute to 
the negative correlation between FHB resistance and plant 
height. Mediated pleiotropy as described by Hackinger and 
Zeggini (2017) represents a situation where a causal locus 
controls one trait, which in turn causes a second trait, 
resulting in significant association between the two traits 

as detected by correlation/covariance analysis. Moreover, 
our results also revealed that the small-effect loci identi-
fied for FHB severity on chromosomes 2A and 7B by the 
ST-GWAS and another locus on chromosome 6B conveyed 
a common effect on both FHB resistance and plant height. 
Although associated with FHB severity only, these QTL 
exhibited positive contribution to the interactions between 
the traits with about 16% of the genotypic correlation 
explained. Ghimire et al. (2022) also reported five stable 
and pleiotropic QTL associated with FHB resistance and 
related traits such as DON accumulation and plant height 
in red winter wheat. Similarly, Schulthess et al. (2017) 
reported the existence of genomic regions inducing pleio-
tropic effects on grain yield and related traits in wheat. 
Our study revealed the existence of positively pleiotropic 
loci which changes (increase or decrease) FHB severity 
and plant height in the same direction. These positively 
pleiotropic QTL can be exploited in breeding programmes 
to reduce FHB severity (i.e. improve FHB resistance) and 
plant height simultaneously. Most importantly, the QTL on 
chromosome 7B linked to marker AX-158601365 at posi-
tion 661 Mbp, explaining more than 7% of the genetic var-
iation of FHB severity and exerting a positively pleiotropic 
effect on both FHB severity and anther retention represents 
a novel promising QTL which could be integrated into 
multiple-trait breeding strategy for higher FHB resistance 
in European winter wheat. Breeder-friendly KASP mark-
ers can be developed to facilitate the integration of this 
QTL into marker-assisted selection.

The high positive correlation and direct path effect 
observed between FHB severity and anther retention were 
controlled by the pleiotropic loci identified between FHB 
severity and plant height, particularly Rht-D1 and the three 
QTL distributed on chromosomes 4D, 2A and 7B. All pleio-
tropic loci exerted common effects on FHB resistance and 
anther retention with about 24% of genotypic correlation 
explained in total. This firstly supports the existence of 
shared small-effect QTL between FHB resistance and anther 
retention (Lu et al. 2013) and secondly demonstrates that 
shared QTL may have positively pleiotropic effects on the 
two traits. Moreover, this positive pleiotropy can be either 
direct or mediated as the causal pleiotropic locus on chro-
mosome 7B was specific to FHB severity, while others were 
associated with both traits. Existence of positive pleiotropy 
between FHB severity and anther retention offers the oppor-
tunity of utilizing genomics-assisted breeding to improve 
both FHB resistance and anther retention in winter wheat. 
Considering that the identified pleiotropic loci were small-
effect QTL, except Rht-D1, the efficient exploitation of posi-
tive pleiotropy for improving FHB severity and anther reten-
tion could be achieved by implementing multi-trait genomic 
prediction as reported by Gaire et al. (2022) for FHB-related 
deoxynivalenol accumulation in wheat.
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Furthermore, the moderate negative correlation observed 
between plant height and anther retention was controlled 
by Rht-D1 and the two pleiotropic loci on 2A and 5A. Rht-
D1 and QTL on 5A exhibited negatively pleiotropic effects 
on plant height and anther retention, while the QTL on 2A 
exerted a mediated positively pleiotropic effect on the two 
traits. Rht-D1 explained more than 56% of observed cor-
relation between these traits, indicating that Rht genes had 
a major impact on anther retention and supporting that Rht-
D1b was associated with high anther retention as recently 
reported by Buerstmayr and Buerstmayr (2022).

Rht24b has no effect on FHB severity and anther 
retention

The combination of Rht-D1b and Rht24b was more frequent 
in our cultivars as previously reported within European 
wheat germplasm (Würschum et al. 2017; Tian et al. 2019). 
The similar FHB severity observed between Rht24b and gen-
otypes with tall alleles (NoRht) is an indication that Rht24b 
did not affect FHB resistance (Herter et al. 2018; Miedaner 
et al. 2022). Similarly, our results also revealed that Rht24b 
did not significantly contribute to anther retention. Accord-
ingly, no marker was found that co-segregates with the other 
morphological traits (Fig. 3). This offers the possibility of 
developing semi-dwarf genotypes with improved FHB 
resistance and low anther retention. However, the effect of 
Rht24b allele (− 3.42 cm) on plant height was about twofold 
lower than the effect of Rht-D1b (− 7.85 cm, Fig. 7a), show-
ing that Rht24b exerted a lower reduction effect on plant 
height compared with other Rht genes (Tian et al. 2017; 
Herter et al. 2018). In addition, the high genetic variation for 
FHB severity observed among genotypes with Rht24b indi-
cates the random existence of FHB-susceptible genotypes 
within this group. With this, alternative sources of resist-
ance including locally adapted loci could also be explored 
to develop FHB-resistant genotypes within each Rht gene 
group, depending on breeding objectives.

