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Abstract
Wheat (Triticum aestivum L.) is a global commodity, and its production is a key component underpinning worldwide food 
security. Yellow rust, also known as stripe rust, is a wheat disease caused by the fungus Puccinia striiformis Westend f. sp. 
tritici (Pst), and results in yield losses in most wheat growing areas. Recently, the rapid global spread of genetically diverse 
sexually derived Pst races, which have now largely replaced the previous clonally propagated slowly evolving endemic 
populations, has resulted in further challenges for the protection of global wheat yields. However, advances in the application 
of genomics approaches, in both the host and pathogen, combined with classical genetic approaches, pathogen and disease 
monitoring, provide resources to help increase the rate of genetic gain for yellow rust resistance via wheat breeding while 
reducing the carbon footprint of the crop. Here we review key elements in the evolving battle between the pathogen and host, 
with a focus on solutions to help protect future wheat production from this globally important disease.

Abbreviations
APR	� Adult plant resistance
DMIs	� Demethylation inhibitors
GWAS	� Genome-wide association scan
MAS	� Marker assisted selection
NLR	� Nucleotide-binding leucine-rich repeat
Pst	� Puccinia striiformis Westend f. sp. tritici
QTL	� Quantitative trait locus
QoIs	� Quinone outside inhibitors
SDHIs	� Succinate dehydrogenase inhibitors
YR	� Yellow rust

Wheat (Triticum aestivum L.) is one of the most impor-
tant staple crops, with global demand predicted to increase 
to 324 kg/year (per capita) by 2050 (Alexandratos and 

Bruinsma 2012). Wheat production faces numerous threats, 
with 10–16% of global wheat harvests estimated to be lost 
due to pests and diseases (Oerke 2006; Strange and Scott 
2005). Yellow rust (YR), also known as stripe rust, is a 
major disease of wheat caused by the biotrophic fungal 
pathogen, Puccinia striiformis Westend f. sp. tritici (Pst). 
YR infection is most commonly noted on wheat leaves, 
where the resulting damage to photosynthetic tissues leads 
to reduced light interception and radiation use efficiency, 
thus lowering yields (Fig. 1a–b). However, YR infection can 
also take place on the structures of the wheat ear such as 
the glumes, lemma and palea, particularly during moderate 
to severe epidemics, resulting in reduced grain yield and 
quality (Bouvet et al. 2021a; Cromey 1989; Wellings, 2003; 
2009) (Fig. 1c). Recurrent Pst epidemics have occurred in 
the majority of wheat growing areas over the past 60 years 
and can cause significant yield losses and reductions in 
grain quality if not adequately controlled (Wellings 2011). 
Notably, the past two decades have seen the rapid global 
emergence of more aggressive and genetically diverse Pst 
populations adapted to warmer temperatures (Hovmøller 
et al. 2016; Hubbard et al. 2015; Milus et al. 2009), with 
concomitant impact on the YR resistance ratings of many 
wheat varieties. YR resistance breeding targets have had to 
adapt to tackle the rapidly changing Pst threat, and sources 
of genetic resistance for the development of improved wheat 
varieties are continually being sought. This is now being 
aided by advances in wheat genomics approaches, as well 
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as detailed characterisation of Pst population pathotypes, 
genetic diversity, effector characterisation and field moni-
toring. Ultimately, efficient control of wheat fungal disease 
will be via approaches that combine agricultural and agro-
nomic practices, disease monitoring, and varietal genetic 
improvement (Downie et al. 2020). In this review, we sum-
marise current understanding of the Pst lifecycle, modes of 
dispersal and genetic diversity, and wheat genetic resistance 
and highlight some of the challenges facing the efforts to 
maintain adequate protection against wheat YR infection, 
with a focus on genetic resistance approaches.

