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Abstract
Key message  We propose a simulation approach to compute response to genomic selection on a multi-environment 
framework to provide breeders the number of entries that need to be selected from the population to have a defined 
probability of selecting the truly best entry from the population and the probability of obtaining the truly best entries 
when some top-ranked entries are selected.
Abstract  The goal of any plant breeding program is to maximize genetic gain for traits of interest. In classical quantitative 
genetics, the genetic gain can be obtained from what is known as “Breeder’s equation”. In the past, only phenotypic data 
were used to compute the genetic gain. The advent of genomic prediction (GP) has opened the door to the utilization of dense 
markers for estimating genomic breeding values or GBV. The salient feature of GP is the possibility to carry out genomic 
selection with the assistance of the kinship matrix, hence improving the prediction accuracy and accelerating the breeding 
cycle. However, estimates of GBV as such do not provide the full information on the number of entries to be selected as 
in the classical response to selection. In this paper, we use simulation, based on a fitted mixed model for GP in a multi-
environmental framework, to answer two typical questions of a plant breeder: (1) How many entries need to be selected to 
have a defined probability of selecting the truly best entry from the population; (2) what is the probability of obtaining the 
truly best entries when some top-ranked entries are selected.

Introduction

In plant breeding programs, the breeder’s equation (Lush 
1942) has been central to measure response to selection, 
known as genetic gain. The genetic gain also describes the 
breeding value of a population in one cycle of selection for 
the trait of interest (Rutkoski 2019). Response to selection 
is based on the heritability and the selection differential. 
Hence, a trait with a high heritability and a high selection 
differential can be considered to have a large genetic gain. 
The selection differential per-se is based on the number of 

selected entries, which mainly relies on the breeder’s eyes 
when the selection is solely based on the phenotype. Envi-
ronmental effects and genotype × environment interactions 
play a role in masking the true genotype value. This is why 
a breeding program is never conducted in a single envi-
ronment (Crossa et al. 2017). The imbalance prevailing in 
datasets from the multi-environmental trials (MET) brings 
additional complexity to the data analysis for estimating 
response to selection.

The advent of genomic prediction (GP) allows breeders to 
estimate genomic-based breeding values via dense markers 
(Meuwissen et al. 2001). The salient feature of the GP is the 
improvement in the accuracy of breeding value estimation 
by exploiting the kinship matrix. Lorenz et al. (2011) and 
Crossa et al. (2017) provided a comprehensive review for the 
implementation and benefit of GP as the basis of genomic 
selection in plant breeding. Although GP allows for selection 
to happen earlier and provides better accuracy in breeding 
value estimation, the incorporation of GEI to the GP frame-
work is still a challenge.

Genomic prediction is by now routinely used as the basis 
of genomic selection in many plant breeding programs 
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worldwide. The usual approach for evaluating the predic-
tive accuracy of GP methods is to compute the correlation 
between observed and predicted genomic breeding values 
(GBV) using cross-validation. While this method is very 
useful in comparing alternative methods and designs, it does 
not usually give the plant breeder the full picture needed 
to decide on the number of breeding entries to be selected. 
Typical questions a plant breeder has in this regard may be 
exemplified as follows: (i) How many entries do I need to 
select to have a defined certainty (probability) of selecting 
the truly best entry from my population? (ii) If I select the 
n top-ranked entries, what is the probability of picking the 
m ≤ n truly best entries from the population?

Predictive accuracy, useful as it undoubtedly is, does not 
give direct answers to such crucial questions. These prob-
abilities are hard to compute analytically for various reasons, 
including the imbalance of the data and the complexities of 
the mixed model used for analysis. The easiest and also the 
most tangible way to compute them is by simulation based 
on the fitted model. This idea was outlined and illustrated 
by examples in Piepho and Möhring (2007), and it was also 
used, though in slightly different context, in Piepho and van 
Eeuwijk (2002) and Kleinknecht et al. (2016). However, nei-
ther of these applications involved the use of marker data 
for GP. Here, we illustrate the use of this method for GP 
in a MET framework using an example from a hybrid rye 
breeding program.

Materials and methods

A rye example

Description of the dataset and underlying population 
structure

The phenotypic data are proprietary of a commercial hybrid 
rye breeding program by KWS LOCHOW established in 
central Europe. In the program, the seed and pollen gene 
pools are developed and tested independently. After cross-
ing, a few generations of single plant selfing, selection and 
per se performance line selection, testcrosses are produced 
between inbred lines and two testers from the opposite het-
erotic pool.

The testcrosses are submitted to field trials. In the first 
year of general combining ability (GCA) evaluation (hereaf-
ter GCA1 trials), entries (i.e. testcrosses) are planted in sev-
eral locations. A subset of entries is selected and forwarded 
to a second year of field evaluations (hereafter GCA2 trials). 
The selected fraction from the GCA2 trials is evaluated on 
the field in a third year (hereafter GCA3 trials). The entries 
of the GCA3 trials are the testcrosses developed in the pre-
vious year. A sequence of GCA1 to GCA3 trials constitutes 

a selection cycle. All trials within a location are laid out 
as α-designs with two replicates. Alpha (α) designs are a 
class of generalized lattice designs generated based on alpha 
arrays (Patterson and Williams 1976; Williams et al. 2002). 
The trial network follows a sparse pattern, where subsets of 
entries are evaluated in series of trials in a given subset of 
locations but trying to cover as many locations as possible. 
Sparse testing is described in Jarquín et al. (2014).

Figure 1 shows the selection cycle structure of the rye 
hybrid breeding program. In each cycle, there are 3 years 
of tests for GCA. A selection is conducted each year. Thus, 
in each cycle, the number of entries decreases from GCA1 
to GCA3.

In this study, two breeding pools were used, i.e. seed pool 
and pollen pool. The data available for both pools cover the 
years 2016 to 2020. Thus, there were three complete selec-
tion cycles available, i.e. Cycle 1 (2016–2018), Cycle 2 
(2017–2019), and Cycle 3 (2018–2020). For Cycle 4, the 
available dataset comprised only GCA1 (2019) and GCA2 
(2020), and for Cycle 5, only GCA1 (2020) was available.

