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Abstract
Key message Association mapping and phenotypic analysis of a diversity panel of 238 bread wheat accessions high-
lights differences in resistance against common vs. dwarf bunt and identifies genotypes valuable for bi-parental 
crosses.
Abstract Common bunt caused by Tilletia caries and T. laevis was successfully controlled by seed dressings with systemic 
fungicides for decades, but has become a renewed threat to wheat yield and quality in organic agriculture where such treat-
ments are forbidden. As the most efficient way to address this problem is the use of resistant cultivars, this study aims to 
broaden the spectrum of resistance sources available for breeders by identifying resistance loci against common bunt in 
bread wheat accessions of the USDA National Small Grains Collection. We conducted three years of artificially inoculated 
field trials to assess common bunt infection levels in a diversity panel comprising 238 wheat accessions for which data on 
resistance against the closely related pathogen Tilletia controversa causing dwarf bunt was already available. Resistance 
levels against common bunt were higher compared to dwarf bunt with 99 accessions showing ≤ 1% incidence. Genome-wide 
association mapping identified six markers significantly associated with common bunt incidence in regions already known 
to confer resistance on chromosomes 1A and 1B and novel loci on 2B and 7A. Our results show that resistance against com-
mon and dwarf bunt is not necessarily controlled by the same loci but we identified twenty accessions with high resistance 
against both diseases. These represent valuable new resources for research and breeding programs since several bunt races 
have already been reported to overcome known resistance genes.
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Introduction

More than 100 years ago, at the beginning of the twentieth 
century, common bunt was a common a disease in wheat 
growing areas all around the world as its name suggests. In 
regions like the Pacific North West in the US, wheat fields 

were so heavily infected that the average number of spores 
in a spore-trap at Pullman, WA, was 36.111 per square inch 
in 1916, which equals almost 600 spores per gram of soil. 
The region therefore became known as the smut capital of 
the world (Bruehl 1990) since common bunt is also called 
stinking smut - a name hinting at the production of trimethy-
lamines resulting in a fishy smell already at very low con-
tamination levels (Laroche et al. 2000). In consequence, a 
lot of effort was put into research on the causal agents of the 
disease, the two closely related fungi Tilletia caries (D.C.) 
Tul. & C. Tul. (also called Tilletia tritici (Bjerk.) G. Win-
ter) and T. laevis J.G. Kühn (also called T. foetida (Wallr.) 
Liro) and on measures to prevent them from infecting wheat 
plants (Bruehl 1990). The development of seed treatments 
with hexachlorobenzenes (HCB) during the 1950s finally 
provided farmers with an efficient and reliable tool to keep 
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bunt infections at stake (Line 1993). During the following 
decades, research activities ceased quickly and common bunt 
was largely neglected until the onset of the twenty-first cen-
tury and the increasing popularity of organic farming. This 
is reflected in the number of publications on all aspects of 
common bunt which were as low as 18 from 1960 to 1990 
and then suddenly rose to 249 from 1991 until the end of 
2020 (www. scopus. com). The concept of organic farming 
had already been known for a long time, but it was not until 
the last two decades of the twentieth century that a consid-
erable number of farmers started adopting these practices 
(Kuepper 2010). As the research at hand is a collaboration 
between groups in the U.S. and Austria, these two coun-
tries shall serve as examples for the current significance 
of organic agriculture on two different continents. In the 
United States, 2.33 million hectares were farmed organically 
in 2019, leading to rank four in the list of countries with the 
largest organic farming areas. However, Austria as a very 
small country took rank 14 on this list, with 669.921 hec-
tares (FiBL survey 2021). This makes Austria the country 
with the second highest percentage ( 26.1%) of organically 
managed farming area relative to the total arable land (FiBL 
survey  2021), while this value was only 0.6% in the U.S. in 
2019 (Meier et al. 2021). The importance of wheat breeding 
for organic agriculture is emphasized by the fact that cere-
als are the key arable crop for organic production in both 
North America (The World of Organic Agriculture 2021) 
and Europe (Willer et al. 2021).

Treatments against common bunt infection are available 
for organically managed farms, but they are in most cases 
not as easy in their application as seed dressings for con-
ventional farming and only provide limited control (Borgen 
and Davanlou 2001). Voit et al. (2012) reported that in years 
with high disease pressure, organic treatments only showed 
65% efficiency on farms in Germany and Austria. In conse-
quence, resistant wheat varieties can be considered the most 
economically efficient and environmentally friendly way of 
disease prevention (Borgen and Davanlou 2001; Voit et al. 
2012; Matanguihan et al. 2011). A range of genes (Bt-genes) 
conferring resistance to common and/or dwarf bunt (Tilletia 
controversa J.G. Kühn) via gene-for-gene interaction have 
been identified in wheat (Goates 2012; Goates and Bockel-
man 2012; Steffan et al. 2017; Muellner et al. 2020). Apart 
from these qualitative resistances, also quantitative trait loci 
(QTL) with effect against one or both fungal diseases have 
recently been mapped (Bhatta et al. 2018; Mourad et al. 
2018; Muellner et al. 2021; Singh et al. 2015; Fofana et al. 
2008; Wang et al. 2009; Dumalasová et al. 2012). Consid-
ering results by Goates (2012) and Hoffman and Metzger 
(1976) who found that several of the bunt races examined 
in their experiments were able to overcome genotypes with 
known Bt-genes and also recent reports of resistance break-
downs against certain bunt isolates (e.g. Gladysz et al. 2021; 

Dumalasová 2021; Orgeur et al. 2021), the urge of identi-
fying new resistance sources and possibly also combining 
several loci in a single cultivar becomes evident. One way of 
searching for novel resistance alleles that has become pos-
sible with the availability of high-density molecular markers 
for wheat is to conduct a genome-wide association study 
(GWAS). Successful applications of this technique have 
already identified SNP-markers significantly associated 
with bunt resistance on chromosomes 2B, 7A (Schmidt et al. 
2021), 6DS (Gordon et al. 2020), 2A, 3D and 4A (Bhatta 
et al. 2018). A study by Mourad et al. (2018) identified more 
than 120 SNPs significantly associated with common bunt 
resistance of which SNPs on chromosomes 1A, 1B, 4A, 5B 
and 6A showed the highest R2 values (between 5% and 9%).