The complex pathogen lifecycle

Pst goes through five different spore stages and requires 
two plant host species for completion of its lifecycle 
(Fig. 1d). The two broad stages of the Pst lifecycle are 
classified as: (i) the asexual stage, which occurs on wheat 
(the primary host), and (ii) the sexual stage which occurs 
on Berberis species (the alternate host). In wheat, YR dis-
ease occurs during the asexual stage of the Pst lifecycle 
and is caused by multiple cycles of dikaryotic (i.e. two 
nuclei in each cell: n + n) Pst urediniospores re-infecting 
the primary host via wind dispersal. During the initial 
stage of wheat infection, urediniospores germinate on the 
leaf surface and eventually form an appressorium from 
which hyphae develop and enter the leaf tissue via the 

stomata. Growing hyphae develop into a dense network 
extending between and inside host mesophyll cells. Among 
this network, haustoria infection structures will form and 
specifically develop in host cell walls to extract nutrients 
(Szabo and Bushnell 2001). On the leaves of mature sus-
ceptible plants, disease symptoms are visible 12–14 days 
after infection, consisting of yellow to orange coloured 
urediniospores that erupt from pustules arranged in char-
acteristic stripes that follow the veins down the leaf blade 
(Chen et al. 2014), which can lead to successive rounds 
of secondary infections. On resistant to mildly suscepti-
ble varieties, symptoms will range from non-sporulating 
flecks (a sign of hypersensitivity) to necrotic and chlorotic 
patches with no to limited sporulation. Towards the end 
of the wheat growth season, diploid teliospores may be 
produced by some isolates via karyogamy. These readily 
germinate to produce a promycelium of four cells, with 
meiosis subsequently resulting in a single haploid nucleus 
that forms a basidiospore able to infect the alternate host 
(Chen et al. 2014).

Although much less is known about the sexual stage, 
Berberis species were long speculated to support the Pst 
lifecycle (e.g. Straib 1937; Hart and Becker 1934), as well 
as the related rust species, Puccinia graminis f. sp. tritici 
(causal agent of stem rust). Historically this resulted in 
efforts to eradicate Berberis species in many European 
and North American countries (Barnes et al. 2020). How-
ever, it was not until 2010 that Berberis species were for-
mally confirmed to support development of Pst pycnia and 
aecia (Jin et al. 2010). Curiously, Berberis species infected 
with Pst are rarely observed in the wild (Zhao et al. 2011, 
2013). This may be due to the difficulty in finding an envi-
ronment that simultaneously accommodates germination 
of teliospores (part of the asexual stage; enclosed in telia 
that form on wheat leaves towards the end of the infec-
tion season and produce basidiospores) and basidiospores 
(part of the sexual stage; forming on barberry leaves and 
requiring dew for germination), both of which have short 
viability (Wang and Chen 2015). A recent study showed 
Berberis species do not play a role in YR epidemics in 
the US Pacific Northwest (Wang and Chen 2015), and an 
additional alternate host, Mahonia aquifolium (Oregon 
grape) has been identified (Wang and Chen 2013). The 
main importance of the sexual Pst stage to wheat infection 
is the generation of novel combinations of standing genetic 
variation, resulting in new genetically recombined isolates 
that can cause widespread epidemics and rapid changes in 
wheat resistance profiles.

Fig. 1   The Puccinia striiformis Westend  f. sp. tritici (Pst) lifecy-
cle. Wheat Pst infection at the adult plant stage in wheat, showing 
a yellow, and b orange coloured pustules that shed urediniospores. 
c Symptoms of Pst infection of the wheat ear. False colour scanning 
electron microscopy images of d urediniospores, e pustules on the 
wheat leaf surface, and f pustule in cross section. g Diagram illus-
trating the main features of the Pst lifecycle. Top left: Wheat plants 
can be infected by, (i) wind-blown single-cell dihaploid dikaryotic 
urediniospores (containing one haploid genome copy in each of 
the two nuclei within the cell: n + n′) produced on wheat, or (ii) by 
aeciospores (n + n′) produced on the alternative host (Berberis spp.). 
Yellow rust infection is typically observable on the heat upper leaf 
surface as parallel rows of yellow to orange pustules which release 
urediniospores, resulting in cycles of re-infection and cross-infection 
in wheat. Top middle: at ear emergence, yellow rust infection can 
occur on the florets of the wheat ear. Top right: towards the end of the 
wheat season, telia may form on the underside of the epidermis, from 
which diploid doubled haploid (2*n) two-celled teliospores are pro-
duced by karyogamy. Teliospores readily germinate to produce hap-
loid basidiospores. Bottom right: Basidiospores germinate and infect 
leaves of the alternate host. Bottom middle: Basidiospore infection 
leads to the production of pycnia, typically on the upper side of the 
leaves, which release haploid pycniospores. Fusion of pycniospores 
with the receptive hypha of a mating-type compatible pycnia leads to 
dikaryotization and the development of aecia on the leaf underside. 
Bottom left: Aecia release vegetative aeciospores (n + n′) which are 
only able to infect the primary host species (predominantly wheat). 
For more information, see Chen et al. (2014), Schwessinger (2016) or 
Mehmood et al. (2020) (colour figure online)
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Pathogens on the move: patterns of Pst 
dispersal and the rise of divergent lineages 
and aggressive races