Marker data

All genotypes from the seed and pollen pools were geno-
typed with an Illumina INFINIUM chip with 9963 single-
nucleotide polymorphisms (SNPs) (KWS SAAT SE & Co. 
KG, Einbeck, Germany). The SNP used across the years 
partially overlap the 600 k-SNP assay of Bauer et al. (2017) 
and the 5 k-SNP assay of Martis et al. (2013). Monomorphic 
markers and markers with a minor allele frequency (MAF) 
< 0.55, or > 10% missing values per marker were dropped. 
The marker cleaning was done using ASRgenomics pack-
age version 1.0.0 (Gezan et al. 2021) implemented in R (R 
Core Team 2021). The final number of SNP markers used 
for our analyses for the seed pool was 6246 and 7716 for the 
pollen pool.

Population and statistical models

GCA1 response to selection assessment

The routine analysis we envision here is based on the current 
year’s dataset only, which in this study was taken to be the 
year 2020. This type of analysis is commonly done in many 
breeding programs, where the time between data acquisition 
from the current trials and selection decisions is limited. 
This approach also reflects the fact that selection decisions 
are made each year only for the entries tested in that year. 
We are focusing on GCA1 here, for which there are no data 
on the same entries from previous years.

A key challenge is that a standard single-year analy-
sis cannot dissect the GBV × year interaction effects from 
GBV main effects. In particular, response to selection 
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based on such an analysis may be over-estimated because 
it is based on the sum of these two effects, whereas only 
the first component contributes to selection response in 
relation to future performance of the selected entries. 
However, if data from multiple years are available, vari-
ance components for these two effects can be estimated, 
and a key idea of this paper is to use such estimates for sin-
gle-year analysis to dissect GBV and GBV × year effects.

Estimation of the GBV × year variance from multi-year 
data can be done a priori and then plugged into the analy-
sis for the data from the current year. In principle, we 
could also plug in the long-term estimate for the GBV 
variance estimate, but we prefer to use the current GBV 
variance to adjust for population structure in the current 
year. The major effect of the inclusion of a GBV × year 
interaction effect in a single-year analysis is an increased 
shrinkage of the genomic best linear unbiased predictions 
(GBLUPs) of the GBV main effects.

Moreover, the simulation based on this model will yield 
a smaller simulated response to selection. It is stressed 
here that this simulated response to selection is more 
realistic, as it properly reflects the fact that the apparent 
GBV main effect seen in a specific year based on the usual 
method of analysis is, in fact, the sum of the true GBV 
main effect and the GBV × year interaction effect for that 
year. In this study, the current-year (GCA1-2020) analysis 
uses estimates of the variances for GBV main effects and 
GBV × year interaction effects, which are obtained from 
the multi-year analysis based on the previous years. The 
steps for the multi-year analysis are, therefore, as follows:

1.	 Estimate � =
�2
g

�2
g
+�2

gy

 from long-term data, where �2

g
 and 

�2

gy
 are variances of the GBV (explained in more detail 

in subsection CYC and MY models) and of the GBV-by-
year interaction.

2.	 Estimate the apparent GBV variance �2

g̃
 of the current 

year (GCA1-2020), using a model that only has a GBV 
main effect but no GBV × year interaction effect. It may 
be assumed that �2

g̃
= �2

g
+ �2

gy
.

3.	 Multiply this estimate of �2

g̃
 by the estimate of ρ to obtain 

an estimate of �2

g
 for the current year, and multiply by an 

estimate of (1 − ρ) to obtain an estimate of �2

gy
 for the 

current year.
4.	 Rerun the model for GCA1-2020 data by plugging in 

and fixing �2

g
 and �2

gy
 at their estimates from step 3, and 

using the other variance estimates obtained previously 
from the GCA1-2020 model. The error variance–covar-
iance matrix of GBLUPs obtained from the rerun model 
will be used for the simulation, as described in more 
detail in subsection The general simulation approach.

A key challenge with this approach is how ρ in the first 
step above can be estimated in the multi-year analysis. Here, 
we propose two alternative analyses for this purpose, i.e. 
a combined-cycles (CYC) and a multi-year analysis based 
on GCA1 data of the years 2016 to 2019 (MY). Figure 2 
shows the differences in dataset structure between the CYC 
and MY analyses. Applying the CYC analysis, we used 
three complete selection cycles and one incomplete cycle, 

Fig. 1   The structure of selection cycles in the rye hybrid breeding program. The number of entries decreases due to selection in each GCA trial. 
In each cycle, inbred lines are crossed with two testers of the opposite gene pool
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as shown in Fig. 2. All entries in each GCA trial were used 
in the CYC analysis. On the other hand, the MY analysis 
only used the GCA1 datasets from the years 2016 to 2019. 
The checks were removed in both datasets. Table 1 sum-
marizes the comparisons between the CYC analysis and the 
MY analyses regarding data handling, analysis strategy, and 
dataset. Moreover, total entry number from all cycles per 
pool is given in Table 2.  

CYC and MY models

For the CYC and MY analyses, a two-stage approach was 
used. In the CYC analysis, the approach was applied for 
each cycle, while in the MY analysis, the approach was 
applied directly in the four-year dataset. In Stage 1, the entry 
means per year across locations were computed. Thus, the 

following linear mixed model was fitted per year for pheno-
typic analysis at the plot level:

where Y is the vector of observed plot yields, 1 is a vec-
tor of ones, μ is the general mean, � is the design matrix 
relating to fixed effects of the entry (g), � is the incidence 
matrix relating to random effects followed with the sub-
scripts t, l, s, r, and b relating to the factors tester, loca-
tion, trial within location, replicate within trial, and block 
within replicate, respectively, and � is the residual associ-
ated with the observation � . The distributional assumption 
for each random effect, ��, �� , ��� , ���, ���, ���� , and �����, 
was a Gaussian distribution with zero mean, independence 
of individual effects, and constant variance, as delineated 
in Appendix (Table 12). The entry effect, �� , was fixed in 
Stage 1 to obtain the adjusted entry means via generalized 
least squares, and so avoid double shrinkage (Smith et al. 
2001; Piepho et al. 2012). Thus, the adjusted entry means 
are empirical best linear unbiased estimates (EBLUEs) of 
the entries’ expected values under the assumed model. The 
residual variance structure was heterogeneous with location-
specific variance and independent error effects, as described 
in Appendix (Table 12).

