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Abstract
Key message We evaluate self-organizing maps (SOM) to identify adaptation zones and visualize multi-environment 
genotypic responses. We apply SOM to multiple traits and crop growth model output of large-scale European sun-
flower data.
Abstract Genotype-by-environment interactions (G × E) complicate the selection of well-adapted varieties. A possible solu-
tion is to group trial locations into adaptation zones with G × E occurring mainly between zones. By selecting for good 
performance inside those zones, response to selection is increased. In this paper, we present a two-step procedure to identify 
adaptation zones that starts from a self-organizing map (SOM). In the SOM, trials across locations and years are assigned to 
groups, called units, that are organized on a two-dimensional grid. Units that are further apart contain more distinct trials. In 
an iterative process of reweighting trial contributions to units, the grid configuration is learnt simultaneously with the trial 
assignment to units. An aggregation of the units in the SOM by hierarchical clustering then produces environment types, 
i.e. trials with similar growing conditions. Adaptation zones can subsequently be identified by grouping trial locations with 
similar distributions of environment types across years. For the construction of SOMs, multiple data types can be combined. 
We compared environment types and adaptation zones obtained for European sunflower from quantitative traits like yield, 
oil content, phenology and disease scores with those obtained from environmental indices calculated with the crop growth 
model Sunflo. We also show how results are affected by input data organization and user-defined weights for genotypes and 
traits. Adaptation zones for European sunflower as identified by our SOM-based strategy captured substantial genotype-
by-location interaction and pointed to trials in Spain, Turkey and South Bulgaria as inducing different genotypic responses.

Background

To produce well-adapted varieties, breeders select candi-
date genotypes in multi-environment trials that cover a set 
of locations across various years. These trials are expected 
to represent the ‘target population of environments’ (TPE), 
which is the set of likely growing conditions experienced by 
varieties when grown by farmers in the future (Comstock 
and Moll 1963; Chapman et al. 2000; Hammer et al. 2019). 
The TPE can be characterized by a combination of meteoro-
logical, soil, and management variables. Genotypes com-
monly differ in their sensitivity to these variables, leading 
to genotype-by-environment interactions (G × E) that poten-
tially change the genotypic ranking across environmental 
gradients. If G × E is large, the genetic gain could be higher 
when subdividing the TPE and selecting for specific adapta-
tion to geographical and/or management subsets of the TPE 
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(Annicchiarico et al. 2005; de la Vega and Chapman 2006; 
Atlin et al. 2011). A TPE evaluation for subdivision can be 
based on advanced breeding material (i.e. candidate varie-
ties) or a reference set of genotypes. A reference set typically 
contains genotypes which represent the elite germplasm in 
a breeding program and that discriminate among the target 
environments (Fox and Rosielle 1982).

To select for specific adaptation, it is crucial to have a 
reliable characterization of the G × E structure, obtainable 
from a large sample of locations and years. Such G × E struc-
ture can be driven by repeatable (repeating) and non-repeat-
able elements. Repeatable elements occur when differential 
genotypic responses and their relationship to environmental 
drivers of G × E can be estimated reliably. In other words, 
when the drivers of G × E have been identified and geno-
typic reaction norms have been estimated and these explain 
a large proportion of the G × E structure. Genotypic reac-
tion norms can be estimated as a function of continuous 
or discrete environmental characterizations. An example 
of continuous environmental characterization is the use of 
factorial regression or spline-type of models that describe 
genotypic responses as functions of continuous variables or 
environmental indices (Millet et al. 2019; Bustos-Korts et al. 
2021). Discrete environmental characterizations commonly 
involve the classification of year-by-location combinations 
(trials) into environment types, or scenarios of environmen-
tal quality that drive adaptation.

The repeatable G × E elements that remain consistent 
across years for a specific location or management prac-
tice, or for which the distribution is known, are referred to 
as predictable G × E because they can be predicted before 
planting. Frequently, predictable G × E directly relates to 
genotype-by-location interactions, G×L (Gauch and Zobel 
1997; Annicchiarico 2002). Typical examples of predictable 
G × E patterns are those driven by soil conditions or photo-
period, or by other geographic characteristics, like latitude, 
longitude, and altitude.

If predictable G × E, often associated with G×L, describes 
a large proportion of G × E variance, genetic gain benefits 
from classifying locations into adaptation zones (also called 
regions or mega- environments). An adaptation zone is 
defined as a set of geographical locations with fairly homo-
geneous growing conditions that cause similar genotypes to 
perform best across years (Gauch and Zobel 1997). Thus, 
adaptation zones define predictable G × E, and breeders may 
select for specific adaptation to each of them. A rationale 
behind this strategy can be based on comparing direct selec-
tion in the adaptation zones, i.e. subdividing the full set of 
trials, with indirect selection across the TPE, i.e. the undi-
vided full set of trials (Atlin et al. 2000, 2011; de la Vega 
and Chapman 2006, 2010).

In contrast, G × E is automatically non-predictable when 
the G × E is non-repeatable and no environmental drivers of 

G × E can be identified. Alternatively, for repeatable G × E, 
the environmental drivers of G × E may be known, but their 
distribution across years can be unknown. In that situation, 
it is hard to predict which genotypes will perform best at 
which location (Annicchiarico et al. 2006), and trying to 
classify locations into adaptation zones or mega-environ-
ments is unlikely to pay off in terms of genetic gain.

There are several methods to group and classify trials. 
When only phenotypic information is available, a popular 
two-step approach is to first estimate scores for environments 
(trials) within an application of the Additive-Main-Effects-
and-Multiplicative-Interactions model (AMMI, Gauch and 
Zobel, 1997) or the Genotype-Genotype-by-Environment 
model (Cooper and DeLacy 1994; Yan and Kang 2002). 
In a second step, the environmental scores are used for a 
grouping or clustering of environments into environmental 
groups, scenarios, types, mega-environments, etc. A compa-
rable strategy has been proposed using environmental scores 
obtained from estimates for the variance-covariance matrix 
between trials in a mixed model context (e.g. Cullis et al., 
2010). When environmental variables or indices are avail-
able (e.g. meteorological or soil variables, or indices calcu-
lated with a crop growth model), environments can directly 
be clustered on such environmental characterizations 
(Chapman et al. 2000; Chenu et al. 2013; Millet et al. 2016; 
Bustos-Korts et al. 2019). As environment quality is often 
a function of many environmental variables, it is advised 
to integrate environmental information into environmental 
indices that supposedly better represent environmental sig-
nals that influence crop adaptation. Crop growth models are 
an increasingly popular and useful tool to construct such 
indices that can be used as input for environment classifica-
tion (Millet et al. 2019; Rincent et al. 2019; Casadebaig et al. 
2022; McCormick et al. 2021; Robert et al. 2020; Costa-
Neto et al. 2021). Furthermore, the use of crop growth mod-
els provides interesting opportunities to predict genotypic 
responses to environmental types that might become more 
frequent in the future due to climate change (Röotter et al. 
2013; Dettori et al. 2017; Peng et al. 2020).

A dimension reduction technique that seems particularly 
suitable for grouping environments into biologically mean-
ingful groups is provided by self-organizing maps (SOMs, 
Kohonen, 1982). SOMs map objects, environments, or trials 
in our case, corresponding to multivariate data vectors to 
a set of points located on a flexible grid or lattice within a 
two-dimensional coordinate system. The grid points coin-
cide with groups of objects, called units, that themselves rep-
resent a first level of clustering. However, it is often useful 
to achieve a further aggregation of objects by clustering the 
units into regions or zones within the lattice coordinate sys-
tem. The joint use of SOM assignment and clustering results 
in a two-dimensionally smooth k-Means-like clustering that 
is extremely powerful for visualisation of environmental 
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groupings as well as for showing how genotypes respond 
to environmental conditions. SOMs have been applied in 
several fields including biology (van Treuren et al. 2020), 
characterization of hybrid stability (Clovis et al. 2020) and 
the analysis of high-throughput phenotyping data (Chen 
et al. 2014; Singh et al. 2016). However, to our knowledge, 
they haven’t been used in the context of G × E analysis and 
environment classification.