Over the years, monitoring of virulence changes in Pst 
populations in the major wheat producing regions has 
revealed notable changes in pathogen movement and adap-
tation. These studies were based on pathogenicity surveys, 
which use sets of differential wheat lines carrying known 
resistance genes, either near isogenic lines or cultivars, 
for the characterisation of pathotypes at the seedling 
stage (Wellings et al. 2009). More recently, molecular and 
genomics techniques have been used to infer Pst popula-
tion structure and genetic diversity, confirming patterns of 
adaptation hypothesised in pathotype-based approaches. 
Here, we summarise key findings and events from the past 
three decades, specifically focusing on patterns of spore 
dispersal and Pst evolution and adaptation.

Blowing in the wind

Pst urediniospores are windborne and can disperse at 
continental scales. Coupled with the obligate nature of 
the pathogen (requiring living tissue to survive), this has 
led to different scenarios for the observed seasonal and 
geographic patterns of dispersal. One such model is the 
local extinction and re-colonisation model, illustrated 
for example in China where regions of the Sichuan and 
Gansu provinces in which Pst prevails all year round act 
as a source of inoculum to the more northerly provinces 
in which wheat is predominantly grown as a winter crop 
(Brown and Hovmøller 2002; Zeng and Luo 2006). In this 
way, Pst populations re-establish at the beginning of each 
wheat cropping season in those regions where Pst spores 
are usually unable to over-winter. A similar pattern of 
spore movement according to prevailing winds and the 
seasonality of the cropping seasons has been speculated in 
North America, with spores migrating from southern cen-
tral states of USA and Mexico to northern central states of 
USA and Canada (Chen 2005). In North Western Europe, 
Pst spore dispersion appears to follow the continental-
island model, first described by Hedrick (1985), and has 
been the predominant model of Pst spore dispersion in 
North Western Europe. In this region, urediniospores 
travel up to 1700 km with prevailing winds, and migrating 
between UK, France, Germany and Denmark (Hovmøller 
et al. 2002). Investigations of YR emergence events in 
countries where it was previously absent provide examples 
of rapid inter-continental foreign incursion. Australia has 
been subject to several known incursions, of which two 
were notably detrimental to the wheat industry due to their 

rapid spread: (i) the first occurrence of Pst, in 1979 (Well-
ings et al. 1987), and (ii) the 2002 incursion in Western 
Australia (Wellings et al. 2003), now known to have origi-
nated from the Middle East/East Africa (Ali et al. 2014a) 
and attributed to a single Pst isolate (Wellings et al. 2003). 
The more recent arrival of Pst isolates in South Africa in 
1996 were related to the Mediterranean and Central Asian 
populations (Boshoff et al. 2002; Ali et al. 2014a), and was 
speculated to be due to wind dispersal or human activities 
(Ali et al. 2014a). In all three cases, human activity, most 
likely through accidental transport on clothing, has been 
either demonstrated or strongly speculated, highlighting 
the increasing role of globalised trade and international 
travel as a means for Pst urediniospore dispersal.