All these studies were focused on common bunt, except 
for Gordon et al. (2020) who examined a diversity panel with 
292 bread wheat accessions of the USDA National Small 
Grains Collection (NSGC) for resistance against dwarf bunt. 
Caused by Tilletia controversa J.G. Kühn, dwarf bunt is 
closely related to the Tilletia species causing common bunt. 
Several publications have stated that resistance against both 
these diseases is controlled by the same genes (Metzger and 
Hoffman 1978; Goates 1996, 2012), but recent findings sup-
port the hypothesis that resistance to common bunt does not 
automatically confer resistance to dwarf bunt and vice versa 
(Muellner et al. 2021). To shed more light on this question, 
we aim to identify marker-trait associations for common 
bunt resistance in the same diversity panel that was used 
by Gordon et al. (2020) and compare the results. Further-
more, we want to determine whether the NSGC comprises 
accessions which have the potential to broaden the genetic 
resources for common bunt resistance that can be exploited 
for resistance breeding in bread wheat.

Methods

In order to test the postulated hypotheses, we evaluated a 
panel of 292 bread wheat accessions from the USDA NSGC 
for common bunt resistance. The panel is described in detail 
in Gordon et al. (2020). Common bunt infection data from 
field trials in Austria was combined with data on dwarf bunt 
infection levels from field trials in Utah, U.S. and genome-
wide marker data generated with a 90K SNP-chip (Wang 
et al. 2014). Information on both phenotypic data on dwarf 
bunt infection and genotyping is also available in Gordon 
et al. (2020).

Field trials

The NSGC panel was phenotypically evaluated in three 
subsequent years at the experimental station of IFA Tulln 
(48°19’05”N, 16°04’10”E, elevation 177 m above sea level). 

http://www.scopus.com
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Sowing took place in autumn and all seed samples were 
artificially inoculated prior to sowing. Teliospores were har-
vested from infected wheat ears in previous field trials from 
a variety of moderately susceptible genotypes showing typi-
cal common bunt symptoms and stored at room temperature 
under dry conditions. The original inoculum for bunt test-
ing at IFA Tulln consisted of a mixture of spores collected 
at three different locations in eastern and western Austria 
which represents the common bunt race spectrum in this 
region. Following a protocol adapted from Goates (1996) 
and Muellner et al. (2020) grain samples were artificially 
inoculated with a suspension of teliospores in a solution of 
methylcellulose in water (2 g of methylcellulose in 1000 ml 
of water). For 10 g of seeds, 0.09 g of spores were used (= 
0.3 ml of spore suspension) which were added to the grain 
samples with a multi-dispense pipette and distributed onto 
the seeds by shaking.

For the trial in 2019, seeds for all genotypes were received 
from Tyler Gordon and sown in double-row plots of 65 cm 
in length in a non-replicated field trial with 17 cm spacing 
between rows, 33 cm spacing between plots and 50 cm spac-
ing to the next row of plots. To facilitate sowing of further 
field trials, seeds were multiplied in a separate trial. Field 
experiments for 2020 and 2021 were sown as randomized 
complete block designs in two replications with single-row 
plots of 160 cm accompanied by a support row of equal 
length. This support row consisted of different short, sturdy 
cultivars (‘Balaton’, ‘Balitus’) and was intended to stabilize 
lodging-prone accessions. Spacings between rows and plots 
were the same as in 2019. In each year, 5 g of seeds were 
used per plot. Growth regulators were applied in 2020 and 
2021 to prevent extensive lodging because scoring of lodged 
accessions becomes more complicated and error-prone.

Heading date was scored when 50% of all tillers had 
reached BBCH 55 (half of inflorescence emerged from flag 
leaf) as days after May 1. Plant height was measured as the 
average height per plot in cm excluding awns.

Common bunt incidence was determined in 75 randomly 
chosen spikes per row by cutting each spike with scissors 
and checking for bunted kernels. Spikes were considered 
infected if at least one bunt sorus was detected and inci-
dence was calculated as the percentage of diseased spikes 
out of 75 spikes. Incidence was normalized (common bunt 
normalized incidence, CB–NI) to a range between zero and 
the average of susceptible cultivar ’Capo’ which we assessed 
in two plots as 100%.

Molecular marker data

The final panel used for genotypic analysis in the publication 
at hand contained 238 accessions, after removing duplicated 
entries as in Gordon et al. (2020) and genotypes without phe-
notypic information from the Austrian field trials. All SNPs 

with ≤ 5% minor allele frequency (MAF) in this reduced 
panel were excluded and missing values were imputed as 
zero. The final set of markers contained 18953 SNPs.