In this paper, we aimed to explore the potential of SOMs 
to classify trials into environment types (focusing on repeat-
able G × E) and to use those environment types to classify 
locations into adaptation zones. We identified adaptation 
zones by clustering locations based on the distribution of 
environment types per location. That way, locations that 
share the most frequent environment type across years were 
classified as belonging to the same adaptation zone. We 
evaluated the SOM approach for environment classifica-
tion by quantifying the response to selection across adap-
tation zones and by quantifying the quality of target trait 
predictions when classifying trials into environment types 
or adaptation zones. As input to the SOMs, we used a large-
scale sunflower trial network grown in European environ-
ments. This trial network was characterized by phenotypic 
data (grain yield, oil concentration, and flowering time). We 
also compared the classification results obtained with yield 
only with those obtained by adding environmental indices 
calculated with the crop growth model Sunflo (Casadebaig 
et al. 2011) for specific growth stages, and disease scores.

Methods

An overview of our strategy to identifying environment 
types and adaptation zones for the European sunflower data 
is given in Fig. 1. In detail, descriptions of our strategy fol-
low below.

Data

Phenotypic data

Phenotypic data consisted of grain yield at 11% moisture, 
days to flowering (flowering considered to occur when 50% 
of the plants reached R5, Schneiter and Miller 1981), and 
grain oil concentration for 22 sunflower hybrids (reference 
genotypes) grown across 273 locations between 2012 and 
2018 (348 trials or environments). Broomrape (Orobanche 
cumana Wallr.) incidence scores were recorded per trial, 
with two levels; ‘high’ for trials with broomrape pressure, 
and ‘low’ for trials without broomrape incidence. The 
hybrids were chosen to represent material adapted to Euro-
pean conditions, ranging from Spain to Ukraine and Russia 
(Fig. 1 and Figure S1). Genotypes included the phenology 

range that is relevant to this European TPE. Not all traits 
were observed in all environments; yield was observed in 
348 environments and oil concentration was observed in 193 
environments, whereas days to flowering was observed in 
138 environments. Most of the analyses were applied to the 
set of 193 trials that contained yield and oil concentration 
phenotypes. Some of the methods were evaluated for the full 
set of 348 trials containing only grain yield. To assess the 
benefit of additional traits, we considered three trait subsets; 
only yield, yield plus secondary trait and yield plus crop 
growth model variables that describe environmental quality 
(Table 1).

Experiments were laid out as a row-column (spatial) 
design with one or two replicates, plus additional (diago-
nal) checks to account for spatial variability. Experimental 
units consisted of 4-row plots of 6 m long that were machine 
harvested after maturity. Cultural practices corresponded to 
those typical of the sampled growing areas.

Estimation of adjusted means per trial for the phenotypic 
data

To separate genotypic effects as good as possible from 
within-trial noise, adjusted means for genotypes were esti-
mated per trial with the following mixed model:

where y
irc

 is the phenotype of genotype i observed in row r 
and column c of the trial, � is an intercept, R

r
 is a random 

effect for row r, C
c
 a random effect for column c, Gi is the 

fixed effect of genotype i, and �
irc

 is a residual. Row and 
column effects are assumed to follow normal distributions 
with variances �2

r
 and �2

c
 , respectively. The residual �

irc
 was 

modelled with a first order autoregressive structure along 
rows and columns (Gilmour et al. 1997). The adjusted geno-
typic means, called best linear unbiased estimators or 
BLUEs, were carried forward to subsequent G × E analyses, 
with the reciprocals of the corresponding squared standard 
errors serving as weights.

Environment data

Environment data and plant density were used as input to 
the Sunflo model. Climatic data (minimum and maximum 
temperature, solar radiation, rainfall, vapour pressure deficit) 
were extracted from the weather database provided by the 
IBM Weather Company (IBM 2021). Soil information (soil 
depth and other variables related to water retention capacity) 
was extracted from the Harmonized World Soil Database 
(FAO/IIASA/ISRIC/ISSCAS/JRC 2012). Plant density was 
recorded at the trial level.

(1)y
irc

= � + R
r
+ C

c
+ Gi + �

irc
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Fig. 1  Schematic representa-
tion of the modelling steps 
undertaken to identify adapta-
tion zones and to quantify their 
contribution to G × E
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Using self‑organizing maps to classify trials 
into environment types

A self-organizing map is an unsupervised machine learn-
ing method to identify patterns in data by mapping high-
dimensional data to a low and typically two-dimensional set 
of coordinates or points organized in a grid or lattice so that 
the topological structure of the data in the high-dimensional 
space is preserved in the low dimensional space. Grid points 
correspond to typical combinations of variable or feature 
values that are called ‘prototypes’ or ‘codebook vectors’. 
Individual objects in the data are assigned to the closest pro-
totype and form groups or ‘units’, where closest is defined 
with respect to a distance metric like the Euclidean distance. 
As a result, the position of grid points, and corresponding 
prototypes and units, in a SOM is determined by the dis-
tances to neighbouring points, in contrast to techniques like 
principal components analysis (PCA), where the direction 
of the largest principal components is determined by the 
most outlying points. Essential differences with traditional 
dimension reduction techniques in plant breeding, like PCA 
and reduced rank regression (van Eeuwijk 1992; Graffelman 
and Van Eeuwijk 2005), are that SOMs can deal with non-
linearities in the high-dimensional data space and tend to 
distribute dense parts of the data space over several (neigh-
bouring) units, making it easier to assess the presence of 
substructures (Wehrens 2020). The choice of the grid dimen-
sions, and with that the resolution of the grid relative to 
the objects that require assignment to prototypes and units, 
is a ‘parameter’ under control of the user. The grid size is 
a compromise between within-unit heterogeneity and unit 
size, i.e. a too large grid will have a too high resolution and 
will lead to units with no or few objects, while a too small 
grid will have too low resolution and strong unit heterogene-
ity for some units. We used a grid size of 5 by 5 because it 
provided sufficient resolution without creating empty units.

Data representation and preparation for SOM analysis

To train a SOM, data need to be arranged in one or more 
vectors or matrices, with the objects that will be classified 
labelling the rows and with variables in the columns. Each 
of the data vectors or matrices that are used is called a 
‘layer’ and contains a different piece of information about 
the trials. In each layer, variables can correspond to one 

or more continuous random variables (in our sunflower 
data, the genotypic BLUEs for grain yield, other traits, or 
environmental indices), or discrete variables (in our sun-
flower data, the indicator for broomrape incidence within 
each trial). We can think of our trial data as follows: trials 
define the objects we want to classify, the data on which 
the classification will be based are organized in layers, and 
each layer contains at least one trait or variable, although 
often a layer contains multiple traits or variables. There-
fore, the dimensions of layers are always the number of 
objects (trials) × the number of traits/variables. Heteroge-
neous traits/variables within a layer require normalization 
or scaling. For each layer, a unique distance measure can 
be chosen to define distances between objects. SOM algo-
rithms can deal with missing values, but we preferred to 
impute missing yield and oil concentration values before-
hand by fitting an additive model with fixed genotype and 
environment effects and using those fitted values to fill 
in the missing genotype-environment combinations in the 
data. These imputed data were used exclusively for the 
SOM analysis part. Subsequent analyses based on mixed 
models used the original non-imputed data.

As we wanted to classify trials into environment types 
that explain G × E and preserve genotypic ranks within 
environment types, we scaled continuous traits and vari-
ables per trial to have zero mean and unit standard devia-
tion. Note that this is the same kind of scaling that is used 
to explore correlations between variables in a heterogene-
ous set of variables by PCA. Effectively, we concentrated 
in the SOM analysis on the genotypic correlations between 
trials. Without this scaling step, trials would be primarily 
classified on the basis of their means, i.e. the environmen-
tal main effects, and less by their ability to discriminate 
between genotypes within trials.