(1)
� = �μ + ���� + ���� + ���� + ������

+ ������ + ������ + �������� + ���������� + �

Fig. 2   Illustration of datasets used for the CYC and MY analyses. In CYC, the GCA1, GCA2, and GCA3 datasets from all cycles are combined. 
In MY, the dataset comprises the GCA1 data of the years 2016 to 2019

Table 1   The comparisons between CYC and MY analyses in terms of analysis strategy and datasets

Properties CYC​ MY

Analysis strategy Obtain a single ρ estimate from combined Cycle 1 to Cycle 
4 data for the estimates of �2

g
 and �2

gy
 adjustment in the 

GCA1 (2020) analysis

Obtain a single ρ estimate from GCA1 data of the years 
2016 to 2019 for the estimates of �2

g
 and �2

gy
 adjustment 

in the GCA1 (2020) analysis
Datasets connectivity The datasets have a connectivity within a cycle Using only the GCA1 dataset for all four years

Table 2   The total entry number 
from all cycles per pool

a After selection from the previ-
ous GCA​

Total entry number

Seed pool Pollen pool

GCA1 3931 7474
GCA2a 353 669
GCA3a 27 53



2895Theoretical and Applied Genetics (2022) 135:2891–2905	

1 3

In Stage 2, the adjusted entry means were assembled 
across several years, i.e. four years for the MY analysis 
and five years for the CYC analysis since it included the 
GCA2-2020 dataset. The following GP model was fitted at 
this stage:

where ���� is the vector of entry-year means, �� is the inci-
dence matrix of year main effects, �� represents the inci-
dence matrix of entries, �� is the vector of GBV, which is 
defined as �� = �� , where � is the N × P marker genotypes 
matrix for N entries and P markers, and � is the vector of 
marker effects, � ∼ N(0, ��2

g
) where �2

g
 is the genomic vari-

ance. Following these assumptions, then we have 
�� ∼ MVN(0,��2

g
) where � = ��� . Here, � was mean-

centred and scaled according to the VanRaden (2008) 
method. There are alternative methods for computing 
genomic relationship matrices such as Astle and Balding 
(2009), Endelman and Jannink (2012), Yang et al. (2010), 
and the recent method using average semivariance by Feld-
mann et al. (2020), but these are all equivalent in terms of 
the resulting BLUPs of �� . The key component of Eq. 2 is a 
GBV × year interaction effect, ��� . Thus, ��� is a block-diag-
onal matrix with blocks given by the coefficient of entries in 
a given year, ⊕J

j=1
�gyj

 , where j is a subscript for years, and 
��� ∼ MVN(0,�gy) is the vector of GBV-by-year effects, 
where �gy = ⊕J

j=1
�j𝜎

2

gy
 , �j is the kinship of all entries tested 

in the jth year, as shown in Appendix (Table 13). The vector 
� is the residual term, where var(�) is approximated using a 
diagonal variance–covariance matrix as proposed in Smith 
et al. (2001). The two-stage weighted approach is useful 
when the single-stage approach burdens the computing time. 
Furthermore, a cross-validation study by Buntaran et al. 
(2020) demonstrated that the two-stage approach with 
Smith’s weighting was competitive to the single-stage 
approach.

Current‑year model

A single-stage GP model was used to obtain the apparent 
(unadjusted) GBV variance (�2

g̃
) . The implemented model is 

Eq. 1 used in Stage 1 of the two-stage approach in the CYC 
and MY analyses, but the entry effect was replaced with the 
GBV as follows:

All terms are defined as for Eq. 1 and explained in Appen-
dix (Table 12), while ����̃ is defined as in Eq. 2 and is 
explained in Appendix (Table 13). From this model, an esti-
mate of �2

g̃
 was obtained, which in its turn is used to get 

(2)���� = �μ + ���� + ���� + ������ + �

(3)
� = 1μ + ���� + ���� + ����̃ + ������

+ ������ + ������ + �������� + ���������� + �

estimates of �2

g
 and �2

gy
 by using ρ from the long-term data 

as described in GCA1 response to selection assessment sub-
section. Equation 3 was rerun with only one iteration by 
replacing ����̃ with ����̃ = ���� + ������ . Note that the 
design matrix for ��� is �� , which is the basis of the approach 
suggested here. Thus, the estimate of �2

g̃
 was replaced with 

the estimates of �2

g
 and �2

gy
 . Also, in the rerun, the estimates 

of �2

g
 and �2

gy
 and other variance estimates of the random 

effects from Eq.  3 were held fixed at the prespecified 
values.

GCA2 response to selection assessment

The GCA2 trial is crucial since in this trial the entries will 
be selected for the final trial of a selection cycle, i.e. the 
GCA3. Thus, it is desirable to use the GCA1 and GCA2 
datasets for the GCA2 analysis. However, there is a chal-
lenge in using the previous trials’ data, i.e. the GCA1. If 
all entries from GCA1 are also used, then an estimate of 
the genetic variance applying to GCA1 is obtained (Piepho 
and Möhring 2006), whereas a variance estimate applying 
to GCA2 is needed.

Since the dropped-out entries from GCA1 have no con-
tribution to the genetic variance in GCA2, we selected the 
common entries that went through to GCA2 from GCA1 as 
depicted with the transparent red cylinders in Fig. 3. In this 
assessment, there were four selection cycles available from 
the main dataset, as shown in Fig. 3. The checks were also 
removed as in the GCA1 assessment.

