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Abstract
Crop wild relatives (CWRs) are recognized as the best potential source of traits for crop improvement. However, successful 
crop improvement using CWR relies on identifying variation in genes controlling desired traits in plant germplasms and 
subsequently incorporating them into cultivars. Epigenetic diversity may provide an additional layer of variation within 
CWR and can contribute novel epialleles for key traits for crop improvement. There is emerging evidence that epigenetic 
variants of functional and/or agronomic importance exist in CWR gene pools. This provides a rationale for the conservation 
of epigenotypes of interest, thus contributing to agrobiodiversity preservation through conservation and (epi)genetic monitor-
ing. Concepts and techniques of classical and modern breeding should consider integrating recent progress in epigenetics, 
initially by identifying their association with phenotypic variations and then by assessing their heritability and stability in 
subsequent generations. New tools available for epigenomic analysis offer the opportunity to capture epigenetic variation and 
integrate it into advanced (epi)breeding programmes. Advances in -omics have provided new insights into the sources and 
inheritance of epigenetic variation and enabled the efficient introduction of epi-traits from CWR into crops using epigenetic 
molecular markers, such as epiQTLs.

Introduction

Historically, crop domestication and improvement involving 
recurrent selection to increase the frequency of desirable 
yield traits led to a massive loss of genetic variation (Bevan 
et al. 2017).

Many molecular studies confirmed a higher level of diver-
sity in crop wild relatives (CWRs) than in the cultivated 

species, indicating that CWR can be used as a source for 
new variability in breeding programmes (Kondić-Špika 
et al. 2016; Heywood 2011; Jones et al. 2013). Thus, CWRs 
are recognized today as the best potential source for crop 
improvement (Bevan et al. 2017; Huang et al. 2016). Moreo-
ver, the successful exploitation of CWRs in crop improve-
ment relies on identifying genetic variation in genes con-
trolling desired traits in plant germplasm and subsequently 
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incorporating them into cultivars (Nass and Paterniani 2000; 
Klymiuk et al. 2019). Plant genetic resources (PGRs) play 
a crucial role in this scenario, by offering a vast reservoir 
of important novel interesting traits and allelic variants. In 
addition, PGRs can contribute to the utilization of new spe-
cies suitable for organic production, sustainable agriculture, 
food diversity, and stability of agricultural production sys-
tems. The synthesis of both intra- and interspecific variations 
of wild and domesticated plants will allow for more precise 
utilization of PGRs in the future. This could be achieved 
through pre-breeding programmes and the establishment 
of core collections, which contain the genetic diversity of 
a species and its relatives with a minimum of redundancy 
(Brown 1989). These collections can be dynamic, with new 
genotypes being introduced and the old replaced, depend-
ing on the needs of the breeding programmes (Anđelković 
et al. 2020).

Genetic diversity hidden in CWR is commonly consid-
ered at different levels: genome, locus, or DNA sequence. 
However, various types of epigenetic diversity may provide 
additional layers of diversity within a species and can con-
tribute novel epialleles for some key traits. Research into the 
epigenetic mechanisms and epigenetic diversity involved in 
plant adaptation can be of particular value in supporting near 
future agricultural production challenges. Recent progress in 
molecular biology and analysis of chromatin structure and 
function has highlighted the complexity of epigenetic regu-
lation in plants and their association with the desired traits. 
These progresses also advance the hypothesis that epigenetic 
variation can be exploited for selection in crop improvement. 
Therefore, deepening our understanding into the epigenetic 
mechanisms and epigenetic diversity involved in plant 
adaptation can be valuable in supporting future agricultural 
production challenges. Thus, concepts and techniques of 
classical and modern breeding should consider integrating 
recent progress in epigenetics, initially by identifying their 
association with phenotypic variations and then by assess-
ing their heritability and stability in subsequent generations 
(Spinger and Schmitz 2017). In particular, CWR growing in 
contrasting environments can be used to identify gene (epi)
alleles, which were subjects of long-lasting natural selection 
and adaptation to climate variations. Genetic and epigenetic 
diversity studies in natural CWR populations can therefore 
be used to guide crop improvement for climate resilience. So 
far, CWR sources have been exploited mainly for the major 
genes controlling tolerance to biotic and abiotic stress and/
or for mining of genetically (and phenotypically) complex 
traits. However, the identification of epialleles and their 
characterization still remains a significant challenge. The 
new tools available for epigenomic analyses now enable cap-
turing epigenetic variation and integrating it into advanced 
epibreeding programmes. Many reviews recently published 
(Gallushi et al. 2017; Lamke and Bäurle 2017; Johannes and 

Schmitz 2019) have provided descriptions of the molecu-
lar mechanisms that contribute to epigenetic variations in 
plants. Here, we focus on the contribution of epigenetic and 
chromatin states to plant biodiversity from the perspective 
of CWR and their exploitation in epibreeding programmes. 
Understanding how epigenetics can contribute to diversity 
is also fundamental to all steps of conservation and utiliza-
tion of PGR in plant breeding. We concentrate on two case 
species in which CWR epigenetic variation has recently 
been studied and has the potential to be exploited for genetic 
improvement. We then describe the tools available for the 
characterization of epigenetic variation in non-model plants. 
Finally, we discuss the advantages and limitations of using 
CWR epigenetic variation in crop improvement and agro-
biodiversity preservation.

Natural epigenetic variation

Environmental‑triggered epigenetic variation

Plants are sessile organisms constantly exposed to diverse 
environments. Many plants developmental processes are 
greatly influenced by environmental factors, such as day 
length, light intensity and quality, temperature, and water 
availability. Environmental factors induced signals are inte-
grated with plant growth and differentiation signals, while 
contributing to adaptation to different climates (Xiao et al 
2017; Fig. 1). Furthermore, environmental factors often 
induce changes at chromatin level at responsive gene loci 
and, in some cases, the environment-induced chromatin 
changes can be transmitted through cell mitosis/meiosis 
and be memorized by the plants, once the original inducing 
signal is absent. Particularly, environment-triggered chroma-
tin modifications at certain loci that are stable and mitoti-
cally and/or meiotically heritable and can be transmitted to 
the next generation are referred to as epigenetic changes. 
Others chromatin changes are transitory and regulate tran-
siently gene expression (He and Li 2018). By altering the 
competence of genetic information to be expressed, the epi-
genetic components play a major role in plant interaction 
and adaptation to both non-stressful and stressful environ-
mental conditions (Baulcombe and Dean 2014). Therefore, 
epigenetic mechanisms play important roles in integrating 
environmental signals, contribute to adaptation to different 
environments, and eventually generate epigenetic variation 
within a species (Kooke et al. 2015).