In the analysis of our sunflower data, we used two types 
of input data layer arrangements: (i) a single layer per trait, 
with the columns within that layer corresponding to geno-
types, and (ii) a single layer per genotype, with multiple 
layers corresponding to different genotypes (Fig. 2). In the 
arrangement of one layer per trait, each layer consisted of 
a matrix of dimensions 193 (or 348) environments by 22 
genotypes. In the arrangement of one layer per genotype, 
each layer consisted of a matrix of 193 (or 348) environ-
ments by the number of traits considered in that specific 
analysis. In this latter arrangement, genotype is interpreted 

Table 1  Input data sets used in 
sunflower trial classification. 
The data sets differed in the 
span of the geographical region 
and in the traits and covariables 
that were considered

Data Traits

Yield (yld) Grain yield
Yield + Traits (tr) Grain yield, thermal time to flowering (R1), oil con-

centration and broomrape incidence score
Yield + CGM (cgm) Grain yield, crop growth model-calculated covariables
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Fig. 2  Schematic view of input data organization for different appli-
cations of self-organizing maps (SOMs). A Layers arranged as one 
layer per trait, where each layer is a matrix with the environments 
in the rows and genotypes in the columns (except for the broomrape 
incidence scores which have one value per environment only). B 
Layers arranged as one layer per genotype. In each genotypic layer, 
rows correspond to environments and columns to yield, secondary 
traits or crop growth model environmental indices. Yield corresponds 

to a SOM applied to yield only; yield + traits corresponds to a SOM 
applied to yield plus thermal time to flowering, oil concentration and 
broomrape scores and yield + cgm corresponds to a SOM applied to 
yield, plus the environmental indices calculated with the crop growth 
model Sunflo: mean photoperiod between flowering and onset of 
senescence (p4_photo_mean), and mean solar radiation between the 
onset of senescence and maturity (p5_rad_mean)
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as a bio-assay of the environmental conditions following 
the concept of ‘reference’ genotypes (Fox and Rosielle 
1982).

Distance measures

The R package ‘kohonen’ provides a flexible implementa-
tion for SOM, which allows using a large variety of distance 
measures (Wehrens and Kruisselbrink 2018). In this paper, 
we used sum-of-squares distances for layers with quanti-
tative traits and environmental covariables, and Tanimoto 
distances (equivalent to Jaccard distances, Härdle and Simar 
2013) for the layer containing broomrape incidence scores.

Layer weights

Distance functions or metrics can be defined for each indi-
vidual layer included in a SOM analysis. The distances are 
then combined across layers retaining the assigned distance 
metrics per layer and allowing for an additional user-defined 
weight per layer. In the arrangement of one layer per trait, 
with yield plus other traits (oil concentration, thermal time 
to flowering and broomrape incidence scores), we assigned 
a weight of 3 to yield, 2 to oil concentration, 1 to thermal 
time to flowering and 1 to the broomrape scores. Layer 
weights were user-defined parameters. In this example, we 
chose weights that roughly express the assumed biologi-
cal closeness to the target trait. For the arrangement of one 
layer per trait, with yield plus the crop growth model indices 
‘p4_photo_mean’ and ‘p5_rad_mean’ we assigned a weight 
of 4 to yield and a weight of 1 to each of the crop growth 
model indices to assign more importance to the trait of eco-
nomic interest. In the arrangement of one layer per trait, 
genotypes are arranged as columns within each of the trait 
matrices. Therefore, all genotypes receive automatically the 
same weight.

Following the idea of probe genotypes, genotypes with 
a known reaction to identified environmental stresses, we 
wanted to evaluate whether giving more weight to geno-
types that respond stronger to the environment would lead 
to a more pronounced identification of adaptation zones. 
Therefore, in the arrangement of one layer per genotype, 
we weighted genotypic layers by the genotypic contribution 
to G × E. (The order of the layers does not influence the 
results; therefore, we just ordered them alphabetically.) The 
squared lengths of the AMMI genotypic vectors will give 
the 2-dimensional approximation to the sums of squares for 
interaction for individual genotypes, provided the biplot is 
made with genotype scaling, i.e. the genotypic scores are 
calculated as singular vector multiplied by the singular 
value. However, to stay away from the graphics in the biplot, 
one can easily calculate the sums of squares for interaction 
for each genotype in an AMMI-2. This was done and the 

sums of squares were used as weights in the SOM. This 
led to tenfold differences in genotype weights (the genotype 
with the smallest weight was gen06 and the one with the 
largest weight was gen14, Figure S2). Broomrape scores 
were considered as an additional layer. Broomrape scores 
were given a weight equal to the average genotype weight 
for yield (i.e. 4.46).

Training a SOM

The goal of training a SOM is to obtain a low dimensional 
grid of points with corresponding prototypes and units that 
approximates the distribution of the originally high-dimen-
sional data and that reveals hopefully biologically interpret-
able patterns in the data by keeping objects that were close 
together in the high-dimensional space also close together in 
the low-dimensional grid. The initial prototypes were taken 
randomly and are adjusted during an iterative process in 
which all objects are repeatedly presented to the prototypes. 
In each iteration, the most similar unit, called the ‘winning 
unit’, is rotated slightly towards the presented object, which 
is a process reminiscent of K-means clustering. What dis-
tinguishes SOMs is that not only the winning unit but also 
its immediate neighbourhood is rotated, albeit to a lesser 
degree. During training, the size of this neighbourhood grad-
ually decreases until, in the end, only K-means-like updates 
are made (Kohonen 1982).

Clustering step

A final assignment of trials to environment types was done 
by a further clustering of the SOM prototypes. Without this 
step, there would be as many environment types as units 
in the map. We chose for a hierarchical clustering of the 
prototypes, using the function ‘hclust’ in R. We considered 
dendrogram cuttings leading to six environment types. A 
smaller number of environment types produced too similar 
environment type frequencies per geographical cluster, lead-
ing to a too low resolution for identifying adaptation zones.

Identification of adaptation zones 
from environment types

Environment types resulting from the SOMs and subsequent 
clustering of prototypes focus on the classification of tri-
als driving repeatable G × E. The next step was to use the 
environment types to identify adaptation zones by group-
ing location clusters (Figure S1) with a similar distribution 
of environment types across years. These adaptation zones 
captured predictable G × E.
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Clustering locations into geographical groups

As a preliminary first step to identify adaptation zones from 
environment types, we created geographical units contain-
ing nearby locations by clustering trials on latitude and lon-
gitude (Figure S1). Here, we assumed that geographically 
close trials provide a sample of environmentally similar 
conditions that will belong to the same adaptation zone. 
For convenience, we used SOMs for this classification, but 
many alternative methods would have produced similar geo-
graphical groupings of trials. We arranged trial latitude and 
longitude information as separate layers and constructed a 
SOM with the ‘kohonen’ package in R (Wehrens and Kruis-
selbrink, 2018). This SOM procedure led to 10 geographical 
clusters when considering the 193 trials with yield and oil 
concentration, and to 17 geographical clusters when consid-
ering the 348 trials with yield only (Figure S1).

Identifying adaptation zones by clustering geographical 
groups with respect to the frequency of environment types

The relative frequencies of environment types within geo-
graphical clusters of trials as identified by SOMs on phe-
notypic traits and environmental variables and indices 
changed among those geographical clusters. These relative 
frequencies of environment types defined Chi-square dis-
tances between geographical clusters and formed the input 
to a hierarchical clustering procedure to identify adapta-
tion zones (Ward's method, Härdle and Simar, 2013), again 
using the ‘hclust’ function in R (R Core Team 2019). Two 
geographical clusters belonged to the same adaptation zone 
if the relative frequencies of their environment types were 
comparable. As for most of the SOM input variable com-
binations four adaptation zone clusters were identified, we 
presented the results with this number of adaptation zones 
to maintain a certain consistency.

To compare the assignment of trials to adaptation zones 
between SOMs with different layer arrangements and trait 
subsets, we calculated so-called balanced accuracies using 
the R-package caret (Kuhn 2021). When we consider two 
different SOM applications, say SOM1 and SOM2, then for 
a particular zone identified by SOM1, say SOM1-a, we can 
compare with a zone identified by SOM2, say SOM2-b. Call 
the number of trials assigned to both SOM1-a and SOM2-
b ‘A’, the number of trials assigned to SOM1-a and not 
assigned to SOM2-b ‘B’, the number of trials not assigned 
to SOM1-a and assigned to SOM2-b ‘C’, and trials assigned 
to neither of SOM1-a and SOM2-b ‘D’. Balanced accuracy 
is the average of A/(A + C) and D/(B + D).