GCA2 model

For each cycle, a GP model was implemented using a single-
stage approach. This was feasible due to only a relatively 
small number of entries in the datasets. As in the GCA1 
model, the single-stage GP model for the GCA2 has a key 
component, i.e. a GBV × year interaction effect (���) . The 
single-stage model is fitted in the plot level as follows:

This single-stage model is used as the year-wise analysis. 
Thus, the tester (t), location (l), entry × tester (gt), 
entry × location (gl), trial within location (ls), the replication 
(lsr), and the incomplete block (lsrb) effects were nested 
within years (y). Furthermore, the distributional assumption 
for each random effect, �� , ��(�) , ��(�) , ���(�) , ���(�) , ���(�) , ����(�) , 

(4)

� = 1μ + ���� + ��(�)
��(�) + ��(�)

��(�)

+ ���� + ������ + ���(�)
���(�) + ���(�)

���(�)

+ ���(�)
���(�) + ����(�)

����(�) + �����(�)
�����(�) + �
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and �����(�), was Gaussian with zero mean, assuming inde-
pendence of individual effects and year-specific variance to 
mimic the year-wise analysis. The GBV main effects 

(

��
)

 
and the GBV × year interaction effects 

(

���
)

 had the same 
variance–covariance structures as described in Eq. 2. For the 
residual variance, its structure was heterogeneous with year-
location-specific variance and independent error effects. The 
variance–covariance structure for each term in the model is 
explained in Appendix (Table 14).

The general simulation approach

The fitted linear mixed models have a random vector 
� =

(

�1, �2,… , �N
)T of the GBV, �i (i = 1, ...,N) of the N 

entries in the current population from which a selection of a 
subset of n < N entries is to be performed. The random 
effects are assumed to be multivariate normal with zero 
mean and variance–covariance matrix var(�) = ��2

g
 , where 

� is the kinship matrix computed from markers as described 
in CYC and MY models, and �2

g
 is a genomic variance. The 

random GBV effect is fitted within a larger linear mixed 
model accounting for all sources of variation due to the 
experimental design. In the MET framework, the model for 
phenotype analysis may be fitted either in a single stage or 
in several stages, as we demonstrate in this study. In any 
case, the random effects � will ultimately be estimated based 
on the GBLUPs, �̂ , from the fitted linear mixed models.

The key of the simulation approach is to simulate a large 
number S of realizations of the genetic effects of interest, 
� , and the corresponding estimated GBLUPs, �̂ , from their 
joint distribution and determine any quantity of interest 

related to the response to selection from this simulated dis-
tribution. We here use the fact that the joint distribution of 
� and �̂ is multivariate normal with zero mean and vari-
ance–covariance matrix

where � = var
(

�̂
)

 is the unconditional variance of �̂ , 
� = � − � , � = �σ2

g
 , and the � = var

(

�̂ − �
)

 , which can 
be obtained routinely from the inverse of the coefficient 
matrix of the mixed model equations (MME) (McLean et al. 
1991; Piepho and Möhring, 2007).

We use a decomposition of the Ω matrix given by:

This decomposition can be obtained by Cholesky decom-
position, in case the matrix Ω is positive-definite, or using a 
singular value decomposition (SVD) in the case of the Ω is 
not positive-definite.

We then simulate the values of ��

= (�
�

, �̂
�

) by:

where � is a 2N-random vector drawn from a standard 
normal distribution, where N is the size of � . For a single 
simulation of � , the vector � is generated using a random 
number generator, e.g. based on the Box-Muller method 
with the rannor() function in SAS, or the rnorm() 
function in R. The simulations were conducted in R 4.1.0 
(R Core Team 2021) after the GCA1 and GCA2 models 
were fitted in ASReml-R 4.1.0.160 (Butler et al. 2017) using 
RStudio (RStudio Team 2021). The R codes for fitting the 

(5)� =

[

� �

� �

]

(6)� = ��
�

(7)� = ��

Fig. 3   Illustration of the 
selected entries for the GCA2 
assessment. The transparent red 
cylinders illustrate the selected 
common entries in GCA1 and 
GCA2
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GCA1 models are provided in the electronic supplementary 
materials.

Quantities of interest estimated from the simulated 
distribution

For each of the S simulation runs, the n best entries based 
on their GBLUPs �̂ were selected. Then, across all S simu-
lation runs, we determined the proportion of cases where 
the selected set of n entries containing the m truly best ones 
based on the associated true genetic values in � . This was 
done for a range of values for n and m ≤ n . The probability 
plots showing the proportion of cases in which the selected 
set of n entries contain the m truly best one were generated 
using the ggplot2 package (Wickham, 2016). Addition-
ally, Pearson’s product-moment correlations between the �̂ 
and � , and between rank(�) and rank

(

�̂
)

 were computed. The 
benefit of correlations based on the ranks is that they are 
not affected by the extreme values of �̂ and � . The R code 
for conducting the simulation and generating the probability 
plot is provided in the electronic supplementary materials.

Results

GCA1 response to selection assessment

In the GCA1 assessment, the performance of the current-
year model depends on the value of �̂  from the multi-year 
analysis. The estimate �̂  depends on the relative size of the 
variance estimates of GBV 

(

σ2
g

)

 and GBV × year interaction 

effects 
(

σ2
gy

)

 . The variance estimates for year main effects 
(

σ2
y

)

 , GBV main effects 
(

σ2
g

)

 , the GBV × year interaction 

effects 
(

σ2
gy

)

 , and the estimates of �̂  along with their associ-
ated standard errors in the CYC and MY analyses based on 
Eq. 2 are summarized in Table 3. As expected, the estimates 
of σ2

y
 were the largest compared to the other variance esti-

mates. Moreover, their standard errors were very large. In 
the seed pool, the relative size of the estimate of σ2

gy
 with 

respect to σ2
g
 was higher in the CYC analysis than in the MY 

analysis. Thus, the estimate �̂  obtained from the CYC analy-
sis (0.213) was considerably smaller than from the MY 
analysis (0.582). In the pollen pool, the relative size of the 
estimate of σ2

gy
 with respect to σ2

g
 was smaller in the CYC 

analysis than in the MY analysis. Thus, the estimate �̂  from 
the CYC analysis (0.578) was higher than from the MY 
analysis (0.498). Furthermore, the standard errors of �̂  in the 
CYC analysis were slightly smaller than those in the MY 
analysis for both pools. The standard error of the estimate of 
ρ was computed via the delta method (Lynch and Walsh 
1998; Ver Hoef 2012) as implemented in the vpredict() 
function of ASReml-R (Butler et al. 2017).