Statistical analysis

All statistical analyses were carried out using R (R Core 
Team  2021). Best Linear Unbiased Estimates (BLUEs) were 
calculated for each trait observed in the replicated field trials 
of 2020 and 2021 using a linear mixed model of the form

with Pik denoting the observed phenotypic value for the 
respective trait, � being the grand mean, Gi representing the 
effect of the ith genotype, Rk being the effect of the kth repli-
cation and eik denoting the error term. For analysis across all 
three environments, this model was extended to

to calculate BLUEs which also take the effect of the jth year 
Ej , the nested effect of replication k in year j ( Ej(Rk) ) and the 
genotype-environment-interaction GEij into account. In both 
models (Eqs. 1, 2) the grand mean and the genotype effect 
were treated as fixed effects while all other effects were mod-
elled as random. Based on across-year BLUEs, mean values 
and standard errors for all phenotypic traits observed in field 
trials in Tulln, Austria, as well as for dwarf bunt normalized 
incidence were calculated for each subpopulation identified 
in the data by Gordon et al. (2020).

Variance components were determined using the same 
linear mixed model as described in Eq. 2 but only the grand 
mean ( � ) was treated as a fixed effect and all other effects 
were modelled as random. All models were fit with the 
remlf90 function from package breedR (Munoz and Sanchez 
2020).

Broad-sense heritability was calculated as

with �2

G
 being the genotypic variance, �2

G×E
 denoting the 

genotype-environment-interaction, �2

e
 as the residual vari-

ance, nR as the number of replications in each year and nE 
denoting the number of test environments (Schmidt et al. 
2019; Hallauer and Miranda 1986).

A principal component analysis of the genotypic data of 
all 238 lines was conducted using the prcomp function from 
the stats-package in R (R Core Team  2021) to investigate 
population structure.

(1)Pik = � + Gi + Rk + eik
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Genome‑wide association analysis

Genome-wide linkage disequilibrium (LD) for the markers 
and population structure in the panel are described in Gor-
don et al. (2020). For detection of marker-trait associations 
with dwarf bunt incidence, a mixed linear model controlling 
for familial relationships with a kinship covariance matrix 
and for population stratification with two principal compo-
nents (Yu et al. 2006) was the best performing model (Gor-
don et al. 2020). However, such a model did not perform 
equally well when trying to find marker-trait associations 
for common bunt incidence according to QQ-plots (Online 
Resource 10b ). We therefore applied compression of the 
kinship covariance matrix and determined marker-trait asso-
ciations using a compressed mixed linear model [CMLM, 
(Zhang et al. 2010)].

Compression was achieved through partitioning around 
medoids clustering (Kaufman and Rousseeuw 1990) of the 
SNP marker data using the pamk function in R package 
fpc (Hennig 2020). Cluster solutions for two to 238 clus-
ters were obtained and the optimum compression level was 
determined for each data set separately by fitting mixed lin-
ear models with CB–NI as the response variable, the grand 
mean as a fixed effect and the cluster-assignment of each 
genotype. Allele calls for all 18,953 markers were averaged 
across all genotypes assigned to a single cluster and this 
averaged marker profile was then assigned to each geno-
type in the respective cluster so that they became identical 
in terms of their allele calls. A similar approach has been 
suggested for analysis of pooled DNA of family bulks in 
the context of applied plant breeding programs by Michel 
et al. (2021) and is also described by Baller et al. (2020) for 
genomic predictions on pooled DNA in animal breeding. 
The additive relationship matrix K was calculated based on 
the averaged, clustered marker data for all 238 accessions 
with the A.mat function from the rrBLUP package (Endel-
man 2011).

Models were fitted with the mmer function of the R pack-
age sommer (Covarrubias-Pazaran 2016) and the Bayesian 
information criterion (BIC) was used to choose the most 
suitable model. For each data set (2019 to 2021 and BLUEs 
across years), a marker matrix as genotypic input for the 
final GWAS-model was prepared according to the optimal 
clustering solution (i.e. compression level). Genome-wide 
marker-trait associations were estimated using the sommer 
package. Mixed models with CB–NI as the response, SNP as 
fixed effect and genotype as a random effect, with variance-
covariance specified by the K matrix were fitted and variance 
components were estimated with the P3D method described 
in Zhang et al. (2010). P-values, SNP effect estimates and 
R2 values for each SNP in each data set were extracted from 
the GWA-models and multiple test correction was applied on 
the p-values using the qvalue package (Storey et al. 2020). 

Significant marker-trait associations were identified using a 
false discovery rate (FDR) of � = 0.05.

To identify marker-trait associations for plant height and 
heading date, the same type of model was used as described 
for common bunt but the K matrix was calculated based on 
the original, non-clustered marker data.

Evaluation of panel composition

The composition of the experimental population was ini-
tially based on data on dwarf bunt infection levels of individ-
ual accessions available in the GRIN database (https:// www. 
ars- grin. gov/) and optimized to comprise approximately 50% 
dwarf bunt resistant and susceptible accessions, respectively 
(Gordon et al. 2020). It has been shown that races of dwarf 
bunt and common bunt exhibit different virulence patterns 
against various bunt resistance sources (Goates and Bock-
elman 2012; Muellner et al. 2021) and therefore, a panel 
optimized for dwarf bunt reactions cannot be expected to 
also provide optimal conditions for common bunt associa-
tion mapping. To investigate how the ratio of susceptible vs. 
resistant accessions in an experimental population influences 
GWA results, we conducted a leave-one-out cross-validation 
based on the classification of accessions into subpopulations 
described in Gordon et al. (2020). Of the six subpopulations, 
one at a time was excluded and the GWA-procedure was 
repeated as described above with accessions belonging to 
the other five subpopulations. Since some subpopulations 
were composed of almost exclusively highly resistant acces-
sions, the ratio of susceptible vs. resistant genotypes in the 
reduced panel changed when individual subpopulations were 
excluded. For this cross-validation, a non-compressed kin-
ship matrix and the original genotypic data were used.