G × E characterization

Quantifying repeatable and non‑repeatable G × E

To quantify the relative size of predictable vs. unpredictable 
G × E, we fitted the following mixed model to the BLUEs 
that followed from trial analyses using the mixed model 1 
described earlier, where we carried forward weights for the 
estimation of effects and variance components in the form 
of the reciprocal of the squared standard errors of the per 
trial genotypic BLUEs (Möhring and Piepho 2009; Welham 
et al. 2010). The model was fitted in ASReml-R (Butler et al. 
2019):

In model 2, y
ilm

 is the yield of the genotype i in location 
l and year m. There is a trial specific fixed intercept term, 
�lm . G × E is decomposed into normally distributed zero 
mean genotype-by-location interaction ( GL

il
 ), genotype-by-

year interaction ( GY
im

 ), and genotype-by-location-by-year 
interaction ( GLY

ilm
 ), with variance components �2

gl
 , �2

gy
 , �2

gly
 , 

respectively. �
ilm

 is the error variance (scaled to 1) that was 
separated from �2

gly
 because we used a weighted analysis 

(Möhring and Piepho 2009; Welham et al. 2010).

Selection of environmental covariables for inclusion 
in SOMs

We used predicted thermal time to flowering to define phe-
nology parameters that were genotype-specific in the Sunflo 
crop growth model. After running the Sunflo crop growth 
model for each genotype-environment combination, we 
used the Sunflo phenology predictions and stage definitions 
to describe five developmental periods: (i) between sow-
ing and emergence (p1), (ii) between emergence and floral 
initiation (p2), (iii) between floral initiation and flowering 
(p3), (iv) between flowering and onset of senescence (p4), 
and (v) between the onset of senescence and maturity (p5). 
Environmental indices were calculated for each genotype-
environment combination within each of these developmen-
tal periods.

The number of calculated covariables was large (107 
covariables, Table S2). For that reason, we used a random 
factorial regression model together with some prior biologi-
cal insights about which covariable out of a set of highly 
correlated covariables will be most likely the causal one to 
pre-select a smaller number of covariables to be included in 
the environment classification task with SOMs. We used the 
following model:

(2)y
ilm

= �lm + G
i
+ GL

il
+ GY

im
+ GLY

ilm
+ �

ilm



2067Theoretical and Applied Genetics (2022) 135:2059–2082 

1 3

In model 3, y
ij
 is the yield of genotype i in environment j, 

�j is a fixed intercept for environment j, G
i
 is a random geno-

typic intercept, �
i
 is a random slope of genotype i with 

respect to the scaled genotype-specific environmental covar-
iable zij , and �

ij
 is a residual that contains G × E not explained 

by the covariable, plus within-trial error (no weights were 
used in model 3). All covariables were scanned one at a 
time. Among the significant covariables by a standard likeli-
hood ratio test on the variance component, we stored the five 
covariables that led to the smallest error variance. We 
then used physiological knowledge (e.g. Villalobos and 
Ritchie 1992) to select one variable to be retained in the 
model, out of the five candidates. After inclusion of the 
selected covariable, the whole process was repeated until no 
further covariables could be identified anymore that 
decreased the residual variance.

Evaluation of the adaptation zones

To evaluate the suitability of selecting for specific adapta-
tion to identified adaptation zones, we compared the accu-
racies of prediction models with and without adaptation 
zones. When identified adaptation zones lead to differential 
genotype adaptation, prediction accuracies of models with 
adaptation zones will exceed those of models without adap-
tation zones.

Variance–covariance modelling at  the  level of  adaptation 
zones As a reference, we predicted genotypic performance 
at each trial using the following two-way mixed model with-
out adaptation zones:

In model (4), y
ij
 are the BLUEs for genotype i in environ-

ment j, estimated using model (1), �j is an environment-
specific intercept, G

i
 is a zero mean normally distributed 

effect for genotype i with variance �2
g
 , GE

ij
 is a zero mean 

normally distributed genotype-by-environment interaction 
with variance �2

ge
 . �

ij
 is the error variance (scaled to 1) that 

was separated from �2
ge

 because we used a weighted analysis 
(Möhring and Piepho 2009; Welham et al. 2010).

Model (4) can be converted into a model with adaptation 
zones in the following way, where the G × E is partitioned 
into a part due to adaptation zones and residual genotype by 
trial within adaptation zones.

(3)y
ij
= �j + G

i
+ �

i
zij + �

ij

(4)y
ij
= �j + G

i
+ GE

ij
+ �

ij

(5)y
ij(z)

= �j + GZ
iz
+ GE(Z)

ij(z)
+ �

ij(z)

In model (5), GZ
iz
 is a normally distributed genotype-by-

adaptation zone interaction with zero mean and zone specific 
variances, �2

gz
 and covariances �zz′ , allowing the borrowing 

of information between adaptation zones (Piepho and 
Möhring 2005). The terms GE(Z)

ij(z)
 and �

ij(z)
 are zero mean 

normally distributed with variances �2
ge

 and �2
�
 , respectively. 

As before, weights were equal to reciprocals of squared 
standard errors. We inspected the predictions of model (5) 
in an AMMI biplot (Gauch and Zobel 1997).

Cross‑validation When comparing models with and with-
out adaptation zones, we assume that the trials included in 
multi-environment testing are a sample of the TPE. Hence, 
if adaptation zones were to have an impact on crop adapta-
tion in the long term, they should also explain a portion of 
the G × E in the sample of the TPE represented by the tri-
als. To investigate this hypothesis, we constructed a leave-
one-year-out cross-validation scheme in which a subset of 
six out of the full set of seven years was assumed to repre-
sent a training set. For each subset of six years, we gener-
ated predictions from models 4 and 5 and calculated the 
prediction accuracies for the hold-out trials. Predictions 
obtained from model 4 were for the genotype main effect, 
whereas predictions obtained from model 5 were specific 
to each adaptation zone or mega-environment. Accuracy 
was calculated for each trial as the correlation between 
predicted and observed yield.

Correlated response to  selection We also quantified the 
utility of distinguishing adaptation zones via the approach 
proposed by Atlin et  al. (2000), in which responses to 
selection for divided (with adaptation zones) and undi-
vided (without adaptation zones) TPE are compared. The 
ingredients for that comparison follow from the fit of the 
following mixed model for the phenotypic response of 
genotype i at location l that is part of zone z in year m:

In model 6, all terms except the trial intercept �lm are zero 
mean normally distributed terms with a unique variance, 
with G

i
 the genotypic main effect, GZ

iz
 the genotype-by-

adaptation-zone interaction, GL(Z)
il(z)

 the genotype-by-loca-
tion-within-adaptation-zone interaction, GY

im
 the genotype-

b y - y e a r  i n t e r a c t i o n ,  GZY
izm

 t h e 
genotype-by-adaptation-zone-by-year interaction, 
GL(Z)Y

il(z)m
 the genotype-by-location-within-adaptation 

zone-by-year interaction. The corresponding variances are 
�2
g
 , �2

gz
 , �2

gl(z)
 , �2

gy
 , �2

gzy
 and �2

gl(z)y
 . �

ilmz
 is the error variance 

(scaled to 1) that was separated from �2

gl(z)y
 because we used 

(6)

y
ilmz

= �lm + G
i
+ GZ

iz
+ GL(Z)

il(z)
+ GY

im

+ GZY
izm

+ GL(Z)Y
il(z)m

+ �
ilmz
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a weighted analysis (Möhring and Piepho 2009; Welham 
et al. 2010).

The comparison of the direct response to selection, 
DR, for selecting in a divided TPE, i.e. selection within 
regions, with the correlated response for selection in an 
undivided TPE, CR, was calculated as in Eq. 7, following 
(Falconer and Mackay 1996). Ratios of CR/DR smaller 
than 1.0 indicate a larger response when selecting within 
regions, so subdivision into adaptation zones is worth-
while. Ratios above 1.0 indicate a larger response when 
selecting across regions, so better not to subdivide into 
regions.