According to recent epigenetic models, chromatin remod-
ellers, histone modifiers, and DNA methylating/demethylat-
ing activities interact with the mediation of both short and 
long non-coding RNAs (ncRNAs) for regulating adaptation 
to the environment (Lamke and Bäurle 2017). They can alter 
both chromatin states and gene expression and therefore 
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generate plant plastic responses under different environ-
mental conditions. Additionally, they can respond to envi-
ronmental cues in regulating plant responses to important 
adaptive processes, such as seed development, vernalization, 
flowering time, stress responses, and species hybridization 
(Ahmad et al. 2010) Furthermore, environmental adapta-
tion requires a fine-tuning between the external cues and the 
timing of plant developmental changes and because often 
a certain delay occurs between the environmental trigger 
and the initiation of a differentiation process, a memory of 
the trigger can be epigenetically set and reset in each gen-
eration (Avramova 2015). Intriguingly, one of the earliest 
characterized processes involving environmental adaptation 
and epigenetic regulation in plants is vernalization. During 
vernalization processes, plant cells can record the periods of 
prolonged cold they have experienced in winter, for flower-
ing in spring. In Arabidopsis, both cold exposure and syn-
chronization of flowering are achieved through a dynamic 
modification of chromatin properties and consequently of 
transcriptional state of FLOWERING LOCUS C (FLC) tran-
scription factor, the main repressor of flowering. However, 
the cold-induced epigenetic changes at AtFLC chromatin 
are reset during gametogenesis to guarantee that the cold 
exposure and vernalization response synchronize flowering 
to the optimal season in the following generation (Berry 
and Dean 2015). Studies of the vernalization process at the 
mechanistic level in Arabidopsis thaliana accessions have 
demonstrated that non-coding transcription and chromatin 

regulation influence the expression of the master regulator of 
flowering AtFLC in response to cold. In addition, it has been 
shown that variations in these mechanisms can favour adap-
tation in natural populations. These observations confirm 
that an altered epigenetic regulation, sustained by genetic 
variation, has the potential to guide adaptation to new and 
changing environments (Whittaker and Dean 2017).

In plants, other environmental cues and/or stresses 
appear to be effective at inducing epigenetic changes, which 
response persists for an extended period after the initial 
induction, commonly called as a “memory” mechanism that 
can be adopted in responses to recurring stresses. However, 
there is relatively strong evidence that these “environmental 
memories” last a short time and only a few of them show 
transgenerational features (Sani et al. 2013; Avramova 2015; 
Martinez-Medina et al. 2016; Forestan et al. 2020). Chroma-
tin marks that are induced by diverse environmental chal-
lenges and enriched at genomic loci with regulatory func-
tion are often depleted at a later developmental stage or in 
offspring because this is essential to a regular plant growth 
and development (Baroux et  al. 2011). Although many 
mechanistic studies of stress effects have been performed 
for investigating the stress response at the genetic and physi-
ological levels, only more recently epigenetic factors have 
been taken under consideration, supposing that stress effects 
on the chromatin level could allow both permanent changes 
of gene expression and potentially long-term adaptation. For 
these reasons, many questions are still open on how diverse 

Fig. 1   Plant adaptive physi-
ological responses to the 
environment have long been 
attributed to variation in genetic 
and environmental factors 
which interact and contribute to 
plant phenotypic plasticity, that 
is the capacity of a genotype to 
produce different phenotypes 
under different environmental 
conditions. More recently, 
epigenetic mechanisms have 
been recognized as compo-
nent that can both mediate the 
interaction between genetic and 
environmental factors and foster 
plant rapid phenotypic variation 
under environmental change
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environmental signals induce chromatin changes at respon-
sive genes and why only certain chromatin marks at spe-
cific genomic regions can be transmitted stably to generate 
somatic or transgenerational environmental memory.

The heritable epimutations

The term epiallele defines a genetic locus having spe-
cific DNA or histone epigenetic modifications that can 
be stably transmitted to the progeny (Taudt et al. 2016). 
Epialleles can add a new layer of heritable variation to 
natural genetic diversity present in the germplasm. The 
impact of epigenetic modifications on plant phenotypes 
became apparent two decades ago in a study showing that 
the naturally occurring morphological variant of a Lin-
aria vulgaris was caused by epi-allelic variants in gene 
CYCLOIDEA rather than DNA mutations (Cubas et al. 
1999). The same study demonstrated that restoring the 

original methylation state recovered the wild-type-like 
phenotype. Since then, it has become clear, by finding 
new examples of epialleles, that epigenetics played a 
notable role in plant domestication and evolution (e.g. 
Manning et al. 2006; Johannes et al. 2009; Olsen et al. 
2013; Jiang et al. 2014; Jordan et al. 2016; Rigal et al. 
2016; Zhang et al. 2020; Table 1). Although how different 
epialleles originate at the molecular level in plant popula-
tion has not been completely clarified yet, it is presumed 
that they are mainly generated by stochastic spontaneous 
variations in DNA methylation and/or histone modifi-
cations, although the latter case is less documented. A 
general distinction is made between the so-called pure 
epialleles generated from non-genetic sources and those 
which originate as a consequence of underlying genetic 
variations (Taudt et al. 2016; Hollister et al. 2009). Non-
genetic epialleles can originate from spontaneous epi-
mutation due to the failure to perpetuate existing DNA 

Table 1   Breeding value of naturally occurring epialleles in some crop species

Species Gene/locus Phenotype Breeding value References

Cotton COL2D (CO-LIKE2D) Loss of photoperiod sensitivity Positive/improved adaptability, 
wider growing area

Song et al. (2017)

Maize r1 (red 1) Reduced pigmentation Positive/genotypes with different 
seed colour

Brink (1956)

b1 (booster 1) Reduced pigmentation Positive/genotypes with different 
seed colour

Patterson et al. (1993)

pl1 (purple plant 1) Reduced pigmentation Positive/genotypes with different 
seed colour

Holick et al. (1995)

p1 (pericarp colour 1) Reduced pigmentation Positive/genotypes with different 
seed colour

Cocciolone et al. (2001)

lpa1 (low phytic acid 1) High inorganic phosphate in seed Positive/improved nutritional 
quality

Pilu et al. (2009)

Spm (suppressor–mutator) Anthocyanin production Positive/improved nutritional 
quality

Banks et al. (1988)

Melon CmWIP1 (WASP/N-WASP-inter-
acting protein 1)

Only female flowers Positive/facilitation of hybrid 
production

Martin et al. (2009)

Oil palm DEF1 (DEFICIENS) Mantled fruit Negative/decreased yield Ong-Abdullah et al. (2015)
Rice D1 (Drawf1) Dwarf Positive/facilitation of fruit 

harvest
Miura et al. (2009)

SPL14 (Squamosa promoter 
binding protein-like)

Panicle branching and higher 
grain yield

Positive/increased yield Miura et al. (2010)

FIE1 (Fertilization-independent 
endosperm 1)

Dwarf Positive/increased yield, easier 
harvest

Zhang et al. (2012)

RAV6 [Related to abscisic acid 
insensitive 3 (ABI3)/vivipa-
rous1 (VP1) 6]

Larger lamina inclination and 
smaller grain size

Positive/increased photosynthetic 
efficiency and yield

Zhang et al. (2015)

AK1 (Adenylate kinase 1) Defects in photosynthetic capac-
ity

Negative/albino plants and 
decreased photosynthesis

Wei et al. (2017)