Pathogen evolution and adaptation

Prior to 2000, pathogenicity surveys and molecular studies 
using isolates collected across the main wheat-producing 
regions in Europe, Australia and America typically reported 
Pst populations were clonal in nature, and that pathotypes 
exhibited close-relatedness and low genetic variation—
predominantly underpinned by single step-wise mutations 
(Hovmøller et al. 2002, 2016; Enjalbert et al. 2005; Chen 
2005; Steele et al. 2001; Chen et al. 2010; Ali et al. 2014a; 
Hubbard et al. 2015). Such clonally derived Pst mutations 
have caused several severe YR epidemics, due to the ‘break-
down’ of specific wheat Yr resistance genes present in large 
acreages across the agricultural landscape. Notable exam-
ples include breakdown of Yr17 in Northern Europe (Bayles 
et al. 2000), Yr27 in Ethiopia (Solh et al. 2012), and Yr9 
in America, the Middle East and the Indian sub-continent 
(Chen et al. 2010; Singh et al. 2004). Before the year 2000, 
the only exceptions to such patterns of low Pst genetic vari-
ation were observed in isolates from the Himalayan (Nepal 
and Pakistan) and near Himalayan (China) regions, which 
exhibited high levels of genetic recombination, high ability 
for sexual reproduction and high genetic diversity (Duan 
et al. 2010; Mboup et al. 2009; Ali et al. 2014b). These areas 
were therefore classified the putative centres of Pst origin 
(Ali et al. 2014b). However, the last two decades have seen 
the emergence of unusual virulence profiles and aggressive 
strains across the world. The most noteworthy event was 
the rise of two strains, PstS1 and PstS2, across the USA 
(Chen et al. 2002; Markell and Milus 2008), Europe (Hov-
møller and Justesen 2007) and Australia (Wellings 2007) 
in the space of just three years in the early 2000s. A global 
study of pre- and post-2000 Pst races combining detailed 
virulence pathotyping and DNA fingerprinting found that 
while these while these two strains were genetically simi-
lar to each other, they were highly divergent from previ-
ous races in their respective geographic regions (Hovmøller 
et al. 2008). Their rapid spread was thought to be due to 
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their increased aggressiveness (ability to yield more spores 
and for disease symptoms to occur more quickly) and high-
temperature adaptation—which was later demonstrated in 
the detailed study by Milus et al. (2009). In addition to PstS1 
and PstS2, additional atypical occurrences of Pst races have 
since been reported. Enjalbert et al. (2005) demonstrated 
high levels of genetic divergence between the Pst popula-
tion in northern France and a single clone specific to the 
South. What was atypical was that this single pathotype 
was maintained for a long time in this region, despite the 
presence of gene flow between Northern and Southern Pst 
populations. This isolate was later found to be more closely 
related to the Central Asian-Mediterranean population (Ali 
et al. 2014a). Similarly, instances of strong genetic diver-
gence have also been revealed in North Western Europe 
(Flath and Barthels 2002; Hovmøller and Justesen 2007a). 
Two groups of highly divergent pathotypes from the ‘old’ 
North-Western European population exhibited three to four 
times higher levels of genetic diversity (Hovmøller et al. 
2007). In 2011, two novel Pst races disrupted the European 
Pst landscape (www.​wheat​rust.​org). Named after the host 
varieties on which they were first detected, one race was 
virulent on wheat cv. ‘Warrior’ and the other was virulent 
on cv. ‘Kranich’. These were later characterised as PstS7 
and PstS8, respectively (Ali et al. 2017), and were detected 
simultaneously across Europe and infected varieties that had 
exhibited durable adult plant resistance. Both races were 
distinct from the typical European isolates in that they pro-
duced an unusually high number of teliospores (Hubbard 
et al. 2015; Hovmøller et al. 2016). Additional Pst races 
have been characterised (PstS10 also known as ‘Warrior (-)’, 
PstS4 ‘Triticale aggressive’) and together with the other new 
genetically diverse Pst races, have come to largely dominate 
within Europe (Ali et al. 2017; Hovmøller et al. 2016; Hub-
bard et al. 2015). Collectively, these atypical observations, 
further supported by genetic diversity studies, have led to 
speculation of an aerial-induced foreign incursion, which 
would be the first of its kind in Europe since the establish-
ment of Pst in Europe during the nineteenth century. Beyond 
Europe, rapid invasions and the subsequent Pst population 
changes have been responsible for a number of YR epidem-
ics in Central Asia, North and East Africa (Ali et al. 2017).