In Eq. 7, �g is the genetic correlation between a phenotypic 
response as observed in an undivided TPE and a response 
observed within an adaptation zone. This correlation is 
expressed as:

H2

Undivided
 and H2

Divided
 are the heritabilities, or better, the 

repeatabilities, of line means in the undivided set of locations 
and the zones, respectively. Their estimators are functions of 
variance components, as given in Eqs. 9 and 10, where nl,ny, 
and nz are the median number of locations per zone, years, and 
zones in which genotypes were present.

Results

Variance components for GLY

In this paper we aim at exploring the potential of SOMs 
to understand the drivers of G × E, classifying trials into 
environment types (focusing on repeatable G × E), and ulti-
mately, classifying locations into adaptation zones focusing 
on predictable G × E. We first quantified the relative impor-
tance of repeatable vs. non-repeatable G × E comparing 

(7)CR

DR
= �g

√

√

√

√

H2

Undivided

H2

Divided

(8)
�g =

�2
g

√

�2
g

(

�2
g
+ �2

gz

)

(9)H2

Undivided
=

�2
g

�2
g
+

�2
gz

nz
+

�2

gl(z)

nlnz
+

�2
gy

ny
+

�2
gzy

nynz
+

�2

gl(z)y

nlnzny

(10)H2

Divided
=

�2
g
+ �2

gz

�2
g
+ �2

gz
+

�2

gl(z)

nl
+

�2
gy

ny
+

�2
gzy

ny
+

�2

gl(z)y

nlny

magnitudes of variance components as given in Table 2. 
There was considerable G × E (with G × E being 3.07 times 
the genotype main effect, Table 2). The relative impor-
tance of G × E aligned well with what is expected for the 
wide range of the genotypes and environments that were 
included in the sunflower data set. Most G × E variation 
was unpredictable (73.1% of the G × E corresponded to 
G × Y + G × L × Y variation), but G × L was large enough to 
identify adaptation zones.

Characterizing G × E with SOM for yield

This section focuses on the use of SOMs to classify trials 
into environment types (ETs).

Layers per trait

Environment classification using grain yield led to six envi-
ronment types (ETs, Fig. 3). The AMMI biplot was used for 
visualization of the genotypic BLUES at each environment 
type, as predicted by Eq. 4. The SOM can be interpreted in 
a similar way as an AMMI biplot, with genotypes showing a 
larger prototype radius at a particular group of environments 
corresponding to those that show a positive interaction in the 
AMMI biplot. The SOM-obtained ETs were driven by the 
contrasting genotypic responses of genotypes like gen01, 
gen08, gen14, gen16 and gen22 (Fig. 3A). Therefore, we 
will focus on these five genotypes as an example to make 
comparisons throughout the paper.  In the SOM figures, 
the codebook vectors have been indicated in colour for the 
example genotypes.

yldt1 was composed of trials with which gen14 and gen16 
had a positive interaction (Fig. 3A, B). yldt1 occurred most 
commonly in Romania and North of Bulgaria (pie i, Fig. 3C) 
and less frequently in South of Bulgaria, Turkey and Spain 
(pies j and a, Fig. 3C). In contrast, yldt6 corresponded to 
environments with which gen01 and gen22 had a positive 
interaction. Gen14 and gen16 had a negative interaction with 
ET6 trials. yldt3 occurred most commonly in the South of 
France (pie b, Fig. 3C), South of Romania and North of 
Bulgaria (pie i, Fig. 3C) and less frequently in the other 
Northern trials (pies c, d, e, f, g and h, Fig. 3C), but it was 

Table 2  Variance components for genotypic main effect and G × E 
interactions (193 trials)

Source Component SE %G × E

G 14,931 4878
GY 2167 659 4.74
GL 12,311 2237 26.90
GLY 31,281 2341 68.36
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absent in the Southern trials in Spain, Turkey and South of 
Bulgaria (pies a and j, Fig. 3C).

Layers per genotype

When arranging data as one layer per genotype, we weighted 
genotypes by their contribution to G × E. Among the six 
identified ETs (Fig. 4), G × E was driven by the contrast 
between yldg3 versus yldg1 + yldg5. Gen14 and gen16 
showed a strong positive interaction with yldg3, reflected 
by the large prototype diameter (Fig. 4A) and the large score 
for AMMI1 (Fig. 4B). yldg3 occurred most often in Roma-
nia Bulgaria and Turkey (pies i and j in Fig. 4C). These tri-
als showed shorter photoperiod (mean photoperiod between 
emergence and floral initiation of 14.9 h), high maximum 
temperature (mean of 33.6 °C), reduced rainfall (194 mm), 
higher solar radiation (25.5  MJm−2, Fig. 5) and a higher 
broomrape pressure, compared to the other ETs. 

Gen14 and gen16 also showed a negative interaction with 
yldg1 and yldg5, with a small prototype diameter (Fig. 4A). 
In contrast, gen22 and gen08 had a positive interaction 
with environment type yldg1 and yldg5, and a negative 
interaction with yldg3. Environment type yldg1 occurred 
most commonly in the South of France, Romania and North 
of Bulgaria (pies b and i in Fig. 4C), whereas yldg5 had a 
longer photoperiod (15.4 h), lower mean maximum tempera-
tures (25.9 °C), higher rainfall (371 mm) and lower solar 
radiation (21.9  MJm−2), compared to yldg3, Fig. 5. yldg5 
occurred most often in France and Austria (pies c, d and E 
in Fig. 4C). Spain had a large proportion of trials classified 
as yldg4, which corresponded to environments with shorter 
photoperiod and reduced rainfall, compared to the other ETs. 
Gen22 had a negative interaction with yldg1, whereas gen08, 
gen14 and gen16 had a positive interaction with yldg1. In the 
arrangement of layers per genotype, this negative interaction 
was observed as a smaller prototype diameter, whereas the 
same interaction was observed as a smaller radius in the 
SOM applied to one layer per trait (Fig. 3).

Characterizing G × E with SOM for multiple traits

In this data arrangement, we considered yield, plus the sec-
ondary traits thermal time to flowering, oil concentration and 
scores for broomrape incidence.

Layers per trait

When using the layers per trait arrangement, we gave more 
weight to the target trait yield, and less weight to the other 
traits. The SOM allows to visualize how each of the traits 
and genotypes project on the trial groupings.

The arrangement of layers per trait led to six ETs that 
explained G × E for grain yield (Figure S3A and S3B). 

The largest contrast was given by trt4 with the other ETs 
(especially with trt5). trt4 was mainly composed of trials 
with which gen14 and gen16 had a positive interaction for 
yield and that had a large broomrape incidence (Figure 
S3A). For thermal time to flowering, gen08 and gen22 
had a positive interaction with trt4 trials, whereas for oil 
concentration, gen08 and gen16 had a positive interaction 
with trt4 trials. trt4 trials occurred only in South Roma-
nia, Bulgaria and Turkey (pies i and j in Figure S3C). The 
environment type trt5 corresponded to trials for which 
gen08, gen16 and gen22 had a positive interaction for 
yield, whereas gen08 and gen22 had a positive interaction 
for thermal time to flowering (i.e. got more delayed than 
other genotypes, a positive G × E effect) and gen16 had a 
positive interaction for oil concentration.

Layers per genotype

The input data were also organized with genotypes cor-
responding to individual environment × trait matrices, i.e. 
layers, and traits corresponding to the columns within each 
genotypic data matrix. We combined quantitative and qual-
itative traits using 23 layers (one per genotype for quan-
titative traits, plus one additional layer for the broomrape 
scores, Fig. 2). Like when we used one layer per trait, the 
incorporation of broomrape scores led to a separation of the 
trials that had a high broomrape incidence, in trg1 (Fig. 6A). 
trg1 mainly encompassed trials located in South Romania, 
Bulgaria and Turkey (pies i and j in Fig. 6C). For yield and 
oil concentration, gen14 and gen16 showed a strong posi-
tive interaction with trg1 trials. trg1 showed a large contrast 
with trg3 and trg4 trials. In trg3 trials, gen14 and gen16 had 
a strong negative interaction for yield. Gen22 had a positive 
interaction for yield with trg3. trg4 trials induced a strong 
positive interaction from gen16.