The asymptotic correlations between the GBV and 
GBV × year variance estimates by the CYC and MY anal-
yses for both pools given in Table 4 are negative. The 
asymptotic correlation in the CYC analysis was higher 
than in the MY analysis in the seed pool, while in the 

Table 3   Variance estimates and standard errors for year 
(

σ2
y

)

 , GBV 
(

σ2
g

)

 , GBV × year interaction effects 
(

σ2
gy

)

 in CYC and MY based on 
Eq. 2, and the �̂  of the CYC and the MY analyses

SE standard error

Pool Variance MY CYC​

Estimate SE Estimate SE

Seed pool
σ2
y

19.796 16.071 25.275 17.661
σ2
g

1.960 0.203 1.279 0.242
σ2
gy

1.406 0.151 4.713 0.279
�̂ 0.582 0.044 0.213 0.038

Pollen pool
σ2
y

19.882 16.243 18.020 12.757
σ2
g

3.338 0.280 4.268 0.289
σ2
gy

3.367 0.221 3.120 0.187
�̂ 0.498 0.032 0.578 0.026

Table 4   Asymptotic 
correlations between the GBV 
and GBV × year variance 
estimates by the CYC and MY 
analyses for both pools

Pool Method

MY CYC​

Seed pool −0.500 −0.565
Pollen pool −0.469 −0.399

Table 5   Variance estimates of the apparent GBV 
(

σ2
g̃

)

 , and the GBV 
(

σ2
g

)

 , and the GBV × year 
(

σ2
gy

)

 interaction effects in GCA1-2020

Pool Variance First fit of 
GCA1-2020

After adjustment 
using �̂  value

MY CYC​

Seed pool
σ2
g̃

3.069 – –

σ2
g

– 1.787 0.655
σ2
gy

– 1.282 2.414
Pollen pool

σ2
g̃

4.418 – –

σ2
g

– 2.199 2.552
σ2
gy

– 2.218 1.866
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pollen pool, the asymptotic correlation in the CYC analy-
sis was smaller than the MY analysis. The pollen pool had 
smaller correlations than the seed pool, with the strong-
est correlation equal to −0.565. Thus, in general, there 
was mild confounding of effects between the GBV and 
GBV × year effects. The asymptotic correlations were 
computed from the inverse of the average information (AI) 
matrix of the variance and covariance estimates.

The variance component estimates of σ2
g̃
 , σ2

g
 , and σ2

gy
 for 

the current year of both pools with each adjustment 
method are given in Table 5. The estimates of σ2

g̃
 were 

obtained from the first fit of GCA1-2020 using Model 3, 
which were 3.069 and 4.418 for the seed and pollen pools, 
respectively. Then, using the �̂  value from each MY and 
CYC methods, the estimates of σ2

g
 and σ2

gy
 were computed, 

and Model 3 was refitted using these estimates σ2
g
 and σ2

gy
 . 

The estimate of σ2
g
 resulted in smaller values in the MY 

analysis for the pollen pool than with the CYC analysis, 
while in the seed pool, the estimates were on the opposite. 
Thus, the smaller �̂  value in the CYC analysis in the seed 
pool led to a higher estimate of σ2

gy
.

Table 6 presents the computing time for all analyses for 
GCA1. As expected, with higher entry numbers, the com-
putation time increased, as shown for the pollen pool. The 
computing time was more than 10 h for the pollen pool on 
a desktop computer with an Intel i7 CPU, 64 GB RAM, 
and the Windows 10 (Version 21H2) 64-bit operating 

system. This extensive computing time was due to the 
presence of GBV × year interaction effect directly in the 
model. The computing time for the current-year analysis 
(GCA1-2020) was considerably longer in the pollen pool 
than in the seed pool due to the higher number of entries. 
Moreover, the computing times for the simulations were 
marginal compared to the computing times for fitting the 
GP models.

The mean correlation coefficient between the true genetic 
values (�) and the GBLUPs 

(

�̂
)

 and the mean correlation 
coefficient between rank(�) and rank

(

�̂
)

 of the GCA1 assess-
ment for both pools based on 100 K simulations are pre-
sented in Table 7. Also, it is concordant with the breeder’s 
objective to correctly rank entries. In the pollen pool, all 
correlation coefficients of the MY analysis were lower than 
the CYC analysis, while in the seed pool, all correlation 
coefficients of the CYC analysis were lower than the MY 
analysis. This is explained by the relative GBV × year 

(

σ2
gy

)

 

variance estimates compared to the GBV 
(

σ2
g

)

 variance esti-
mates (Table 7).

The quantity of interest from the simulation is 
depicted as a plot of the probabilities of obtaining truly 
best entries for each selected proportion of the entries 
based on the GBLUPs, as presented in Fig. 4. For a 
simulation with 100 K iterations, the seed pool took 
around 7 min and the pollen pool took around 17 min on 
a desktop computer with an Intel i7 CPU, 64 GB RAM, 
and the Windows 10 (Version 21H2) operating system. 
The probability plots for the CYC and MY analyses are 
noticeably different in the seed pool, in which the prob-
ability plot for MY shows curves approaching a prob-
ability of one faster compared to the CYC analysis. The 
discrepancy of the probability between MY and CYC 
in the seed pool was due to the much smaller value of �̂  
from the CYC analysis. Also, the correlation between 
true genetic values and GBLUPs was only 0.421 and 
so affected the shape of the curve for seed pool in the 
CYC analysis. In the CYC analysis, the probability of 
obtaining the 15 truly best entries when the number of 
selected entries (n) is 50% of N was only around 0.21, 
while with the MY analysis, the probability was around 
0.80. In the pollen pool, both MY and CYC showed a 
similar trend. Both analyses implied that by selecting 
a small proportion of entries, i.e. 30%, the probability 
of obtaining truly ten best entries was around 0.76 and 
0.62 for CYC and MY analyses, respectively. Moreo-
ver, Fig. 4 agrees with the correlation coefficients in 
Table 8, in that the higher correlation between the true 
genetic values and the GBLUPs, the higher the proba-
bility achieved by selecting a smaller number of entries. 