Results

Field trials

In the whole panel 66.8% of the lines were resistant to com-
mon bunt infection with ≤ 10% CB–NI BLUE (Table 1). 
Two out of three trials were replicated and Pearson correla-
tion coefficients between replications were r = 0.90 for 2020 
and r = 0.60 for 2021, both significant at p < 0.0001 . Mean 
CB–NI was significantly ( � = 0.05 ) higher in the second 
replication in 2021. This could be traced back to scoring 
errors in the field trial and strongly deviating data points 
were excluded from the analysis. After this correction which 
concerned 18 out of 303 genotypes, correlation between rep-
lications in 2021 improved from r = 0.60 to r = 0.88 . CB–NI 
was highly correlated between individual years ( r = 0.90 to 
0.94) with all estimates being significant at the p < 0.0001 
level and showed strongly right-skewed distributions. 

https://www.ars-grin.gov/
https://www.ars-grin.gov/
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Significant negative correlations were observed across 
years for CB–NI with plant height ( r = −0.16 , p = 0.012 ) 
and heading date ( r = −0.20 , p = 0.002 ), respectively 
(Fig. 1). A positive correlation of r = 0.37 ( p ≤ 0.0001 ) was 
observed between across-year BLUEs for CB–NI assessed in 

Tulln, Austria and across-year BLUEs for DB-NI assessed 
in Logan, UT and in the GRIN database. The correspond-
ing scatterplot (top left of the scatterplots in Fig. 1) also 
indicates that there are a lot of lines resistant to common 
bunt but highly susceptible to dwarf bunt and only very few 
which show a reversed pattern. Twenty lines showed ≤ 1% 
incidence across years for both common (2019–2021) and 
dwarf bunt (2017–2019, Gordon et al. (2020)) (Table 2).

Infection levels in the bunt differential lines were 
inconsistent between years for Bt8, Bt9, Bt15, BtP and ’PI 
173438’ possessing an unknown type of resistance (Table 4). 
In general, more of the known resistance sources are effec-
tive against common bunt compared to dwarf bunt as shown 
in columns “BLUE” and “DB-BLUE” in Table 4. Only for 
Bt8, Bt14, Bt15, BtP and the unknown resistance source of 
’PI 173438’, CB–NI was higher than DB-NI across years.

Heritability of all observed traits across data sets was 
high ( ≥ 0.84 ) and highest for common bunt incidence 
( H2 = 0.96 ). For both plant height and CB–NI, the geno-
type effect explained the largest part of the observed pheno-
typic variance whereas variance in heading date was mainly 
explained by the environmental effect (Table 3).

Table 1  Classification of bread wheat accessions by their country of 
origin into resistance classes based on data across three subsequent 
years

a Highly resistant, ≤ 1% CB infection
b Resistant, > 1% and ≤ 10% CB infection
c Susceptible, > 10% CB infection

Accession origin HRa Rb Sc

Azerbaijan 0 0 3
Germany 0 0 1
Iran 6 4 13
Montenegro 3 0 1
Russia 0 0 2
Serbia 9 2 7
Sweden 0 1 0
Turkey 21 8 29
USA 86 19 23
Total 125 34 79

Table 2  Accessions with 
high resistance levels ( ≤ 1% 
incidence) against both common 
and dwarf bunt (Gordon et al. 
2020)

Values for heading date and plant height are best linear unbiased estimates (BLUEs) across trials in Tulln, 
Austria, from 2019–2021 
a Heading date in days after May 1
b Plant height in cm

Accession HDa PHb Status Origin Source/pedigree

CItr 17727 31.13 105.88 Cultivar U.S., Idaho From PI 178383
PI 178383 35.45 98.93 Landrace Turkey, Hakkari Bt8, Bt9, Bt10
PI 345102 36.87 120.15 Landrace Serbia
PI 345106 32.80 115.28 Landrace Serbia
PI 345428 38.13 138.19 Landrace Montenegro
PI 374540 33.94 103.83 Landrace Serbia
PI 470395 34.62 100.88 Landrace Turkey, Hakkari
PI 518914 39.94 108.68 Breeding line U.S., Idaho From PI 178383
PI 560601 32.68 88.56 Landrace Turkey, Hakkari
PI 560792 37.87 97.83 Landrace Turkey, Hakkari
PI 560842 34.06 100.64 Landrace Turkey, Hakkari
PI 560843 36.82 95.76 Landrace Turkey, Hakkari
PI 620655 32.87 91.13 Breeding line U.S., Oregon
PI 622967 33.24 98.44 Landrace Iran, Esfahan
PI 636145 38.80 97.83 Breeding line U.S., Idaho From PI 560603
PI 636147 38.17 96.73 Breeding line U.S., Idaho From PI 560603
PI 636156 38.10 92.83 Breeding line U.S., Idaho From PI 560795
PI 636169 36.66 96.00 Breeding line U.S., Idaho From PI 560843
PI 636170 36.10 88.68 Breeding line U.S., Idaho From PI 560843
PI638644 31.13 102.71 Breeding line U.S., Washington
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Subpopulations and disease reaction

Accessions from Iran, Serbia and Turkey showed the high-
est proportions of susceptible lines whereas accessions 
originating from the U.S. were for the most part highly 
resistant (Table 1). Individual subpopulations reacted dif-
ferently to common bunt compared to dwarf bunt (Fig. 2b). 
While genotypes assigned to subpopulations three and four 
showed the second and third highest dwarf bunt infection 
levels, they had low average CB–NI (Online Resource 1). 