ESP (Epigenetic short panicle) Short panicle Negative/lower yield Luan et al. (2019)
Tomato CNR (Colourless non-ripening) Skin pigmentation and fruit 

ripening
Negative/small fruit with a col-

ourless, mealy pericarp
Thompson et al. (1999); 

Manning et al. (2006)
VTE3 (Vitamin E) Pigment accumulation and vita-

min E biosynthesis
Positive/increased nutritive 

quality
Quadrana et al. (2014)
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methylation states, as documented in soybean (Shen et al. 
2018), maize (Xu et  al. 2019), and tomato (Table  1). 
Additionally, developmental factors or environmental 
cues that trigger either chromatin mark changes or favour 
instability of epigenetic states could be sources of non-
genetic epigenetic variation. Rearrangements of genome 
structure and/or transposon insertions close to a gene can 
cause epigenetic instability and be sources of novel epi-
allele formation (Pecinka et al. 2013). In particular, the 
insertion of transposable elements in intergenic regions 
and their subsequent inactivation through DNA methyla-
tion can cause increased methylation around the insertion 
site and promote the establishment of novel epialleles, as 
reported in Arabidopsis (Schmitz et al. 2013), rice (Zhang 
et al. 2015), and maize (Banks et al 1988).

An underestimated factor playing a role in generating 
natural epigenetic variation is the so-called facilitated 
epigenetic variation. In this, a genetic element involved in 
controlling specific chromatin-related processes becomes 
mutated or lost, leading to a natural loss of function or a 
modifier mutant. An example of the well-known case is 
a loss of CMT3 CHG DNA methyltransferase in several 
Brassicaceae species, including Brassica rapa that seems 
to coincide with the loss of gene body methylation. A 
broader phylogenetic analysis revealed that multiple fac-
tors from the gene body methylation pathway are miss-
ing in gymnosperms and evolutionary older plant groups 
(Bewick et al. 2017). Another example of such natural 
loss-of-function mutant includes deletion of VARIANT IN 
METHYLATION 1 gene in the specific natural accessions 
of A. thaliana, leading to a reduced DNA methylation 
level (Woo et al. 2007). Speculatively, spontaneous muta-
tions in the key epigenetic players within populations of 
self-pollinating species may lead to a burst of new trans-
poson insertions and/or epialleles. Such new variants may 
remain in the population even after the non-functional 
allele of the specific trans-acting factor has been elimi-
nated by natural selection and further contribute to natu-
ral epigenetic variation.

Recently, Johannes and Schmitz (2019) have pro-
posed that the rate of spontaneous epimutations might be 
dependent on genetic background and thus conditioned 
by genetic variation. They also suggested considering 
the rate and spectrum of spontaneous epimutations “as 
molecular complex traits” that can be mapped in the 
genome to identify causative genetic loci and pathways 
of epigenetic instability. Indeed, this approach is of par-
ticular interest for a better understanding of environmen-
tal-induced variation at the epigenetic and transcriptional 
levels since using different species and crops it will help 
to characterize CWRs and exploit their epigenetic diver-
sity as new sources of variation in plant breeding.

Epigenetic variation and crop plant propagation

To summarize, both spontaneous occurring and/or envi-
ronmentally induced epialleles can negatively or positively 
modulate gene expression and affect plant phenotypes. In 
crop plants, clonal multiplication provides an opportunity 
to propagate epigenetic variants associated with traits of 
interest over many generations. However, during gamete 
development and early embryogenesis, epigenetic imprints 
are extensively reprogrammed to reset genomic potential and 
ensure proper development of the subsequent generations 
(Borges et al. 2021). While once established, DNA methyla-
tion is an epigenetic mark that usually results in transgen-
erational heritable phenotypic variation, heritability is more 
variable for the different histone modifications (Baulcombe 
and Dean 2014). For all these reasons, the exploitation of 
epigenetic variation for crop improvement is more challeng-
ing in species reproduced exclusively by seeds rather than in 
clonally multiplied plants, in which epibreeding seems not 
to differ substantially from classical breeding. Therefore, 
characterization of the epigenetic imprints transmitted to the 
offspring (heritable epialleles) is critical to drive breeding 
strategies since they are responsible for a significant phe-
notypic diversity (Grossniklaus et al. 2013). Furthermore, 
plants can detect certain environmental conditions during 
somatic growth and this could trigger epigenetic modifi-
cations in a cell lineage that generates the germline (Mir-
ouze and Paszkowski 2011). This could provide a source of 
increased morphological variation in the offspring that might 
be subject to natural selection, contributing to the origin of 
novel epialleles. In this context, analysis of the hidden CWR 
epigenomic landscapes could enable identifying epialleles 
and provide valuable tools for crop improvement. Ideally, 
epigenetic diversity might be generated in plants originating 
from seeds before being asexually propagated, but unfortu-
nately, this is not possible in many crops.

CWR epigenetic variation: two examples

Epigenetic variation has a key role in shaping agronomically 
important traits in germplasm used for crop improvement. In 
the last decades, several studies indicated that alterations of 
DNA methylation patterns may facilitate ecological adapta-
tion and might constitute a means for organisms to cope with 
environmental stress (Bonduriansky et al. 2012). It appears 
that epigenetic modifications play a particularly important 
role in fluctuating environments compared to DNA sequence 
variation (Monteiro et al. 2018). Indeed, CWRs have evolved 
in ecological conditions that were longer and more extreme 
than those observed in the relatively controlled environments 
of agricultural production. Therefore, CWRs represent a 
reservoir of valuable adaptive traits and a predominantly 
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untapped natural reserve due to a lack of appropriate tools, 
either genetic or epigenetic, to dissect plant phenotypes and 
their adaptation (Mace et al. 2013). In addition, epigenetic 
variation has a key role in shaping agronomically important 
traits in germplasm used for crop improvement.