Table 6   The computing time for Eq. 2 in the GCA1 assessment on a 
desktop computer with an Intel i7 CPU, 64 GB RAM, and the Win-
dows 10 (Version 21H2) operating system

Methods and datasets Computing time

Seed pool Pollen pool

MY  ~ 2 h  ~ 12 h
CYC​  ~ 2.3 h  ~ 15 h
GCA1-2020 (first run)  ~ 53 s  ~ 7 min
GCA1-2020 (Rerun and obtain C)  ~ 1.5 min  ~ 10 min

Table 7   Mean correlation coefficient between the true genetic values 
(�) and the GBLUPs 

(

�̂
)

 , and mean correlation coefficient between 
rank(�) and rank

(

�̂
)

 in the GCA1 assessment for both pools

Pool Correlations Correlation estimate

MY CYC​

Seed pool r
(

�, �̂
)

0.688 0.420

r[rank(�), rank
(

�̂
)

] 0.665 0.396
Pollen pool r

(

�, �̂
)

0.653 0.703

r[rank(�), rank
(

�̂
)

] 0.631 0.682



2899Theoretical and Applied Genetics (2022) 135:2891–2905	

1 3

Fig. 4   Plots of the probability of obtaining the m truly best entries based on the GBLUPs for each selected number of entries (expressed as per-
centage of N) from GCA1 assessment of each pool. The different coloured entries indicate the different numbers (m) of truly best entries

Table 8   Variance estimates and 
standard errors for year 

(

σ2
y

)

 , 
GBV 

(

σ2
g

)

 , GBV × year 

interaction effects 
(

σ2
gy

)

 for 
each cycle of the GCA2 
assessment

SE standard error

Pool Variance Estimate and standard error (SE)

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Estimate SE Estimate SE Estimate SE Estimate SE

Seed pool
σ2
y

9.236 25.546 6.699 45.889 0.000 – 0.000 –
σ2
g

0.634 0.321 0.697 0.228 1.306 0.338 0.320 0.212
σ2
gy

0.486 0.251 0.086 0.125 0.000 – 0.247 0.187
Pollen pool

σ2
y

0.000 – 15.696 56.278 0.000 – 0.000 –
σ2
g

4.269 0.754 0.707 0.206 1.707 0.388 0.396 0.165
σ2
gy

0.780 0.305 0.136 0.111 0.452 0.200 0.193 0.141
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GCA2 response to selection assessment

The variance estimates and standard errors for year 
(

σ2
y

)

 , 

GBV 
(

σ2
g

)

 , and GBV × year interaction 
(

σ2
gy

)

 effects for each 

cycle are given in Table 8. In Cycle 4, the σ2
g
 estimates were 

the smallest and had the smaller ratio with the σ2
gy

 estimates 
for both pools. In Cycles 1 to 3, both pools had a relatively 
higher ratio of σ2

g
 and σ2

gy
 estimates.

In the seed pool, the year variance estimates in Cycle 3 to 
Cycle 4 were zero, while in the pollen pool, it was in the 
Cycle 1, Cycle 3, and Cycle 4. Furthermore, in the seed pool, 
the σ2

gy
 estimate in Cycle 3 was also zero. On the other hand, 

the year variance estimate in Cycle 2 of the pollen pool was 
relatively large, i.e. 15.696. Furthermore, the standard errors 
for the year variance estimates were large for both pools. In 
general, when a variance estimate goes to zero, this is pos-
sibly biased due to a small sample size. In our study, the 
number of years was only two years. Thus, this might be the 
reason that the year variance estimates were mostly zero.

The asymptotic correlations between the GBV and 
GBV × year variance estimates of each cycle for both pools 
presented in Table 9 are negative with values ranging from 
−0.21 to −0.49. However, there was a trend that the asymp-
totic correlations increased from Cycle 1 to Cycle 4 in both 
pools. The asymptotic correlations of the seed pool were 
mostly higher than the pollen pool. The highest asymptotic 
correlation was −0.493 in the Cycle 4 of the seed pool. In 
the same cycle, the asymptotic correlation for the pollen 
pool was −0.382. In the Cycle 3 of the seed pool, the asymp-
totic correlation was zero due to the variance estimate for 
GBV × year was zero. So, generally, there was only mild 
confounding between the GBV and GBV × year effects.

Table 10 presents the computing time of each cycle analy-
sis for each pool. Due to relatively much smaller number of 
entries, the seed pool took around 2 to 5 s, while in the pol-
len pool, it took around 13 to 15 s. Furthermore, the GCA2 
analyses were done using the single-stage approach, which 
was feasible due to a small number of entries and the number 
of years being only two.

Table 11 provides the mean correlation coefficients 
between true genetic values (�) and the GBLUPs 

(

�̂
)

 , and 

the mean correlation coefficients between rank(�) and 
rank

(

�̂
)

 of each cycle of the GCA2 assessment for both 
pools based on 100 K simulations. The lowest correlation 
coefficients for both pools were observed in Cycle 4 due 
to smaller σ2

g
 estimates and their ratio to the σ2

gy
 estimates 

compared to the other cycles. The correlation coefficient 
between � and �̂ was 0.616 and 0.673 for the seed and pol-
len pools, respectively. These coefficients were much 
lower than the correlation coefficients in other Cycles in 
both pools. The pattern of the correlation coefficients of 
the rank of � and �̂ was the same as the correlation coef-
ficients between � and �̂.