Fig. 1  Pearson correlation 
coefficients, histograms and 
scatterplots between across-year 
best linear unbiased estimates 
(BLUEs) for normalized inci-
dences of dwarf bunt (DB-NI) 
and common bunt (CB–NI) as 
well as plant height (PH) and 
heading date (HD) in the com-
mon bunt trials across all years 
(2019–2021) (Gordon et al. 
2020)

Table 3  Average, minimum and maximum values for individual 
years and BLUEs across years , variance components (rows 5–9) and 
broad-sense heritability estimates ( H2 ) for phenotypic traits observed 
in field trials from 2019 to 2021

a Heading date in days after May 1
b Plant height in cm
c Common bunt normalized incidence

HDa PHb CB–NIc

2019 34.2 (25–42) 109.0 (55–150) 18.0 (0–131)
2020 25.39 (16–40) 100.1 (65–145) 15.57 (0–123.7)
2021 39.4 (25–48) 97.63 (55–150) 22.7 (0–158.7)
BLUE 33.08 (22.2–43.5) 102.3 (55–143.8) 18.88 (0–130.6)
VGenotype 8.9 127.1 888.0
VEnvironment 50.5 48.9 12.0
VReplication 0 2.7 4.5
V
G×E 0.8 14.0 44.7

Verror 1.2 113.8 118.8
H

2 0.95 0.84 0.96

(a)

(b)

Fig. 2  a Best linear unbiased estimates (BLUEs) across three years 
for common bunt normalized incidence (CB–NI) in percentages for 
genotypes assigned to different subpopulations. Number of genotypes 
per subpopulation is shown on the x-axis, crosses mark average CB–
NI. b Heatmap comparing subpopulation averages of BLUEs across 
years for normalized incidence (NI) of dwarf bunt (DB-NI) and CB–
NI (Gordon et al. 2020)
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Fig. 3  Scatterplot of the first 
two principal components of 
the 238 accessions used for 
association mapping. Individual 
subpopulations in the panel 
are discriminated by shapes 
of the data points. Colours of 
individual data points indicate 
across-year best linear unbiased 
estimates (BLUEs) of normal-
ized common bunt incidence 
(CB–NI) levels of the respective 
genotypes (Gordon et al. 2020)

Table 4  Phenotypic scores for 
dwarf bunt (DB) and common 
bunt (CB) normalized incidence 
for the bunt differential set and 
the susceptible cultivar ’Capo’ 
used for normalization

a Normalized dwarf bunt incidence across four data sets derived from Gordon et al. (2020)
b Normalized common bunt incidence across three data sets (2019–2021)

Accession Name Bt-gene DB-BLUEa CB 2019 CB 2020 CB 2021 CB  BLUEb

. Capo Susceptible . 100 100 100 100
PI 209794 Heines VII Susceptible 111.2 82.7 78.0 100.8 86.5
PI 554101 Selection 2092 Bt1 104.0 0 0 0 0.1
PI 554097 Selection 1102 Bt2 119.2 84.7 56.8 93.1 77.5
CItr 6730 Ridit Bt3 51.2 0 0 2.1 0.9
PI 11610 CI 1558 Bt4 120.4 0 1.7 0 0.8
CItr 11458 Hohenheimer Bt5 32.1 0 2.5 0 4.0
CItr 10061 Rio Bt6 67.4 0 0 0 0.1
PI 554100 Selection 50077 Bt7 112.7 44.6 48.7 . 49.9
PI 554120 M72-1250 Bt8 7.5 0 1.7 33.9 13.6
PI 554099 R63-6968 Bt9 55.3 13.4 3.4 13.8 9.9
PI 554118 R63-6982 Bt10 37.0 0 2.5 5.3 3.1
PI 554119 M82-2123 Bt11 4.5 0 0.8 0 1.0
PI 119333 1696 Bt12 3.4 0 0 0 0.6
PI 181463 Thule III Bt13 11.0 0 2.7 1.1 1.6
CItr 13711 Doubbi Bt14 3.7 0 6.6 3.2 3.9
CItr 12064 Carleton Bt15 14.8 37.4 6.2 21.2 19.6
PI 173437 7838 BtP 0.1 18.6 4.4 29.6 16.2
PI 173438 7845 Unknown 0.1 0 16.1 19.0 13.5
PI 178383 6256 Bt8,9,10 4.5 0 0 0 0.1
PI 476212 SM Selection 4 Unknown 4.0 0 0 2.1 0.9
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Subpopulations two and six showed similar reactions to both 
diseases. High variation in CB–NI was observed for sub-
populations one and five (Figs. 2a and 3). Average infection 
levels for common bunt were lower than for dwarf bunt in all 
subpopulations except subpopulation five. Please note that 
only dwarf bunt data on those genotypes for which CB–NI 
could be assessed in all three years was used for the analysis, 
resulting in 238 accessions compared to 246 used by Gor-
don et al. (2020). While accessions in subpopulations two, 
four and six, respectively, clustered together and showed low 
variation in CB–NI in a PCA heatmap (Fig. 3), genotypes 
belonging to subpopulations one, three and five, respec-
tively, were more scattered across the principal component 
plot. Variation in plant height also differed between subpop-
ulations with highest variation in subpopulation three and a 
comparably narrow range of observed heights in subpopula-
tion six. Such patterns were not found for heading date. Vari-
ation in heading date was similar and standard errors were 
low across all subpopulations (Online Resource 1).