When comparing the relationships between traits, gen16 
and gen22 had opposite yield behaviour, as visible in the 
radius; gen16 had very strong negative interactions for all 
traits in trg3 and positive interactions for yield and oil con-
centration in the other five ETs (Fig. 6A). In contrast, gen22 
had strong positive interactions for the three traits in trg3, 
whereas it had negative interactions for yield and oil con-
centration in the other ETs. This example illustrates that the 
relationships between traits can help classifying environ-
ments. The relative frequency of ETs across geographical 
clusters indicated that trials in Spain, Turkey and South Bul-
garia tend to induce different genotypic responses, due to a 
high frequency of trg4 trials (Fig. 6C).
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Including environmental information 
to characterize G × E with SOM

Besides the use of several traits for environmental classifica-
tion and its corresponding visualization of the genotype and 
environment contributions to G × E, it might be interesting to 
incorporate other types of information into the classification 
and visualization processes. For example, breeders might 
want to consider environmental variables to classify trials. 
In the example of European sunflower, the forward selec-
tion procedure in the factorial regression model indicated 
that the following variables were most relevant to explain 

G × E variation: mean photoperiod between flowering and 
the onset of senescence (p4_photo_mean) and mean solar 
radiation between the onset of senescence and maturity (p5_
rad_mean). Hence, we illustrated ETs derived from SOM 
applied to these environmental variables, together with grain 
yield (Figs. 7 and S4). As for the examples using yield only 
and yield plus secondary traits, with data arranged as one 
layer per genotype, G × E was driven by ETs that occurred 
most often in Turkey and South of Bulgaria (pie j, Fig. 7), 
Romania and North of Bulgaria (pie i, Fig. 7) with Spain 
(pie a, Fig. 7) and with those in more Northern locations 
(pies b, c, d, e, f, g and h in Figs. 7 and S3).

Fig. 3  Yield, one layer per trait (yld-t) A Prototypes for example 
genotypes that drive G × E across these environment types. Proto-
types (outer circles) are coloured according to their corresponding 
ET. Genotypes are indicated in sequential order from gen01 to gen22. 
Radius of each genotype is proportional to the genotype performance 
in trials belonging to that prototype (a larger diameter means a larger 
yield, relative to the other genotypes because the yield was standard-

ized within a trial). B AMMI biplot for mixed-model predicted yield 
of genotypes at each environment type, as identified with a self-
organizing map, and C Map of environment types for yield. Pie sizes 
are proportional to the number of trials present in that geographical 
cluster. The ‘n’ next to each pie map indicates the number of trials in 
that particular geographical cluster
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Fig. 4  Yield, one layer per gen-
otype (yld-g). A Prototypes for 
example genotypes that drive 
G × E across these environ-
ment types. Prototypes (outer 
circles) are coloured accord-
ing to their corresponding 
ET. Colour codes for ETs are 
indicated at the bottom of the 
figure. Inner radius (i.e. white 
circle) inside each prototype is 
proportional to the genotype 
performance in trials belonging 
to that prototype (a larger radius 
means a larger yield, relative to 
the other genotypes because the 
yield was standardized within 
a trial). B AMMI biplot for 
mixed-model predicted yield 
of genotypes at each environ-
ment type, as identified with a 
self-organizing map, and C Map 
of environment ypes for yield. 
Pie sizes are proportional to the 
number of trials present in that 
geographical cluster. The ‘n’ 
next to each pie map indicates 
the number of trials in that par-
ticular geographical cluster
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Adaptation zones

For all combinations of geographical clusters, trait subsets 
and layer arrangements, the ET classification changed across 
years. Hence, none of the locations can be classified with full 
certainty as belonging to a single ET. To identify adaptation 
zones that capture predictable G × E, we used ET frequencies 
to classify geographical clusters (locations). To do this, we 
used the ET frequency at each geographical cluster across 
years to classify them into adaptation zones. Geographical 
clusters that have similar ET frequencies across years will be 
classified as belonging to the same adaptation zone.

Resulting adaptation zones were comparable across dif-
ferent input data combinations of trait subsets and layer 
arrangements (Table 3); trials in Spain, Turkey and South 
Bulgaria were most consistently classified as belonging to 
different adaptation zones (Fig. 8), as already observed from 
the ET frequency description in “Section Including envi-
ronmental information to characterize G × E with SOM”. 
Trials in Spain (adaptation zone ‘yld-g-a’) corresponded 
to locations that had a shorter photoperiod (14 h), higher 
daily maximum temperatures (35.7 °C), lower total rainfall 
(79.6 mm) and higher solar radiation (29.2  MJm−2, Fig. 9). 
Trials in Turkey and South of Bulgaria (adaptation zone 
‘yld-g-d’) had shorter photoperiod (14.7 h), higher tempera-
tures (33.6 °C), reduced rainfall (199 mm) and higher solar 
radiation (26.8  MJm−2) than that in more northern locations, 

but their values were different from those in Spain (milder 
temperatures and more rainfall, Fig. 9). G × E in the remain-
ing trials was mostly driven by an adaptation zone in France 
and another in South Romania. Locations in Austria and 
Hungary (pies e, f and g, Figs. 3, 4, 6, 7) were harder to 
classify due to their more variable ET assignments across 
trait subsets and layer arrangements. Locations in adapta-
tion zones ‘yld-g-b’ and ‘yld-g-c’ had longer photoperiods, 
lower maximum temperatures, more rainfall and lower solar 
radiation than those in ‘yld-g-a’ and ‘yld-g-d’.

To study the utility of adaptation zones, we compared 
the direct response to selection in adaptation zones versus 
indirect selection in an undivided TPE. Inspection of esti-
mated variance components representing different sources 
of G × E indicated that adaptation zones explained a sizeable 
proportion of G × E. In all cases, the G × Z (genotype-by-
adaptation zone) variance described a considerable part of 
the G × L variance (genotype-by-adaptation-zone + geno-
type-by-location-within-adaptation- zone), ranging from 
0.33 (yield + CGM with one layer per trait, Table 4) to 0.58 
(yield with one layer per genotype, Table 5).

For all trait subset and layer arrangements, the CR/DR 
ratio was lower than 1, supporting the idea that the identified 
adaptation zones capture a sizeable proportion of G × E and 
for that reason it would pay off to select for specific adapta-
tion. This result was also observed for the extended data set 
of 348 trials that only contained yield information (Figure 

Fig. 5  Environmental condi-
tions at each of the environment 
types identified with the SOM 
applied to the yield data with 
one layer per genotype (yldg, 
same as reported in Fig. 4). A 
Photoperiod between emergence 
and floral initiation, B Daily 
maximum temperature between 
the onset of senescence and 
maturity, C Rainfall between 
emergence and maturity and D 
Mean solar radiation between 
flowering and onset of senes-
cence
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Fig. 6  Yield + secondary traits 
(grain yield, thermal time to 
flowering, oil concentration and 
broomrape incidence score) 
one layer per genotype (tr-g). 
A Prototypes (outer circles) 
are coloured according to their 
corresponding ET. Colour codes 
for ETs are indicated at the 
bottom of the figure. For layers 
corresponding to gen08, gen14, 
gen16 and gen22, radius of the 
white circles is proportional 
to the genotype performance 
for each trait in trials belong-
ing to that prototype (a larger 
diameter means a larger trait 
value, relative to the other 
genotypes because the yield 
was standardized within a trial). 
For the layer corresponding to 
broomrape incidence, proto-
types are coloured according to 
the broomrape incidence (‘high’ 
or ‘low’). B AMMI biplot for 
mixed-model predicted yield 
of genotypes at each environ-
ment type, as identified with 
a self-organizing map, and C. 
Map of environment types for 
‘yield + traits’. Pie sizes are 
proportional to the number of 
trials present in that geographi-
cal cluster. The ‘n’ next to each 
pie map indicates the number 
of trials in that particular geo-
graphical cluster
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Fig. 7  Yield + crop growth 
model indices, one layer per 
genotype (cgmg). A Pro-
totypes (outer circles) are 
coloured according to their 
corresponding ET. For layers 
corresponding to gen8, gen14, 
gen16 and gen22, radius of the 
white circles is proportional 
to the genotype performance 
for each trait in trials belong-
ing to that prototype (a larger 
diameter means a larger trait 
value, relative to the other 
genotypes because the yield was 
standardized within a trial). B 
AMMI biplot for mixed-model 
predicted yield of genotypes 
at each environment type, as 
identified with a self-organizing 
map, and C. Map of environ-
ment types for ‘yield + cgm’. 
Pie sizes are proportional to the 
number of trials present in that 
geographical cluster. The ‘n’ 
next to each pie map indicates 
the number of trials in that par-
ticular geographical cluster
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S1). When analysing the 348 trials, G × E was driven by the 
contrast of locations in Spain, Turkey, South of Bulgaria, 
and the region around Rostov (geographical clusters a, i, j 
and p, Figure S1) and the more northern locations.