The quantity of interest from the simulation for GCA2 
assessment is depicted as a probability plot of obtaining 
truly best entries given the number of selected entries in 
Fig. 5. The 100 K simulations took around 2 min for each 
cycle in each pool on a desktop computer with an Intel i7 
CPU, 64 GB RAM, and the Windows 10 (Version 21H2) 
operating system. As we can see, the differing number of 
entries played a significant role. The pollen pool had a 
relatively larger number of entries compared to the seed 
pool. The probability of obtaining the truly best entry was, 
therefore, higher, especially in Cycle 1. In Cycle 1, due to 
a much lower number of entries in the seed pool, selecting 
20% entry results in a probability of nearly 0 of having 
picked the ten truly best entries, while in the pollen pool, 
the probability was around 0.6. In Cycle 4, although the 
number of entries in both pools was decent, both pools had 
relatively low ratios of the GBV and GBV × year variance 
estimates as shown in Table 9, and so the correlations 

Table 9   Asymptotic correlations between the GBV and GBV × year 
variance estimates of each cycle of the GCA2 assessment for both 
pools

Pool Asymptotic correlation

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Seed pool −0.400 −0.268 0.000 −0.493
Pollen pool −0.205 −0.307 −0.333 −0.382

Table 10   The computing time for all analyses in the GCA2 assess-
ment on a desktop computer with an Intel i7 CPU, 64 GB RAM, and 
the Windows 10 (Version 21H2) operating system

Pool Computing time

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Seed pool ∼2 s ∼4 s ∼5 s ∼4 s
Pollen pool ∼13 s ∼13 s ∼15 s ∼15 s

Table 11   Mean correlation coefficient between the true genetic 
values (�) and the GBLUPs 

(

�̂
)

 , and mean correlation coefficient 
between rank(�) and rank

(

�̂
)

 in the GCA2 assessment for both pools

Pool Correlations Correlation estimate

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Seed pool r
(

�, �̂
)

0.736 0.820 0.865 0.616

r[rank(�), rank
(

�̂
)

] 0.700 0.790 0.839 0.578
Pollen pool r

(

�, �̂
)

0.899 0.804 0.837 0.673

r[rank(�), rank
(

�̂
)

] 0.883 0.778 0.816 0.645
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between true GBV and GBLUPs were relatively low, as 
shown in Table 12. Thus, the probability of obtaining truly 
best entries was relatively low compared to Cycles 2 and 3. 
For example, having the ten truly best entries by selecting 
20% of the entries only achieved a probability of around 
0.06 for the pollen pool and nearly 0 for the seed pool.

Discussion

The response to selection has been widely used in plant 
breeding programs to measure genetic gain. Our proposed 
simulation approach allows breeders to obtain information 
on how well genomic selection can be made for the next 
stage. The response to selection can be measured in terms 
of the probability of selecting the truly best entry based on 
the number or proportion of selected entries. Knowing the 
probability of selecting the best m lines based on the pro-
portion of the selected lines allows breeders to take deci-
sions as to modifications of selection fractions in selection 
stages, trials, and years with increased error variances of 

mean estimates due to unfavourable environmental con-
ditions (e.g. drought) to ensure that a certain portion of 
truly best genotypes are continued to the next selection 
stages. Likewise, in labour-intensive trait introgression 
(conversion) procedures with large numbers of entries in 
early selection stages, this probability allows optimizing 
the allocation of technical and personnel resources through 
an estimate of the risk of potential loss of superior lines 
in dependence of the number of the total number of con-
verted entries.

In the GCA1, the number of entries is normally large 
since this is the first year that all the entries enter the GCA 
testing trial after a per-se line selection stage for agronomic 
(non-yield) traits. In comparison with using only GCA1 
from the years 2016 to 2019 as in the MY analysis, the 
CYC analysis benefits from using the entries in the selected 
fractions of GCA2 and GCA3 improving the connectivity 
across GCA trials. In the same vein, Smith et al. (2021) 
also reported that the poor connectivity could lead to poor 
estimated genetic variance parameters, and so decreasing the 
genetic gain (Sales and Hill 1976a, b). Furthermore, the use 

Fig. 5   Plots of the probability of obtaining the m truly best entries 
based on the GBLUPs for each selected number of entries (expressed 
as percentage of N) of each cycle in the GCA2 assessment for each 
pool. The different coloured entries indicate the different numbers 

(m) of truly best entries. In general, the pollen pool has higher prob-
ability to obtain the truly best entries than the seed pool. In Cycle 4, 
both pools have a relatively lower probability to obtain the truly best 
entries compared to the other cycles
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of the kinship matrix to model GBV × year interactions can 
be advantageous, as Bernal-Vasquez et al. (2017) reported. 
By using the kinship, we gained more connectivity across 
years. This is because, even when the entries were only 
available in one year, the same marker alleles are assessed 
across years.

Discrepancies between MY and CYC in the pollen pool 
were less pronounced compared to the seed pool. The 
connectivity in the CYC analysis slightly improved the 
estimate of ρ in the pollen pool but not in the seed pool, 
which might be due to the genetic sampling in the seed 
pool population. In the seed pool, the CYC analysis had 
higher probability of bias because, although the GCA2 and 
GCA3 entries improve connectivity, the selected fraction 
may be composed of lines that trace back in their pedi-
gree to only very few parental components (pre-dominant 
family selection) that show a very particular change of 
ranking between years that leads to an over-estimation of 
GBV × year and an underestimation of ρ. Furthermore, 
Table 4 shows that the GBV variance estimates of the 
seed pool are far smaller compared to the pollen pool in 
both MY and CYC. The risk of such a bias is expected to 
be potentiated when the environmental conditions change 
considerably between years. Here, the year of 2017 was 
extremely wet, whereas the years of 2018, 2019, and 2020 
were very dry. Such effects can lead to biases in the esti-
mates of relative GBV × year estimates based on the effects 
of pre-dominant families.

We have also shown that the simulation for the GCA2 
assessment is useful to measure the selection accuracy for 
the final trial in the GCA3. Thus, the simulation was only 
based on the selected entries that progressed to GCA2.