Genomic background has the potential to improve 
FHB resistance in genotypes with Rht‑D1b

Considerable genetic variation was observed for FHB sever-
ity and anther retention among genotypes with Rht-D1b and 
Rht24b + Rht-D1b alleles, demonstrating that there is room 
for the development of FHB-resistant cultivars with the 
Rht-D1b allele. This large genetic variation in semi-dwarf 
genotypes can be attributed to the effects of genomic back-
ground distributed across several genomic regions. A key 
implication is that the genomic background has the ability 
to counterbalance the negative effect of Rht-D1b on FHB 
resistance and anther retention as explained by Buerstmayr 
and Buerstmayr (2022) who demonstrated by backcrosses 

with four near-isogenic lines (NILs) that the background 
resistance of the lines reduced efficiently the effect of semi-
dwarfing alleles on FHB severity in spring wheat. Brar et al. 
(2019) also found that the genomic background and epistatic 
interactions had a significant impact on the expression of 
FHB resistance in hard red spring wheat. The more negative 
the genomic background effect, referring to higher resist-
ance genomic background, the lower the FHB severity and 
anther retention. This offers a great opportunity to exploit 
the genomic background for improving FHB resistance in 
dwarf genotypes.

Effects of the genomic background on FHB severity and 
anther retention can be efficiently evaluated by calculating 
the genomic estimated breeding values (GEBV) of geno-
types based on the effects of all loci, except Rht genes in our 
case (Bonnett et al. 2022). Several studies have suggested 
the stacking of additive effects or favourable alleles of QTL 
from genome-wide association study as an efficient approach 
to improve FHB resistance and related traits (Miedaner et al. 
2006; Sidhu et al. 2020; Ghimire et al. 2022; Nannuru et al. 
2022). However, our results showed that despite the exist-
ence of moderate to high correlations (r > 0.6) between 
the GEBV-based and stacking of additive effects (SAE) 
approaches, many genotypes with similar additive effects 
from GWAS exhibited different GEBV and FHB severity. 
This shows the limitations of SAE to accurately discrimi-
nate among genotypes based on their genomic background 
contrary to the GEBV-based approach and hence confirms 
the superiority and efficiency of the genomic prediction over 
fixed effects selection methods as reported by several previ-
ous studies (Juliana et al. 2017, 2022; Sandhu et al. 2021). 
In addition, the higher accuracy observed for the genomic 
prediction compared with marker-assisted selection based 
on the effects of QTL with  pG ≥ 5% from the ST-GWAS 
(Fig. 5) is another indication that genomic prediction would 
help to better exploit genomic background than GWAS. 
This poor performance of GWAS can be explained by the 
quantitative nature of FHB resistance and anther reten-
tion (Liu et al. 2019; Ruan et al. 2020), and that genomic 
background is constituted of several medium- and small-
effect QTL. However, the genome-wide association study 
(GWAS) can identify only a small number of those minor 
QTL, not regarding the remaining which are also part of the 
genomic background and could have together a significant 
contribution to the phenotype. Moreover, using the GEBV-
based approach, the best two genotypes with Rht-D1b had 
a FHB severity of 20.3 and 20.8%, respectively (Table 6). 
The best two genotypes without dwarfing alleles (Carimulti, 
Helmond, Table S1) had a FHB severity of 12.4 and 12.8%, 
respectively. Hence, Rht-D1b still has a penalty for FHB 
resistance of about 40% of increase in disease severity 
compared to genotypes without this semi-dwarfing allele. 
This illustrates the necessity to use alternative Rht alleles 
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including Rht24b, boosted by a short genomic background 
or other FHB-neutral Rht dwarfing alleles.

Furthermore, the GEBV approach would select Anapolis 
as one of the best genotypes which exhibited the highest 
anther retention (99.6%). This is a typical cleistogamous 
genotype which possesses a structural floral barrier for 
pathogens, resulting in low FHB severity (Kubo et al. 2010; 
Tang et al. 2020; Buerstmayr et al. 2021; Zajączkowska et al. 
2021). Similar observations were made in barley by Kawada 
and Kubo (2008) who found that cleistogamous genotypes 
had high FHB resistance and low mycotoxin accumulation.

Concluding remarks

A clear understanding of the complex interactions between 
FHB severity and morphological traits and their genetic 
architecture can significantly contribute to addressing the 
needs for semi-dwarf wheat genotypes with high FHB 
resistance. The existence of high direct and indirect path 
effects between FHB severity and morphological traits 
demonstrates that multiple indirect trait selection for FHB 
severity has a great potential and should always integrate 
anther retention and plant height as important secondary 
traits. Positively direct and/or mediated pleiotropic loci con-
trolling complex interactions between traits could be inte-
grated into breeding programmes for an efficient multiple-
trait selection for higher FHB resistance in wheat. Genomic 
background (GB) explained a high proportion of the genetic 
variance of FHB severity and anther retention and has the 
potential to increase FHB resistance in genotypes with Rht-
D1b. Depending on the breeding goals, the development 
of FHB-resistant cultivars should consider Rht24b which 
was not linked to FHB susceptibility and exploit the GB for 
higher FHB resistance to counterbalance the negative effect 
of Rht-D1b. Similarly, PH could be further reduced in the 
Rht24 group by the exploitation of GB. Strategies to effi-
ciently exploit existing interactions among traits and the GB 
in breeding programmes to develop FHB-resistant cultivars 
with Rht-D1b should include the selection of: (i) taller geno-
types within the Rht-D1b group as long as they have a high 
(negative) FHB-related resistance GB (e.g. Faktor, Mikon, 
Table 6), (ii) genotypes having the lowest anther retention, 
exploiting the high direct path and positively pleiotropic 
loci between FHB severity and anther retention, and/or (iii) 
genotypes with anther retention higher than 95% indirectly 
taking advantage of the contribution of cleistogamy to pas-
sive FHB resistance (e.g. Anapolis). Such genotypes could 
be most efficiently detected by using genomic estimated 
breeding values for FHB severity.
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