Across layer arrangements, the CR/DR ratio was more 
often smaller for the adaptation zones resulting from the data 
arranged in one layer per genotype, indicating that weighting 
genotypes by their contribution to G × E is beneficial to the 

Table 3  Balanced accuracy for adaptation zones as obtained from different applications of SOMs in relation to a reference assignment that was 
provided by the yld_g SOM

Yld indicates that only yield information was used, sec indicates that yield plus secondary traits were used (grain yield, thermal time to flower-
ing, oil concentration and broomrape incidence score) and cgm indicates that yield plus crop growth model variables were used. The subscript 
‘_t’ indicates that data were organized as one layer per trait, whereas ‘_g’ indicates that data were organized as one layer per genotype

Adaptation zone yld_t sec_t cgm_t sec_g cgm_g

a 0.71 0.71 1.00 0.71 1.00
b 0.47 0.67 0.37 0.94 0.91
c 0.60 0.82 0.31 0.94 0.93
d 0.43 0.43 0.43 0.45 1.00

Fig. 8  Adaptation zones based on the environment type frequencies. 
Environment classifications are based on a SOM with the following 
input data sets; yield only, yield and scores of broomrape incidence, 
yield and thermal time to flowering; and yield, plus Sunflo-calculated 

covariables. The analysis was done for data arranged as one layer 
per trait (left column) and as one layer per genotype, with genotypes 
weighted according to their contribution to G × E (right column)
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identification of geographical zones with differential geno-
type discrimination. This might be an advantage compared 
to using one layer per trait, in which all genotypes receive 
the same weight.

Another way of evaluating the utility of selecting for 
specific adaptation to zones is by comparing prediction 

accuracies for models with and without environment clas-
sifications. We used an unstructured variance–covariance 
structure on adaptation zones, which allows borrowing infor-
mation between adaptation zones. The adaptation zones that 
we identified led to a larger prediction accuracy than a geno-
typic main effects model without adaptation zones (Table 6), 

Fig. 9  Environmental condi-
tions at each of the adaptation 
zones identified with the SOM 
applied to the yield data with 
one layer per genotype (yld-g, 
Fig. 7, 193 trials). A Photoper-
iod between emergence and flo-
ral initiation, B Daily maximum 
temperature between the onset 
of senescence and maturity, C 
Rainfall between emergence 
and maturity. D Mean solar 
radiation between flowering and 
onset of senescence

Table 4  Variance components 
for genotypic main effects 
and various types of G × E 
interactions as defined by 
fitting a genotype (G) × location 
(L) × year (Y) model with 
locations nested within 
adaptation zones (Z)

Zones were based on SOMs applied to yield, yield plus secondary traits (thermal time to flowering, oil 
concentration and broomrape scores) and yield plus crop growth model variables (mean photoperiod 
between and, and mean solar radiation between and). For the SOMs, information was structured as one 
layer per trait. Environmental zones were obtained by clustering on the frequencies of environment types 
per geographical group. Last row gives ratio of correlated response to selection in undivided set of trials 
versus direct response to selection in adaptation zones

Source Yield (yld-t) Yield + Traits (tr-t) Yield + CGM (cgm-t)

Component SE Component SE Component SE

G 11,440.1 4239.3 11,645.9 4306.6 10,873.9 4039.6
GZ 5499.5 1408.0 5540.8 1422.6 4616.7 1374.5
GY 1180.7 672.6 1210.5 671.6 725.1 721.5
GZY 3071.9 1005.6 3089.1 1006.6 4227.4 1141.7
GL(Z) 7663.3 2143.6 7854.8 2178.5 9038.1 2148.2
GL(Z)Y 30,007.1 2355.6 30,129.8 2387.6 28,867.9 2316.0
CR/DR 0.74 0.74 0.75
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showing that the SOM combined with the post-processing of 
ETs was successful in classifying locations into adaptation 
zones that produce predictable G × E (Fig. 8). The advantage 
of the multi-environment model with adaptation zones was 
variable across different zone constructions, but prediction 
accuracy was for all adaptation zone models equal or larger 
than that for a genotypic main effects model without zones 
(Table 6).

Discussion

The relative importance of G × E and evaluation 
of adaptation zones

The data set that we analysed encompassed a large range 
of genotypic responses, represented by hybrids of differ-
ent maturity classes and adaptation patterns, and by a large 
range of environments that spanned a major part of the sun-
flower growing region of Europe (Figs. 8 and 10). Hence, 
although the ratio of G × E to G was a lot larger than that 
reported in other sunflower data sets (de la Vega and Chap-
man 2010), it can be considered as an upper bound for the 
full span of the G × E that can be expressed across the Euro-
pean TPE for sunflower.

When comparing the relative sizes of the variance com-
ponents, Atlin et al. (2000) described that when the ratio 
of G × Z to G × L is large, and G × L compared to G is also 
large, the genetic gain strongly benefits from selecting for 
specific adaptation. In the example that we analysed, both 
the G × Z to G × L and the G × L to G ratios were very large, 
leading to a very low CR/DR ratio and supporting the idea of 
subdividing the TPE into sub-regions. The differential culti-
var adaptation to more Southern regions, as we identified it, 
coincides to a large extent with what is currently known by 

sunflower breeders and growers (Velasco et al. 2015), sup-
porting the idea that recommendation of specifically adapted 
genotypes is crucial for improving sunflower yields.

Data types and data preparation

In this paper, we illustrated the use of SOMs to classify 
environments. We compared the resulting ETs after includ-
ing a single quantitative trait (grain yield), a combination of 
quantitative traits (grain yield, oil concentration and, thermal 
time to flowering) and environment scores (grain yield and 
scores for broomrape pressure), and a combination of grain 
yield with environmental covariables calculated with the 
crop growth model Sunflo. These diverse data combinations 
illustrate the versatility of SOMs to represent and organize 
information of very different kinds.