In this study, the number of years was not large, i.e. only 
4 years in the GCA1 assessment, and the simulations were 
conducted using the estimates produced by frequentist resid-
ual maximum likelihood method (REML). Furthermore, as 
demonstrated by our results, estimation of the variance com-
ponents for GBV and GBV × year effects is the Achilles’ 
Heel of the whole approach. These variance components 
are expected to display year-to-year variation, which is why 
our approach prescribes re-estimation of each variance in a 
new year using a long-term estimate of � . The expected year-
to-year variability, however, suggests that a fully Bayesian 
approach that operates on a prior distribution for each vari-
ance component, rather than a fixed value, may be beneficial. 
The key challenge with such a framework is how to properly 
inform these priors and the need to integrate long-term data 
from an ongoing breeding program.

An approach that can be beneficial is to continuously use 
a Bayesian framework to collect more information from the 
previous years and use it as a prior information to update the 
current-year analysis. This approach is known as Bayesian 
updating (Sorensen and Gianola 2002). In Bayesian updat-
ing, the prior distribution is based on the previous posterior 
distribution. In this case, the Bayes theorem has “memory”, 
and the inferences can be updated sequentially. For example, 
for the GCA1 analysis, the prior distribution for the current-
year analysis can be obtained from the posterior distribution 
of many previous GCA1 or Cycle analyses. Therefore, a fur-
ther study with the Bayesian updating framework would be 
worthwhile to investigate in the future.

Furthermore, the Gibbs sampling for estimating vari-
ance components might be appealing compared to REML 
since it used prior distribution that could produce more 
accurate variance estimates (Van Tassell et al. 1995). In the 
GCA2 assessment, we only chose the full set of entries that 
progressed to GCA2 from GCA1, and so we did not face 
the missing-not-at-random pattern that can lead to a bias 
by using REML (Piepho and Möhring, 2006; Hartung and 
Piepho, 2021). However, the year variance estimates were 
mostly zero in the GCA2 assessment, resulting from a non-
negativity constraint on REML estimates. In this study, the 
zero estimates of the year variance might be due to a small 
number of years. Modelling the year effect as fixed can be an 
alternative, as shown in Table S.1 in Supplementary Tables. 
In Table S.1, the GBV and GBV × year variance estimates 
are very close to their estimates in Table 4. Thus, the esti-
mates of � in Table S.2 were also very similar to the esti-
mates in Table 4. A similar pattern also was shown for the 
GCA2 assessment. The variance component estimates of 
GBV and GBV × year in Table 9 and in Table S.3 of Sup-
plementary Tables are very similar. Thus, modelling the year 
effect as fixed can be an alternative option.

Despite issues around the best dataset for estimating the 
variance components, we demonstrated that the genetic 
gain and the probabilities of selection of superior can-
didate lines can be measured through simulations in GP 
framework, either using CYC or MY analyses. We recom-
mend choosing the analysis based on the breeding popula-
tion structure. The MY analysis is suitable when the popu-
lation structure is highly influenced by strong selection 
intensity, e.g. the seed pool, while the CYC analysis can 
be chosen when there is no pre-dominant selection, e.g. 
the pollen pool. A further comparative study to compare 
the MY and CYC approaches using other crops and breed-
ing populations is, therefore, worthwhile to be conducted.
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Appendix

See Tables 12, 13, and 14.  

Table 12   The variance–
covariance structures for each 
term in Eqs. 1 and 3

The subscript l denotes the l th location; L is the number of locations

Term and assumption Variance–covariance Remarks

�� ∼ N(�,��) �� = �σ2
l

Identity variance structure for each random effect
�� ∼ N(�,�� ) �� = �σ2

t

��� ∼ N(�,��� ) ��� = �σ2
gt

��� ∼ N(�,���) ��� = �σ2
gl

��� ∼ N(�,���) ��� = �σ2
ls

���� ∼ N(�,���� ) ���� = �σ2
lsr

����� ∼ N(�,�����) ����� = �σ2
lsrb

� ∼ N(�,�) � = ⊕L
l=1

�l

�l = ��2

εl

Heterogeneous location-specific consisting of a 
block-diagonal matrix with diagonal element 
�2

εl
, l = 1, 2,… ,L

Table 13   The variance–covariance structures for each term in Eqs. 2 and 3

The subscript j denotes the j th year; J is the number of years.
† Only applies to Eq. 2

Term and assumption Variance–covariance Remarks

�� ∼ MVN(�,��2

g
) ��2

g
�� = �� , where � , is the marker genotypes 

matrix, � is the vector of marker effects, 
� ∼ N(0, ��2

g
) , where �2

g
 is the genomic 

variance. Based on these assumptions 
�� ∼ MVN(0,��2

g
) , where � = ���

The � matrix is the genomic relationship
��� ∼ MVN(�,���)

†
�gy = ⊕J

j=1
�j𝜎

2

gy
The matrix ��� is a block-diagonal matrix with 

blocks given by the coefficient of entries in a 
given year, ⊕J

j=1
���j

 , where j is the j th year 
(

���j

)

,

��� =

⎡

⎢

⎢

⎢

⎣

���1
� � �

� ���2
� �

� � ⋱ �

� � � ���j

⎤

⎥

⎥

⎥

⎦

 and

var
(

���
)

= ��� , where ��� = ⊕J
j=1

�j𝜎
2

gy
 , �j is 

the kinship of all entries tested in the j th year
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Table 14   The variance–covariance structures for each term in Eq. 4 for the GCA2 assessment

The subscript j denotes the j th year and subscript l denotes the l th location. The J is the number of years and L is the number of locations

Term and assumption Variance–covariance Remarks

�� ∼ N(�,��) �� = �2

y
Identity variance structure

��(y) ∼ N(�,��) �� = ⊕J
j=1

��(j)

��(j) = �σ2
l(j)

Heterogeneous year-specific variance structure in which the diagonal elements �2

l(j)
 , �2

t(j)
 , 

�2

gt(j)
 , �2

gl(j)
 , �2

ls(j)
 , �2

lsr(j)
 , �2

lsrb(j)
 differ for j th year for each ��(j) , �� (j),��� (j)
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