Epigenetic variation in wild emmer wheat natural 
populations

Tetraploid wild emmer wheat (WEW; 2n = 4x = 28) (Triti-
cum turgidum subsp. dicoccoides), found in nature as a wild 
species, is considered as the primary progenitor of domes-
ticated hexaploid bread wheat and tetraploid durum wheat. 
Since its rediscovery in Israel by Aharon Aaronsohn in 1906 
(Aaronsohn 1910), this species has been extensively stud-
ied as a potential donor of beneficial traits to domesticated 
wheat, including disease resistance, drought tolerance, and 
nutrient and mineral content (Huang et al. 2016; Klymiuk 
et al. 2019; Krugman et al. 2018 and reference therein). Its 
importance as a potential donor for future wheat breeding led 
to its whole-genome sequencing (Avni et al. 2017). WEW is 
an annual predominantly self-pollinating species distributed 
in a patchy manner throughout the Fertile Crescent in diverse 
environmental conditions (Nevo and Beiles 1989). In Israel, 
over 140 isolated or semi-isolated populations of WEW were 
found in regions between Mt. Hermon in the north and Mt. 
Amasa (Judea desert) in the south. Some of these popu-
lations cannot be found to date due to massive urban and 
road development in Israel and are preserved in gene banks 
(Krugman et al. 2018). Genetic diversity studies in WEW 
populations collected across Israel and Turkey were assessed 
with various genetic markers (Nevo and Beiles 1989; Fahima 
et al. 1999; Li et al. 1999, 2000; Venetsky et al. 2015; Volis 
et al. 2014), demonstrating wide genetic diversity within 
and between populations. While different levels of internal 
structuring were found within populations, clustering above 
the population level was non-random and not consistent 
with geographical proximity and found to be partly corre-
lated with ecogeographic variables. Although these studies 
assessed the structure and extent of the genetic variation, 
very little is known about the structure and extent of the 
heritable epigenetic variation. A survey of epigenetic vari-
ation among and within five natural populations of WEW 
was focussed on the variation in DNA methylation and the 
contribution of transposable elements (TEs) to this variation 
(Venetsky et al. 2015). TEs are the largest genome compo-
nent of most plant genomes, e.g. they account for ~ 80% of 
the bread wheat genome (Charles et al. 2008; Avni et al. 
2017; Clavijo et al. 2017; Appels et al. 2018; Wicker et al. 
2018). TEs are silenced by epigenetic means, such as DNA 
methylation, RNA interference, and chromatin modifica-
tion, and they might be (at least transiently) activated due 
to weakening or loss of such control during biotic or abiotic 

stresses (Pecinka et al. 2010; Ito et al. 2011). DNA methyla-
tion levels and patterns were examined in 50 genotypes of 
WEW from five distinct environments, using an AFLP-based 
epigenetic marker (MSAP) at random genomic CCGG sites, 
and CCGG sites flanking TEs using transposon methylation 
display (TMD). No significant variation in methylation lev-
els was detected between populations. However, population-
specific methylation patterns were observed both at random 
sites and around TEs. Furthermore, it was found that the 
variation of methylation was eco-geographically structured, 
suggesting that it might be partly determined by climatic and 
edaphic factors (Venetsky et al. 2015).

These findings suggest that TEs might play a prominent 
role in creating eco-geographically structured genetic and 
epigenetic diversity in wild emmer wheat populations, which 
might strongly influence local adaptation.

The role of epi‑variation in tomato fruit quality

In the last 20 years, the tomato has become a protagonist 
in studies regarding epigenetic mechanisms in controlling 
fruit development and particularly ripening, with effects 
on quality traits, such as colour, flavour, texture, aroma, 
and nutritional properties. In particular, landmark reports 
showed how a substantial level of natural variation in Sola-
num lycopersicum is underwritten by epigenetic processes 
that govern gene expression and phenotype just as strongly 
as DNA sequence polymorphisms.

Early evidence on locus-specific DNA methylation epial-
leles was provided by the characterization of the Colourless 
non-ripening (CNR) locus on a naturally occurred variant. 
In the Cnr epimutant, normal fruit ripening was found to be 
inhibited because of the hypermethylation of a short region 
located 2.3–2.5 kb upstream of the LeSPL-CNR transcrip-
tional start site (Manning et al. 2006; Zhong et al. 2013). 
Consequently, CNR gene expression was strongly reduced, 
resulting in colourless and mealy textured fruit pericarp. 
This phenotype was reverted by silencing key DNA methyla-
tion genes in Cnr fruits (Chen et al. 2015). Interestingly, the 
authors discovered that the overall DNA methylation levels 
differed between tomato cultivars in this region.

Epigenetic variation can also affect quantitative trait 
loci, as in the VITAMIN E DEFECTIVE 3 (VTE3), a gene 
encoding a 2-methyl-6-phytylquinol methyltransferase and 
influencing pigment accumulation and vitamin E biosynthe-
sis in tomato. Differences in VTE3 transcriptional activity 
have been reported in introgression lines (ILs) obtained from 
crosses between the wild S. pennellii and S. lycopersicum 
(cv. M82). Variation in VTE3 activity was also detected in 
several Andean tomato landraces, commercial cultivars, 
and wild species differing in their capacity to accumulate 
vitamin E (Quadrana et al. 2014). The authors found that 
such expression diversity correlated with differences in DNA 
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methylation of the VTE3 promoter regions and the accu-
mulation of matching small RNAs due to the presence of a 
SINE retrotransposon.

Recently, global genome analyses have offered even more 
substantial evidence about the regulatory role of the epi-
genetic marks during tomato ripening. Through a whole-
genome bisulphite sequencing (WGBS) approach, Zhong 
et al. (2013) found substantial changes in the distribution 
of DNA methylation in tomato fruit, consisting of an exten-
sive loss of methylation as the fruit matures. In addition, 
the treatment of immature fruits with 5-azacytidine, a well-
known inhibitor of DNA methyltransferase 1, caused pre-
mature ripening supporting a causal relationship between 
methylation level and the timing of the ripening process. 
More recently, the DEMETER-LIKE DNA DEMETHYLASE 
2 (SlDML2) gene was found to preside over this process. 
In the sldml2 mutant lines, fruit ripening was inhibited 
via hypermethylation with a negative consequence on the 
expression of well-known ripening-associated transcription 
factors and genes involved in carotenoid biosynthesis and 
ethylene biosynthesis and signalling (Liu et al. 2015; Lang 
et al. 2017).

Post-translational modifications mediate an additional 
level of ripening regulation. Among them, the H3K27me3 
repressive histone mark plays the main role (Lü et al. 2018). 
It has been extensively profiled in tomato-specific tissue 
through ChIP-Seq analysis and was strictly associated with 
key ripening genes, such as the MADS-box transcription 
factor RIPENING INHIBITOR (RIN), the fruit-specific 
ethylene biosynthetic ACS2 (1-aminocyclopropane-1-car-
boxylic acid synthase ACC 2), and ACO (ACC oxidase) 
genes, in non-ripening tissues, such as leaf and immature 
fruit. H3K27me3 was removed from these regions as the 
fruit matured, suggesting that its decline might be necessary 
for ripening induction (Lü et al. 2018). A piece of direct 
genetic evidence linking H3K27me3 and tomato ripening 
was shown by Liu et al. (2016) and most recently by Li et al. 
(2020) through functional characterization of genes control-
ling histone methylation in tomato fruit. MULTICOPY SUP-
PRESSOR OF IRA1 (SlMSI1), which is an essential subunit 
of polycomb repressive complexes (PRC2) for the establish-
ment of H3K27me3 in plants, when overexpressed inhibits 
fruit ripening by silencing RIN and other ripening genes 
(Liu et al. 2016). Instead, the histone demethylase SlJMJ6, a 
Jumonji C-terminal (JmjC) domain-containing demethylase, 
promotes fruit ripening by removing H3K27me3 from the 
chromatin of RIN in addition to a large number of ripening-
related genes (Li et al. 2020).

The unifying picture emerging is that phenotypic diver-
sity in tomato is higher than expected based on the available 
genetic variation alone. However, although much has been 
learned so far, epialleles and epiQTLs associated with qual-
ity traits in tomato remain limited to a handful of examples. 