One important aspect that needs to be considered when 
using SOMs is data preparation. We imputed and scaled 
the phenotypic traits per environment, i.e. per location-year 
combination. In that way, we remove environmental main 
effects and concentrate on the genotypic differences within 
environments. In our examples, we structured the input data 
for SOM as one layer per trait and as one layer per genotype. 
We assigned larger weights to the target trait (yield) and 
lower weights to the other traits. However, the SOM method-
ology is flexible, and layer weights can be changed as desired 
by the user, depending on which layer of information is of 
largest interest. In the current example, we assigned a larger 
weight to the target trait and a lower weight to other traits 
(a weight of 3 to yield, 2 to oil concentration, 1 to thermal 
time to flowering and 1 to the broomrape scores). Adaptation 
zones based on such weights would aim at increasing more 
the response to selection for grain yield than for the other 
traits, and simultaneously enable breeders to describe the 
genotypic response across environment types for multiple 

Table 5  Variance components and standard errors (SE) for genotypic main effects and various types of GxE interactions as defined by fitting a 
genotype (G) x location (L) x year (Y) model with locations nested within adaptation zones (Z)

Zones were based on SOMs applied to yield, yield plus secondary traits (thermal time to flowering, oil concentration and broomrape scores) and 
yield plus crop growth model variables (mean photoperiod between flowering and onset of senescence, and mean solar radiation between onset 
of senescence and maturity). For the SOMs, information was structured as one layer per genotype. Environmental zones were obtained by clus-
tering on the frequencies of environment types per geographical group. Last row gives ratio of correlated response to selection in undivided set 
of trials versus direct response to selection in adaptation zones

Yield (yld-g) Yield + Traits (tr-g) Yield + CGM (cgm-g)

Component SE Component SE Component SE

G 9603 4132 11,840 4485 9600 4101
GZ 9595 2328 5746 1587 9044 2252
GY 1964 706 1728 715 2082 626
GZY 393 785 738 822 0 0
GL(Z) 6803 2157 8436 2173 7289 2176
GL(Z)Y 32,629 2394 31,784 2366 32,780 2375
CR/DR 0.61 0.76 0.62
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traits simultaneously. We evaluated several weight combina-
tions and used the predictive ability and correlated response 
to selection as a criterion to define the final set of weights.

The use of data arranged as one layer per genotype is 
consistent with the idea that each genotype is a reference 
to evaluate the environment quality, which is a general 
approach appropriate for situations when the environmental 
drivers of G × E are not well identified (Fox and Rosielle 
1982; Cooper and Fox 1996; Brancourt-Hulmel et al. 2000; 
Mathews et al. 2011). When using one layer per genotype, 
we decided to use the opportunity to evaluate whether 
assigning more weight to genotypes that are more reactive 
to the environment would facilitate the identification of 
adaptation zones to select for specific adaptation. Selecting 
for specific regions favours the response to selection within 
regions, compared to selection for broad adaptation.

In both layer arrangements (layers per trait and lay-
ers per genotype), applying SOMs to yield without any 

additional traits provided a meaningful environment clas-
sification. Hence, at least in the example of the European 
sunflower trials, there was no big gain in improving the 
environment classification by including additional infor-
mation. However, adding more traits or environmental 
information does help in gaining insight about G × E for 
multiple traits simultaneously. Furthermore, because we 
use a predictive approach, predictions for yield in years 
that were not considered in the training set may benefit 
from additional information, for example, using a multi-
trait prediction approach (Velazco et al. 2019). We also 
created SOMs based on environmental indices generated 
by the Sunflo crop growth model. The resulting environ-
ment classification was very similar to that obtained with 
yield information, showing that the use of environmen-
tal indices calculated with a crop growth model is suit-
able to classify environments for which no trial informa-
tion is available. In our example, we didn’t have Sunflo 

Table 6  Mean prediction accuracy and standard error for trials in adaptation zones obtained from different applications of SOMs

Prediction accuracies were calculated in a cross-validation scheme, leaving one year out. Benchmark prediction accuracy of the genotypic main 
effects model, without adaptation zones, was 0.42 ± 0.09. Adaptation zone labels (a,b,c,d) are not necessarily consistent across input data sets

Set Layers per trait

Class Accuracy SE

Yield yld-t-a 0.48 0.09
yld-t-b 0.53 0.08
yld-t-c 0.46 0.10
yld-t-d 0.42 0.07

Yield+ tr-t-a 0.48 0.09
 Secondary traits tr-t-b 0.51 0.09

tr-t-c 0.50 0.08
tr-t-d 0.42 0.07

Yield+ cgm-t-a 0.46 0.08
 CGM cgm-t-b 0.52 0.08

cgm-t-c 0.45 0.09
cgm-t-d 0.42 0.07

Set Layers per genotype

Class Accuracy SE

Yield yld-g-a 0.45 0.08
yld-g-b 0.45 0.08
yld-g-c 0.52 0.08
yld-g-d 0.61 0.08

Yield+ tr-g-a 0.48 0.09
 Secondary traits tr-g-b 0.45 0.09

tr-g-c 0.54 0.07
tr-g-d 0.63 0.07

Yield+ cgm-g-a 0.45 0.08
 CGM cgm-g-b 0.45 0.08

cgm-g-c 0.51 0.09
cgm-g-d 0.61 0.08
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genotype-specific parameters, other than those related to 
phenology. The other Sunflo parameters were constant 
across genotypes. Therefore, Sunflo was mainly used to 
define genotype-specific development periods in which 
environmental summaries were calculated. This implies an 
under-utilization of the crop growth model potential. The 
use of more genotype-specific Sunflo parameters could be 
explored in further research to explore the full crop growth 
model potential to explain and predict cultivar adaptation.

Predicting responses across multiple environments

In this paper, besides the evaluation of adaptation zones via 
the classical approach proposed by Atlin et al. (2000), we 
also calculated prediction accuracy obtained with an unstruc-
tured variance–covariance matrix at the level of the adapta-
tion zones, estimated with a mixed model. This approach has 
the advantage of automatically taking into account that adap-
tation zones might be correlated, maximizing the probability 

of borrowing information across adaptation zones (Piepho 
and Möhring 2005; Buntaran et al. 2019). It also takes into 
account that adaptation zones potentially can be of very dif-
ferent sizes, an issue that is ignored in the Atlin et al. (2000) 
approach.

When the focus is on selecting for specific locations (i.e. 
specific geographical regions), it is possible to benefit from 
the environment-type approach, by predicting genotype per-
formance for each trial location by a weighted combination 
of the performance at each environment type and the relative 
frequency with which these environment types occur at each 
location. Such frequencies could be estimated, for example, 
using crop growth models that use long-term weather data as 
input (Chenu et al. 2013). This approach would also be use-
ful, for example, in climate change scenarios, in which the 
relative frequency of hot and dry environments is expected 
to increase in the future (Ababaei and Chenu 2020).

We focused on the use of phenotypic traits for classi-
fying trials into adaptation zones. At the genetic level, 

Fig. 10  A. Environment types. 
The ‘n’ next to each pie map 
indicates the number of trials 
in that particular geographical 
cluster. B. Adaptation zones 
based on the environment-type 
frequencies for the 348 trials 
with yield information. Environ-
ment classifications are based 
on a SOM with yield only as 
input. The analysis was done 
for data arranged as one layer 
per genotype, with genotypes 
weighted according to their con-
tribution to G × E. The CR/DR 
(correlated response to direct 
response) ratio considering the 
four adaptation zones was 0.63
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implementing a selection strategy that emphasizes spe-
cific adaptation will lead to changes in allele frequencies 
for QTLs conferring such adaptation, as shown in soybean 
(Kurasch et al. 2017) and maize (Millet et al. 2016). When 
explicit genotypic information is available in the form of 
molecular markers, we can improve our SOM approach to 
adaptation zones by augmenting our phenotypic trait infor-
mation with molecular markers representing QTLs related 
to repeatable GxE, and thereby strengthening the genetic 
signal supporting the environment classification. Such an 
approach would enable a more detailed characterization of 
the adaptation landscape.

Conclusions

• The SOM was useful to classify trials into environment 
types that make an important contribution to G × E.

• SOM was useful to visualize G × E in a two-dimensional 
grid that describes the adaptive responses of each geno-
type.

• The sunflower data that we analysed contains substantial 
G × E. Most of it is driven by G × L × Y (non-repeata-
ble G × E), but there is also an important contribution 
of G × L (predictable G × E), opening the possibility to 
classify locations into adaptation zones.

• We used the distribution of ETs per location to classify 
locations into adaptation zones that were effective in cap-
turing G × L.

• Arranging data in one layer per genotype and weighting 
genotype layers by their contribution to G × E led to 
adaptation zones that were more effective in capturing 
G × E than when data were arranged as one layer per 
trait (hence, with all genotypes weighted equally).

• The resulting ETs and adaptation zones slightly var-
ied depending on the input information. However, 
they coincided to a large extent in pointing out trials in 
Spain, Turkey and South Bulgaria as inducing a differ-
ent genotypic response.
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