Marker‑trait associations

Based on model fit in terms of BIC for models with com-
pressed kinship matrices, we chose the best fitting model 
and thereby the ideal number of clusters, i.e. groups, for 
each data set (2019–2021 and BLUEs across years). While 
for 2020 data, the ideal number of clusters was approxi-
mately the same as the number of genotypes (236), higher 
compression was optimal for 2021 (155 clusters). The ideal 
number of clusters for 2019 was 176 and across years, the 
optimum compression was reached with 230 clusters (Online 
Resource 8).

With a model that corrected for relatedness using a com-
pressed kinship matrix with the optimum compression level 
for each year, six SNP markers were found to be significantly 
(FDR-adjusted p-value ≤ 0.05 ) associated with CB–NI in at 

least one out of four data sets (Fig. 4) and thereof, four SNPs 
(in the following called CB-1A, CB-2B, CB-7A1 and CB-
7A2) showed significant associations in two of the data sets 
(Table 5). The resistance conferring allele was the prevalent 
one for all four SNPs in the panel under investigation and 
allele frequencies ranged from 91.2% to 94.1%. Differences 
in average CB–NI levels between accessions carrying the 
resistant vs. the susceptible allele ranged from 29.4% for CB-
7A1 to 52.1% for CB-2B. In the data set for 2021, no markers 
showed significant associations with CB–NI, but p-values 
indicated that SNPs CB-1A and CB-2B which were signifi-
cantly associated with resistance in other years also might 
play a role in bunt resistance in 2021 (Online Resource 9).

Allele calls at the four SNP positions associated with 
CB–NI in more than one data set for all lines in the bunt 
differential set for which both genotypic and phenotypic 
data was available reflect the high allele frequencies of the 
resistance conferring alleles. Those three differential lines 
showing the highest CB–NI and DB-NI levels (Bt0, Bt2 and 
Bt7) are the only genotypes which lack two of the resistance 
conferring alleles, all other lines in the differential set have 
the resistant allele in at least three out of four SNP positions 
(Online Resource 2).

Association mapping for heading date identified two 
markers on chromosome 7B in an interval of 9.753 to 
9.754 Mbp and one marker on chromosome 7D at 72.95 Mbp 
to be significantly (FDR-adjusted p-value ≤ 0.05 ) associated 
with time to heading in at least two out of four data sets 
(Online Resource 4). No significant marker-trait associations 
were detected for plant height.

Table 5  SNP markers significantly (FDR-adjusted p-value ≤ 0.05 ) associated with normalized common bunt incidence in data from individual 
field trials in Tulln, Austria, from 2019 to 2021 or best linear unbiased estimates (BLUEs) across all three trials

a Position in bp
b Allele frequency of the resistant allele in %
c Average CB–NI score (based on BLUEs) for accessions carrying the resistant allele
d Average CB–NI score (based on BLUEs) for accessions carrying the susceptible allele
e FDR-adjusted −log

10
(p)-value

SNP Chromosome bpa Data set AFb RCB–NIc SCB–NI
d LODe

r
2

RAC875_c31133_464 1A 473.965.765 BLUEs 91.6 16.2 51.5 4.82 0.08
RAC875_c31133_77 1A 473.966.540 2020, BLUEs 91.2 15.9 53.2 5.18, 5.44 0.08, 0.09
BS00032266_51 1B 11.181.473 BLUEs 92.9 17.0 58.8 5.05 0.08
Ku_c71357_859 2B 581.704.044 2019, BLUEs 94.1 16.4 68.5 5.80, 5.01 0.09, 0.08
Ku_c5529_824 7A 335.991.471 2020, BLUEs 93.3 17.1 46.5 5.61, 5.58 0.09
RAC875_c23665_68 7A 629.801.516 2020, BLUEs 91.2 15.7 57.5 5.46, 5.53 0.08, 0.09
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Discussion

The inoculation method to provoke common bunt infec-
tions used at IFA Tulln was proven to be effective over 
several years of field trials and led to successful infesta-
tion of experimental genotypes with common bunt in all 
years (2019–2021). The susceptible cultivar ’Capo’ and the 
susceptible control line in the bunt differential set, ’Heines 
VII’ showed high infection levels in all field trials (Table 4). 
The comparably low correlation between replications in 
2021 resulting from scoring errors that had to be corrected 
remains unexplained. Methods and procedures used in 2021 
were no different from previous years which showed good 
correlations between replications and no plausible causes for 
the observed discrepancy could be identified.

Of the genotypes tested in this study, 42% (99 out of 238 
lines) were highly resistant ( ≤ 1% CB–NI) to common bunt 
in each data set. Compared to 11.38% of consistently highly 
dwarf bunt resistant lines (Gordon et al. 2020), this ratio 
is very high. Accessions were originally chosen to be 50% 
dwarf bunt resistant and susceptible, respectively, and to 
represent many different geographic origins. An ideal situ-
ation would be to have an approximately equal number of 
resistant and susceptible accessions from each geographic 
region, but this was already not the case for dwarf bunt. The 
six subpopulations identified in the diversity panel showed 
variation in their mean DB-NI levels as described in Gor-
don et al. (2020) and the same problem occurred for CB–NI 
levels (Fig. 3, Online Resource 1). Contrary to DB-NI, 
though, the majority of all subpopulations showed very low 
CB–NI below the overall average of 19.4% (values based 
on BLUEs across years) while only two subpopulations had 
higher than average CB–NI. As variation for CB–NI was 
low in the panel and alleles that confer susceptibility were 

rare, fitting a standard kinship matrix lead to overfitting, 
leaving no variation to be explained by putative QTL. We 
tackled this problem by using compressed kinship matri-
ces as described in Zhang et al. (2010), reducing matrix 
complexity and facilitating association of observed varia-
tion with genetic loci. Compressing kinship matrices has 
been shown to improve model fit and increase statistical 
power compared to general linear models (GLM) and non-
compressed mixed linear models (MLM) if the optimum 
number of groups for clustering is chosen as compression 
level (Zhang et al. 2010).