This emphasizes the need to explore further the epigenetic 
variation not only in S. lycopersicum, but also within the 
numerous genetic resources available in public reposito-
ries, which comprise, among others, thousands of landraces 
and several wild-related species. Furthermore, it is urgent 
to increase the epigenetic toolbox in tomato by achieving 
additional (epi)mutant lines with characterized offspring.

Tools for the analysis and characterization 
of CWR epigenetic variation and its 
exploitation

Overall, identifying the key epialleles involved in plant 
development and adaptation to the environment, their mode 
of inheritance and heritability, and their effect on transcrip-
tion are instrumental for CWR epigenetic variation exploita-
tion. Next-generation sequencing (NGS) techniques are rou-
tinely used to analyse (epi)genomes and transcriptomes in 
many plant species. One clear advantage of NGS techniques 
for examining genomes is that they can be applied to both 
model (those with a genome sequenced and functionally 
annotated) and non-model (without a genome sequenced or 
with no or limited annotation) plants. In addition, they allow 
data comparisons within and among populations and species 
and across environmental scales. The use of multiple NGS 
methods, such as genome sequencing and RNA sequencing 
(RNA-seq and small RNA-seq), can be combined with pro-
teomics and metabolomics and may ultimately make char-
acterization of crop plant diversity possible at functional 
level. This is of course also fundamental to all steps of PGR 
conservation and particularly for the utilization of CWRs 
in plant breeding. In recent years, the most commonly used 
platforms for high throughput in non-model plant species 
include Illumina/Solexa, 454/Roche, ABI/SOLiD, and Heli-
cos. Additionally, NGS can be used for studying DNA meth-
ylation, DNA–protein interactions, chromatin accessibility, 
and histone modifications genome wide.

To analyse and interpret the data generated with next-
generation sequencing (NGS), a plethora of bioinformatics 
tools and algorithms have been developed. For instance, 
more than 20,000 bioinformatics tools are listed in the bio.
tools (Ison et al. 2016) database and about 470 of them are 
in the “epigenetics” category. This massive amount of meth-
ods and algorithms can be sometimes overwhelming, espe-
cially for researchers approaching bioinformatics for the first 
time. In order to navigate through the numerous available 
options, multiple reviews and benchmark studies have been 
published in the last years. For instance, a survey of best 
practices for RNA-seq data analysis was published by the 
Conesa Lab in 2016 (Conesa et al. 2016). Similar works can 
also be found for the analysis of small RNA-seq data (Mehta 
2014), DNA methylation sequencing data (Wreczycka et al 
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2017), chromatin analysis followed by DNA sequencing data 
(Nakato and Sakata  2021; Steinhauser et al. 2016; Yan et al. 
2020), and multi-omics data integration (Jamil et al. 2020).

This section aims to provide an updated concise descrip-
tion of the most used methods and algorithms that are avail-
able to study plant epigenomes.

Tools for DNA methylation studies

DNA methylation is the best described and understood type 
of epigenetic variation in plants, which occurs in all cytosine 
sequence contexts: CG, CHG, and CHH (H represents A, 
T, or C). DNA methylation is highly enriched in hetero-
chromatic transposable elements (TEs) and repetitive DNA 
sequences, where it plays a prominent role in transcriptional 
silencing. Densely methylated gene regulatory regions are 
also associated with transcription repression. By contrast, 
cytosine methylation within transcribed regions (called gene 
body methylation) is found in constitutively transcribed 
genes. The function of this type of intragenic methylation is 
not well understood (Bewick and Schmitz 2017), although 
a recent study reported a role in suppressing intragenic anti-
sense transcripts (Choi et al. 2020). Moreover, methylation 
of intronic TEs and repeats has been shown to affect mRNA 
processing mechanisms such as alternative splicing and 
alternative polyadenylation (Zhang et al. 2018). The estab-
lishment, maintenance, and removal of cytosine methylation 
are catalysed by various enzymes targeted by distinct regu-
latory pathways. De novo DNA methylation is established 
through the RNA-directed DNA methylation (RdDM) path-
way, which requires specialized transcriptional machinery 
that comprises two plant-specific RNA polymerases—Pol IV 
and Pol V—small interfering RNAs (siRNAs) and a growing 
number of accessory proteins. METHYLTRANSFERASE 
1 (MET1) maintains CG methylation, whereas CHRO-
MOMETHYLASE 3 (CMT3) catalyses CHG methylation 
through a mechanism also involving histone H3K9 dimeth-
ylation (H3K9me2). Finally, CHH methylation is maintained 
by DOMAINS REARRANGED METHYLASE 2 (DRM2) 
or CMT2, depending on the genomic region (Zhang et al. 
2018). Active demethylation in plants is initiated by a 
family of DNA glycosylases, including REPRESSOR OF 
SILENCING 1 (ROS1), DEMETER (DME), DEMETER-
LIKE 2 (DML2), and DML3, which prevent hypermethyla-
tion at multiple genomic locations. These enzymes promote 
demethylation through a base excision repair pathway and 
remove methylated cytosines irrespective of sequence con-
text (Zhang et al. 2018). DNA methylation patterns can 
change either because of failure in maintaining methylation 
after replication or because of active removal by enzymes 
(Zhang et al. 2018). In A. thaliana, it has been reported that 
CG “germline” epimutations are about five orders of mag-
nitude more frequent than genetic mutations: about 10−4 

vs about 10−9 per site per haploid genome per generation 
(Shahryary et al. 2020).

Numerous strategies for high-throughput detection of 
DNA cytosine modifications at whole-genome level have 
been used in plants. However, the most widespread methods 
with single-base resolution mainly rely on bisulphite con-
version (BS) coupled with NGS (BS-seq). Whole-genome 
bisulphite sequencing (WGBS) permits to distinguish any 
5mC (5-methylcytosine) from C (Lister and Ecker 2009; Lis-
ter et al. 2008). Modified BS-seq strategies can be adopted 
depending on the plant species and genome size, especially 
in non-model organisms with limited genomic resources. 
Another procedure that can be used for rapid detection of 
DNA methylation in specific multiple fragments simulta-
neously is MSRE-PCR. This procedure is based on exten-
sive digestion of genomic DNA with methylation-sensitive 
restriction enzyme (MSRE) followed by multiplexed PCR 
amplification of user-defined genes using gene-specific 
primers (Melnikov et al. 2005). Additionally, methylated 
DNA immunoprecipitation sequencing (MeDIP-seq) proce-
dures independent of bisulphite DNA conversion which uses 
monoclonal antibodies against 5mC have been developed 
(Taiwo et al. 2012) and can be applied for studying DNA 
methylation genome wide in crop plants. NGS platforms 
allow the construction of genomic maps of DNA methyla-
tion at single-base resolution and the identification of dif-
ferentially methylated regions (DMRs), namely genomic 
regions that exhibit a different methylation status between 
two groups of samples. In plants, studies analysing variabil-
ity in DNA methylation identify a high number of DMRs. At 
population level, DMRs can be related to gene expression 
and phenotypic diversity (Zhang et al. 2020). Particularly 
in CWR, DNA methylation studies indicate the presence 
of substantial epigenetic variation between domesticated 
genotypes and wild relatives (Song et al. 2017). Two recent 
articles (Omony et al. 2020; Rauluseviciute et al. 2019) pro-
vided a complete review of the most used methods for the 
analysis of DNA methylation data obtained by bisulphite 
sequencing and other protocols (i.e. MeDIP). Interestingly, 
most of the pipelines rely on a reference genome that might 
not be available for non-model species or crop wild rela-
tives. In such cases, specific tools must be used. For exam-
ple, in the description of the BsRADseq method (Trucchi 
et al. 2016) the authors describe the creation of a catalogue 
of loci from unconverted DNA using the popular STACKS 
tool (Catchen et al. 2013), which is then used as a reference 
to perform mapping with BISMARK (Krueger et al. 2011). 
Marconi et al. (2019) used a slightly similar approach where 
raw reads are collapsed to create a pseudo-reference genome 
using the pipeline named MCSeEd. Finally, the epiGBS 
(van Gurp et al. 2016) pipeline generates a de novo refer-
ence using only bisulphite-treated samples followed by read 
mapping with BWA-METH; variant calling is then used to 
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identify C/T or A/G polymorphisms induced by bisulphite 
conversion. In addition, the number of reference genomes 
is also rapidly growing for the CWRs due to the fast devel-
opment of high-throughput sequencing techniques. Very 
recently, AlphaBeta, a computational method for estimating 
the precise rate of stochastic changes in DNA methylation 
events using pedigree-based DNA methylation data as input, 
was described (Shahryary et al. 2020). AlphaBeta allows to 
study transgenerationally heritable epimutations in different 
plant materials, such as in clonal or sexually derived muta-
tion accumulation lines or in long-lived perennials.

Tools for chromatin modification and accessibility 
studies

Chromatin organization affects genome replication, tran-
scriptional silencing, and DNA repair and recombination. 
Recent studies have demonstrated that in Arabidopsis 
thaliana functional chromatin is important for genome 
stability, since loss of DNA methylation or defective 
nucleosome assembly increases sensitivity to genotoxic 
stress and alters homologous recombination frequencies 
(Liu et al. 2015). Different chromatin states are impor-
tant determinant of gene transcriptional regulation that 
is affected by nucleosome positioning, histone variants, 
and post-translational modifications of histones (Vergara 
and Gutierrez 2017). Covalent modifications to histone 
tails (H2A, H2B, H3, H4, and histone variants) comprise 
methylation, acetylation, phosphorylation, ubiquitina-
tion, sumoylation, and many others. They are dynami-
cally deposited by specific histone modification enzymes 
that are referred to as writers. Additional specific enzyme 
complexes can recognize and remove the covalent modi-
fications and are called readers and erasers, respectively 
(Zhao et al. 2019). Numerous histone modifications and 
their modifiers and readers have been identified and char-
acterized in eukaryotes, and although histones and their 
modifications are highly conserved, the possibility of evo-
lutionary divergence in reading histone modification has 
been highlighted in plants (Fuchs et al. 2006). Histone 
H3 and H4 acetylation at lysine residue is enriched in 
actively transcribed gene chromatin, while histone dea-
cetylation is widespread in condensed chromatin. Simi-
larly, tri-methylation of lysine in position 4 of histone H3 
(H3K4me3) and H3K36me3 marks are often observed on 
actively expressed genes, whereas H3K9me2 is present 
within heterochromatic regions (Feng and Jacobsen 2011). 
H3K27me3 is a euchromatic repressive histone mark that 
can memorize gene repression state with a very high 
degree of tissue specificity both during plant development 
and response to environmental cues (Rothbart and Strahl 
2014). Chromatin modifiers and markers can be studied 
genome-wide by using chromatin immunoprecipitation 

(ChIP) followed by high-throughput DNA sequencing 
(ChIP-Seq) to identify the DNA regions bound by a spe-
cific protein or enriched in specifically modified histones 
in vivo. To assess whether two different proteins or histone 
modifications are present at the same site in the genome 
or determine if a protein coincides with a specific his-
tone modification at the same regulatory element, re-ChIP 
enables sequential chromatin immunoprecipitations to be 
performed using two different antibodies (Furlan-Magaril 
et al. 2009). In crop plants, the information generated 
by ChIP-Seq strongly depends upon the availability and 
specificity of antibodies used in immunoprecipitation. 
However, the ChIP data collected have tremendously 
contributed to the advancement of our understanding of 
the mechanism of chromatin signatures in regulating gene 
expression and chromatin compaction in plants. A further 
limit in ChIP-Seq applications in crops is the need for 
large amounts of fresh tissue for chromatin preparation 
that also requires the development of specific protocols for 
each plant species and the tissues under investigation. For 
detecting and functionally characterizing chromatin-bound 
proteins, together with ChIP-Seq, CUT&RUN (cleav-
age under targets and release using nuclease; Skene and 
Henikoff 2017) and CUT&TAG (cleavage under targets 
and tagmentation; Kaya-Okur 2020) have so far been used 
in semi-model plants, to overcome some of the limita-
tions of ChIP-Seq, such as the requirement of large amount 
of input and cross-linking during an initial fixation step. 
However, they still require the development of efficient 
protocols before they can be widely applied in crop chro-
matin studies (Klein and Hainer 2020). Although with a 
still limited number of applications in non-model plant 
species, other techniques have been developed to examine 
DNA accessibility and protein localization on chromatin 
genome-wide. The main techniques for determining DNA 
accessibility and nucleosome positioning are DNase-Seq, 
MNase-Seq, FAIRE-Seq, and ATAC-Seq. In DNase-Seq, 
DNA–protein complexes are treated with DNase l, fol-
lowed by DNA extraction and sequencing. Sequences 
bound by regulatory proteins are protected from DNase l 
digestion. Deep sequencing provides accurate representa-
tion of the location of regulatory proteins in the genome 
(Boyle et al. 2008). In MNase-Seq, micrococcal nuclease 
(MNase) derived from Staphylococcus aureus is used to 
treat gDNA before extraction and sequencing (Schlesinger 
et al. 2013). When using formaldehyde-assisted isolation 
of regulatory elements (FAIRE), DNA–protein complexes 
are cross-linked briefly in vivo with formaldehyde. The 
sample is then lysed and sonicated and after extraction 
DNA is purified and sequenced: sequencing provides 
information for regions of DNA that are not occupied by 
histones (Giresi and Lieb 2009). Assay for transposase-
accessible chromatin (ATAC) with high-throughput 
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sequencing relied on the hyperactive Tn5 transposase to 
fragment genomic DNA in vitro and simultaneously add 
adapters for high-throughput sequencing. The addition of 
the adapters would mainly take place in open chromatin 
regions (Buenostro et al. 2013).