In view of these challenges and in line with the sugges-
tions by Gordon et al. (2020), we would therefore recom-
mend to take extra care when assembling a diversity panel 
intended for GWA analysis in order to ensure approximately 
equal percentages of resistant and susceptible accessions in 
the overall panel as well as for individual regions of ori-
gin. The benefits of a balanced data set with approximately 
equal variation for a certain trait in each subpopulation also 
become visible when considering the other traits assessed 
in the common bunt trials in Tulln. While variation in plant 
height also differed between subpopulations, variation in 
heading date was more evenly distributed. With a mixed 
model correcting for familial relationships with a standard 
kinship matrix, QQ-plots indicated appropriate modelling 
of the data and significant marker-trait associations were 
detected (Online Resources 4 and 10c). For plant height, on 
the other hand, similar problems as for CB–NI were encoun-
tered and would have to be addressed in a separate analysis.

Subpopulation six was the only one exhibiting consist-
ently low incidence levels for both DB-NI and CB–NI. It 
is mainly composed of landraces from Hakkari province 
in Turkey and U.S. breeding lines that incorporate such 
landraces in their pedigrees as described in Gordon et al. 

Fig. 4  Manhattan plot showing marker-trait associations for best linear unbiased estimates (BLUEs) of normalized common bunt incidence 
across all three years (2019–2021). The dashed line marks a significance threshold of � = 0.05
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(2020). The province is located in a mountainous region 
characterized by a continental climate with snowy winters 
and dry summers matching the Köppen-Geiger climate clas-
sifications of Dsa to Dsc (Beck et al. 2018; Turkish State 
Meteorological Service  2022). Such climatic conditions 
are especially favourable for dwarf bunt infections and have 
lead to the evolution of highly dwarf bunt resistant landraces 
in this region (Bonman et al. 2006). Common bunt needs 
less specific conditions to infect its host and the occur-
rence of resistant genetic resources is not limited to nar-
row geographic regions as shown in the study by Bonman 
et al. (2006). We therefore hypothesize that genotypes from 
Hakkari province might be of special interest to breeders and 
scientists searching for high levels of resistance against both 
types of bunt diseases.

CB–NI showed high heritability ( H2 = 0.96 ) which is 
comparable to previous studies using data from artificially 
inoculated field trials (Muellner et al. 2020, 2021; Chen 
et al. 2016; Wang et al. 2019). Correlations between indi-
vidual years were also high, but no SNP was found to be 
significantly associated with CB–NI in more than two of the 
four data sets. There are only few studies dealing with GWA 
for common bunt so far (Mourad et al. 2018; Bhatta et al. 
2019). To our knowledge, the only one providing results for 
multiple years is the one by Gordon et al. (2020), working 
with the same panel as the study at hand but investigating 
dwarf bunt resistance on the accessions. They observed a 
similar pattern of differing results in marker-trait associa-
tions across years which could possibly be caused by factors 
like marker-by-environment interactions or the application 
of the stringent FDR-threshold of � = 0.05.

Four markers were significantly associated with CB–NI 
in two data sets out of which two markers on chromosomes 
1A and 7A, respectively, overlap with or are in proximity of 
regions previously reported to be associated with bunt resist-
ance. Marker CB-1A is located at 473.97 Mbp on chromo-
some 1A. In addition, marker RAC875_c31133_464 which 
is only 775 bp away from CB-1A was also found to be sig-
nificantly associated with common bunt resistance in BLUEs 
across years. Muellner et al. (2020) have mapped a locus 
conferring dwarf bunt resistance to this chromosomal region 
between 380.97 and 516.67 Mbp while Chen et al. (2016) 
mapped a dwarf bunt resistance locus to a region between 
74 and 76 cM on chromosome 1A. The peak marker for 
this 1A locus was Xcfa2129 in their study. Marker IWA6553 
is neighbouring Xcfa2129 and is located at 503.31 Mbp 
according to the Triticeae Toolbox (available via https:// 
wheat. triti ceaet oolbox. org) (Blake et al. 2016). Muellner 
et al. (2020) also included common bunt resistance in their 
study and detected a QTL in close proximity (starting at 
490.09 Mbp) of CB-1A which conferred high levels of resist-
ance to common bunt in their mapping populations.

Two markers on different positions of chromosome 7A 
were found to be associated with CB–NI in this study. Wang 
et al. (2019) mapped dwarf bunt resistance to a region on 
chromosome 7A approximately 100 Mbp away from marker 
CB-7A2 at 629.80 Mbp. Chromosome 7A was also identi-
fied to be associated with common bunt resistance in earlier 
studies. Fofana et al. (2008) mapped a QTL with a small but 
consistent effect against common bunt infection to a region 
on the long arm of chromosome 7A. The location of the 
second marker found on 7A in this study, CB-7A1 located 
at 336.00 Mbp, is ambigous. While reported to be on 7A in 
the annotation data of the wheat 90K SNP chip, this marker 
is recorded on chromosome 7B at 339.21 Mbp in the wheat 
90K Array Consensus and RefSeq v1.0 (Blake et al. 2016; 
IWGSC et al. 2018) and also on 7B but at 342.46 Mbp in 
the wheat RefSeq v2.1 (Zhu et al. 2021). This discrepancy 
might be a possible explanation why no association with 
common or dwarf bunt has been reported for this location 
on chromosome 7A in any study published to date.