Virtually, all ChIP-Seq data analysis methods rely on 
“peak calling”, which leads to the identification of protein 
binding sites by looking for “peaks” of abundance of mapped 
sequenced reads concerning the average coverage of the 
genome or to a DNA input. A similar approach can also be 
used for other techniques not based on immunoprecipitation 
such as ATAC-Seq, DNAse-Seq, or MNAse-Seq (Minnoye 
et al. 2021). In the plant community, MACS2 (Zhang et al. 
2008) is the most used algorithm for peak calling (Chen et al. 
2018). However, other tools like SICER (Xu et al. 2014) and 
HOMER (Heinz et al. 2010) are possible alternatives. More 
recently, tools have been published to try to improve the per-
formance of peak calling using machine learning and deep 
learning techniques such as CNN-peaks (Oh et al. 2020), 
which is based on a convolutional neural network, or AICon-
trol (Hiranuma et al. 2019), which aims at identifying peaks 
without the necessity for a matched DNA input sample. It 
must be pointed out that the machine learning and deep learn-
ing methods developed so far have been trained using human 
or mammalian data; as a consequence, their accuracy on plant 
data sets should be carefully assessed.

Small RNAs annotation and analysis

Plant endogenous small RNAs (sRNAs) have a role in almost 
all biological processes, and they are critical in heritable epige-
netic variation. RNAs are functionally classified into two prin-
cipal categories: microRNAs (miRNAs) and short interfering 
RNAs (siRNAs; Axtell 2013). miRNAs are typically 21–22 
nt long, diced by Dicer 1(DCL1) from single-stranded RNA 
stem-loop precursors derived by MIR genes transcription. They 
regulate gene expression at post-transcriptional level, by direct-
ing mRNA degradation and translational inhibition (Rogers 
and Chen 2013). siRNAs originate from double-stranded RNA 
precursors and are categorized in many different subclasses. The 
main subclass of siRNAs comprises 24 and 21–22 nt siRNAs 
that participate in the RNA-directed DNA methylation (RdDM) 
pathway. Twenty-four nt siRNAs navigate the canonical RdDM 
to the homologous DNA sequences to trigger DNA methylation. 
These small RNAs are generated in a complex process involving 
biogenesis by plant-specific PolIV, DICER, and ARGONAUTE 
enzymes and silencing with the complex of plant-specific PolV, 
de novo domains rearranged DNA methyltransferases (DRMs), 
and other proteins (Matzke and Mosher 2014). The de novo 
established DNA methylation of young transposons and repeti-
tive sequences by the RdDM will serve as a template for the 
replication-coupled DNA maintenance methylation executed 
by the plant maintenance DNA methyltransferases MET1, 

CMT2, and CMT3. Finally, such loci will be compacted and 
transcriptionally repressed in the form of constitutive hetero-
chromatin that is generally stable over generations in the plant 
genomes. 21–22 nt siRNAs are derived from Pol II transcripts 
and are copied by RNA-dependent RNA polymerase 6 (RDR6) 
into dsRNAs before their processing by DCL proteins. They 
participate in the noncanonical RdDM pathway for silencing 
of young TEs, both transcriptionally and post-transcriptionally 
(Nuthikattu et al. 2013).

After sRNA sequencing, most small RNA studies are 
focussed on the detection and characterization of miRNAs, 
siRNA and secondary siRNA, a further class of siRNA in 
which biogenesis is triggered by a miRNA-directed cleavage 
of a coding or non-coding transcript (Lunardon et al. 2020). 
The Tools4miRs database (Lukasik et al. 2016) contains a list 
of 205 tools for the analysis of small RNAs. Forty-one tools 
compatible with plant genomes are listed in the sequencing 
data analysis section with MiRDeep2 (Friedländer et al. 2012), 
miRanalyzer (Hackenberg et al. 2011), and the UEA sRNA 
workbench (Stocks et al. 2012) currently being the most cited. 
ShortStack (Johnson et al. 2016) is a pipeline able to detect and 
classify secondary siRNA, such as phasiRNAs and ta-siRNAs, 
whereas algorithms like NASTI-seq (Li et al. 2013a, b) and 
NATpipe (Yu et al. 2016) can be used to identify nat-siRNAs. 
Finally, heterochromatin-associated siRNA (hc-siRNA) can be 
predicted with miRkwood (Guigon et al. 2019) or ShortStack. 
Prediction of small RNA targets can be performed with tools 
like psRNATarget (Dai et al. 2018).

Omics data integration

An integrated view of the plant genome, epigenome, tran-
scriptome, proteome, and metabolome may be a key factor in 
applying a translational genomics approach to plant breeding 
(Choi 2019). Data integration can be performed using statis-
tical methods such as generating correlation networks and 
clustering or mapping metabolic pathways (Jamil et al. 2020). 
PaintOmics offers a web-based user-friendly interface to visu-
alize multiple omics data types onto KEGG pathway diagrams 
(Hernández-de-Diego et al. 2018). mixOmics (Rohart et al. 
2017) and iClusterPlus (Shen et al. 2009) provide a multi-
variate approach to integrate not only omics data but also phe-
notypic data, helping to identify meaningful associations and 
candidate genes.

Prospects and limits of using CWR 
epigenetic variation in crop improvement 
and agrobiodiversity preservation

Recent breakthroughs in epigenetic studies provided evi-
dence that epigenetic variants of functional or agronomic 
importance exist in CWR gene pools, thus providing a 
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rationale for conservation of epigenotypes of importance 
to crop biology and breeding, as well as agrobiodiversity 
preservation.

Crop improvement

Plant breeding conventionally depends on genetic vari-
ability available in a species to improve a particular trait 
in the crop. To improve both resilience and crop security, 
exploitation of epigenetic variations and/or the manipu-
lation of the epigenome may be an additional breeding 
strategy. Epigenetic variants in CWR could be an addi-
tional and timely source of variability that could be 
introduced into crops through epigenetic breeding—epi-
breeding (Gahlaut et al. 2020). Epibreeding itself does 
not require selection methods different from those used 
in conventional crop breeding. Conventional approaches 
based on the introduction of desired traits from CWR 
into cultivated varieties can be transferred to epibreed-
ing with the obvious differences in terms of epigenetic 
variant induction, production, and propagation (Latutrie 
et al. 2019). Selection trials can be assisted by using epi-
genetic markers, and traits are further stabilized by using 
vegetative propagation, where possible, as described by 
Latutrie et al. (2019). However, the fact that CWR epi-
genetic structure remains largely unknown despite the 
substantial interest in evaluating epigenetic diversity in 
non-model organisms living in nature remains one of the 
limiting factors for the broader use of CWR in epibreed-
ing (Avramidou et al. 2015a, b). Epigenetic characteriza-
tion of variants at the population level, which is neces-
sary for epibreeding, is also a limiting factor, since these 
population-level approaches lack precision (Gourcilleau 
et al. 2019).