To our knowledge, marker CB-2B identified to con-
fer common bunt resistance in this study has not yet been 
reported in any other publication. Bhatta et al. (2018) report 
marker-trait associations for common bunt for two markers 
at 795.3 Mbp and 799.3 Mbp, respectively. Chromosome 2B 
has been reported to harbour bunt resistance gene Bt1, which 
has not yet been mapped or further characterized (Sears et al. 
1960; McIntosh et al. 1998). Bt1 has been shown to provide 
resistance against several isolates of T. caries and T. laevis  
(Goates 2012) as well as against prevalent isolate mixtures 
in Austria used in field tests at IFA Tulln (data not shown). 
PI 554101, the accession for Bt1 in the differential set, pos-
sesses the resistant allele for all four SNPs associated with 
CB–NI in more than one year in our study (Online Resource 
2), so further work would be required to determine if marker 
CB-2B could be linked to resistance gene Bt1.

Marker BS00032266_51 on chromosome 1B (located at 
11.18 Mbp) was only found to be associated with CB–NI in 
the BLUEs across all years and corresponds with regions 
identified to confer common bunt resistance by Muellner 
et al. (2020) (4.35 to 38.91 Mbp) and Singh et al. (2015) 
(peak marker at 13.0  Mbp). Fofana et  al. (2008) also 
detected a QTL on the short arm of chromosome 1B at ∼ 
19.3 cM in a mapping population derived from the cross 
RL4452 × �ACDomain� . While the 1B-marker only crossed 
the significance threshold of FDR = 0.05 in a single data set 
and showed comparably low effect sizes in our experiment, it 
was the most effective locus explaining the largest part of the 
phenotypic variance in the three studies mentioned above. 
In general, wheat chromosome 1B plays an important role 
in bunt resistance as several other authors have also reported 
markers or QTL associated with bunt incidence at different 
positions on 1B (Dumalasová et al. 2012; Wang et al. 2009; 
Zou et al. 2017; Bhatta et al. 2019; Mourad et al. 2018; 

https://wheat.triticeaetoolbox.org
https://wheat.triticeaetoolbox.org
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Galaev et al. 2018). Furthermore, reports on the initial set 
of ten bunt differentials (Hoffman and Metzger 1976) state 
that three different resistance genes (Bt4, Bt5 and Bt6) are 
located on chromosome 1B (Schmidt et al. 1969; McIntosh 
et al. 1998).

Allele frequencies for all markers passing the significance 
threshold in this study were very high - both in the overall 
population but also in individual subpopulations (Online 
Resource 3). It has been discussed by multiple authors 
(Dickson et al. 2010; Gibson 2012; Zhu et al. 2011) that the 
detection of rare variants acting as causal agents for the trait 
of interest in association mapping is difficult and comes with 
challenges. In our study, the rare variant is the one causing 
infection while the desired genotype leading to resistance is 
abundant. This would be unexpected in most other experi-
mental or natural populations where bunt resistance would 
be caused by rare alleles. Nevertheless, the pre-selection for 
dwarf bunt resistance applied while assembling the diver-
sity panel used in this study caused a strong deviation in 
allele frequencies of loci conferring common bunt resistance 
compared to what would be expected without pre-selection. 
By conducting a kind of leave-one-out cross-validation with 
exclusion of one subpopulation at a time, we investigated the 
influence of high percentages of highly resistant lines on the 
GWA results. The robustness of our results is supported, as 
loci found to be significantly associated with CB–NI levels 
in the full panel of lines also frequently passed the signifi-
cance threshold of an FDR-adjusted p-value of 0.05 if one 
of the subpopulations was excluded. Especially exclusions 
of subpopulations three and four, consisting almost entirely 
of highly resistant genotypes (Fig. 2) and showing allele 
frequencies of close to or equal to 100% for the resistance 
conferring allele (Online Resource 3), were of interest as 
these diminished the number of highly resistant lines by 26 
and 30, respectively - i.e. by more than a quarter of the total 
number. Since the reported markers were also found to be 
significantly associated with CB–NI in this cross-validation 
process (Online Resource 11 ), we conclude that our meth-
odology was appropriate in terms of coping with the rare 
nature of susceptible variants and results can be regarded 
as robust.

Comprehensive data on both common and dwarf bunt 
incidence levels is now available for the diversity panel 
investigated in this study which consists of accessions from 
the USDA National Small Grains Collection. This gives both 
the scientific community and breeders access to genotypes 
with high levels of resistance to both bunt diseases. In total, 
20 accessions have been identified which had a mean DB-NI 
of ≤ 1% according to Gordon et al. (2020) and at the same 
time showed ≤ 1% CB–NI in each of the four data sets used 
in our study (Table 2). These accessions originate from vari-
ous geographic origins and thereby may provide valuable 
new genetic variation for research and breeding programs 

aimed at creating bunt resistant material. To validate the 
identified common bunt resistance loci in other wheat popu-
lations or panels and to facilitate their usage in (pre-)breed-
ing programs, KASP markers for the respective QTL regions 
should be developed. This will be subject of future bunt 
research projects at IFA Tulln.
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