The main question regarding enrichment of the crop 
gene pool by CWR epialleles and the potential limits in 
the use of epi-variation for epibreeding pertain to the 
inheritance of epi-variation and its transgenerational 
stability. If, for instance, the inheritance of DNA meth-
ylation is stable and abiding by Mendelian expectations, 
then epialleles will be faithfully inherited, and novel epi-
alleles will be rare. However, if DNA methylation pat-
terns are unstable, then a rapid formation, or loss of epi-
alleles within populations can be anticipated (Springer 
and Schmitz 2017). In the former case, epialleles would 
be in linkage disequilibrium with proximal genetic pol-
ymorphisms in the genome. Therefore, differentially 
methylated regions (DMRs) can be mapped using GWAS 
or genomic selection. On the other hand, under mostly 
unfaithful inheritance, such regions would present lim-
ited linkage disequilibrium with proximal SNPs and there 
would be almost no chance of accurately mapping them 

on the genome (Springer and Schmitz 2017). The pres-
ence of stability regarding DNA methylation inheritance 
across multiple generations is therefore important. One 
of the most comprehensive pertinent studies used an A. 
thaliana individual to find a population propagated by 
single-seed descent for 30 generations (Ossowoski et al. 
2010). Although there were only ~ 20 SNPs per individ-
ual following 30 generations, thousands of differentially 
methylated cytosines were found. However, there was 
greater stability of regional methylation levels than indi-
vidual modifications (Becker et al. 2011; Schmitz et al. 
2011; Springer and Schmitz 2017). Similar results have 
been found in perennial plants, such as cypress where 
faithful epigenetic inheritance was manifested about 17 
times less than faithful Mendelian genetic inheritance 
(Avramidou et al. 2015a, b) and in larch (Li et al. 2013a, 
b). In crop species, different results have been reported 
even for the same species. For instance, generally stable 
inheritance with rare examples of unexpected patterns has 
been shown in recombinant inbred populations of maize 
(Eichten et al. 2013; Li et al. 2014). Still, non-Mendelian 
epi-inheritance was reported in maize (Zhao et al. 2008), 
rice (Peng et al. 2013) and soybean (Schmitz et al. 2013). 
It could be that some DMRs are associated with proximal 
structural variation and are in general reasonably faith-
fully inherited in conjunction with the genetic polymor-
phism. In contrast, others are associated with stochastic 
modifications and are not faithfully inherited (Springer 
and Schmitz 2017).

Furthermore, to have an important role in traditional 
approaches to plant breeding and improvement, DNA meth-
ylation would have to exhibit substantial natural variation 
within CWR and also influence important traits (Springer 
and Schmitz 2017). To affect plant traits, natural variation 
of DNA methylation would probably need to alter gene 
expression levels (Deng et al. 2017; Zhang et al. 2017). 
It was found that genes that exhibit qualitative expression 
differences are more likely to be associated with altered 
DNA methylation levels, as proved by the analysis of epi-
genetic recombinant inbred line (epiRIL) populations in 
A. thaliana (Johannes et al. 2009; Reinders et al. 2009). 
The development of epi-RILs in model species such as 
Arabidopsis has enabled accurate genetic analysis of epi-
genetic variation and mapping of epigenetic quantitative 
trait loci (epiQTL) (Gahlaut et al. 2020). This quantitative 
approach to epigenetic variation provides ample oppor-
tunities to dissect the role of epigenetic variation in trait 
regulation, which can eventually be used in crop improve-
ment programmes and to introduce desired traits for CWR. 
Thus, epigenetic molecular markers combined with epig-
enome editing tools can further facilitate the introduction 
and application of epigenetic-based molecular breeding in 
important crop plants.
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Agrobiodiversity preservation

In the last decades, CWR genetic resources conservation 
has evolved from conservation of germplasm accessions for 
maximizing morphological diversity to the incorporation 
of data related to genetic diversity, so that germplasm col-
lections that maximize evolutionary history in a manage-
able number of accessions can be constructed. Identifying 
natural epigenetic variations within those collections and 
elucidating their role in adaptation to the environment is 
important for our understanding of the epigenetic basis of 
plant reaction to climate change (Baduel and Colot 2021). 
This is further supported by recent study by He et al. (2018) 
that highlighted the role of a naturally occurring epiallele in 
local climate adaptation of Arabidopsis accessions, and Xu 
et al. (2020) that suggested a role of methylation variation 
in adaptive evolution of maize. However, in order to identify 
beneficial (epi)genetic variations in CWR and implement 
them successfully in breeding, careful sampling designs 
should be set in place that consider the ecological and evo-
lutionary properties of the target species (Hübner and Kantar 
2021). That is why further attention should be paid to the 
development of statistical, analytical, and technical tools for 
effective sampling design, the germplasm characterization, 
and its use in crop improvement programs.

The emerging evidence that epigenetic variants may 
exist in CWR gene pools of functional or agronomic 
importance provides a rationale for conserving epigeno-
types of importance (Kitavi et al. 2020). This strength-
ens the case for immediate conservation action regarding 
CWR genetic resources that stems from four main consid-
erations: (a) the need for novel germplasm to enrich crop 
species against a changing environment, (b) the diversi-
fied need for more, better, and variable food given human 
population growth and the changing standard of living in 
developing countries, (c) the danger that CWR populations 
face due to climate change and anthropogenic pressure, 
and (d) the accumulating evidence that CWRs possess 
a wealth of useful epigenetic variation that can be used 
in breeding programmes and provide substantial benefits 
in the long term. Loss of genetic diversity in crops and 
genetic erosion within CWR germplasm collections and 
their natural habitats are slow and long-term processes. 
Hence, the need for effective conservation programmes 
for CWR both for widening crop gene pools and agro-
biodiversity preservation tends to be overlooked. Without 
operative CWR conservation programmes, supported by 
different -omics tools, comprising epigenomics, future 
breeding progress and agrobiodiversity itself will be at 
risk (Monteiro et al. 2018).

A major means to secure CWR genetic and epigenetic 
diversity is the designation of protected areas in  situ 

associated with (epi)genetic monitoring. (Epi)genetic mon-
itoring, which is the quantification of temporal changes in 
population, genetics, and dynamics metrics, constitutes a 
method with a prognostic value and an important tool for 
the protection of biodiversity (Aravanopoulos 2016). The 
monitoring of genetic resources has been recognized in 
several international agreements and documents. However, 
it has not thus far been comprehensively implemented in 
nature and CWR in particular. Nevertheless, genetic moni-
toring can be readily and directly applied as an early warn-
ing system in the temporal evaluation of any CWR species, 
especially in marginal and vulnerable CWR populations, 
as highlighted by climate change scenarios.

Conclusion

In conclusion, there is a crucial need to improve food 
and fuel supply production efficiency for an ever-growing 
population in the modern world. Proper use of epigenetic 
variation from CWR and other gene pools may provide 
new opportunities for crop improvement and agrobiodi-
versity preservation. Advances in -omics have provided 
new insights into the sources and inheritance of epige-
netic variation and enabled the efficient introduction of 
epi-traits from CWR into crops using epigenetic molecu-
lar markers epiQTLs. Furthermore, the development of 
epigenome-editing tools paved the way for monitoring and 
manipulating crop epigenomes. For efficient use of epige-
netic variation for crop improvement and agrobiodiversity 
preservation, it will be crucial to pursue research aimed at 
elucidating how to predict stability for epigenetic variants 
so that we can use epigenetics for the stable improvement 
in agronomically important traits.
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