Chemical control of yellow rust

Review of global YR epidemics shows most wheat grow-
ing regions document recurrent crop losses of 5–10%, with 
occasional losses of up to 25% (Welling 2011). However, 
following the global spread of aggressive Pst races since 
2000, surveys highlight an increase in both the number 
of countries being significantly hit by such races, and the 
extent of the losses incurred (Beddow et al. 2015). Indeed, 

the financial implications of this change in Pst race struc-
ture estimated that a global average of US$ 158 million 
was lost annually pre 2000s, compared to US$ 979 million 
post 2000 (Beddow et al. 2015). Wheat growers have two 
principal options to protect against the effects of YR on 
yield: (i) protect their crop with agro-chemicals that limit 
initial infection and progression of pathogen colonisation, 
and/or (ii) grow wheat varieties with adequate levels of 
genetic resistance. Systemic fungicides that are absorbed 
into the plant became commercially available in the 1980s 
and have since formed an important part of integrated con-
trol measures against YR (Chen 2005). Several products 
with different modes of action are available for protec-
tion against YR (reviewed by Chen and Kang 2017), with 
timely application a key aspect of an effective fungicide 
programme. Such an approach has, for example, prevented 
significant financial losses in periods of severe epidemics 
in the USA (Line 2002). While fungicide control provides 
an essential tool in combatting sudden yellow rust epi-
demics and in situations where growing resistant varie-
ties is not an option, over-dependence on their use comes 
with negative environmental impacts and notable financial 
cost to growers. For example, in Australia an estimated 
A$ 359 million per year is spent on fungicides for YR 
control (Murray and Brennan 2009). In the mid-to-long 
term, regular Pst exposure to fungicides also increases the 
risk that Pst populations develop resistance to frequently 
used chemistries. Historically, Pst has been classified as 
being at low-risk of developing fungicide resistance. How-
ever, of the three classes of fungicides active against Pst 
(demethylation inhibitors, DMIs; succinate dehydrogenase 
inhibitors, SDHIs; quinone outside inhibitors, QoIs), Pst 
resistance has evolved against two. Low levels of DHI 
resistance have been reported, and while high proportions 
of isolates carrying resistance associated mutations have 
been reported in some countries (Cook et al. 2021), DHI 
resistance has so far had limited agronomic-scale signifi-
cance (Oliver 2014). SDHIs active against rusts have only 
been introduced relatively recently, giving less time for Pst 
resistance to evolve. Nevertheless, sets of geographically 
diverse isolates have been identified that carry a muta-
tion homologous to that linked to SDHI resistance in the 
related rust species P. pachyrhzi (Cook et al. 2021). In the 
face of additional considerations such as changing regula-
tion surrounding permissible chemistries, such evidence 
has led to the suggestion that the Pst risk classification 
should be upgraded (Oliver 2014), fungicide resistance 
management practices be considered, and that systematic 
monitoring for Pst fungicide resistance should be imple-
mented (Cook et al. 2021). Lastly, the optimisation of fun-
gicide timing, as well as improved fungicide application 
technologies, represents areas where additional research 
and development is required (Carmona et al. 2020).

http://www.wheatrust.org
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Genetic control of yellow rust

More than 300 wheat genomic regions conferring YR resist-
ance have been reported (Rosewarne et al. 2013; Wang and 
Chen 2017). Of these, ~ 80 are permanently named yellow 
rust resistance (Yr) genes (recently summarised by Jamil 
et al. 2020). Two main classes of YR resistance (R) genes 
are commonly described. The first is termed ‘all stage resist-
ance’ (or ‘seedling resistance’) and confers qualitative resist-
ance–typically to one or a low number of Pst isolates. The 
second is termed ‘adult plant resistance’ (APR) and confers 
quantitative or partial resistance. While these R gene classifi-
cations are useful, additional categories are also used, based 
on criteria such as phenotypic response (infection type, race 
specificity, resistance levels), temperature sensitivity, dura-
bility, the number of genes involved (monogenic versus 
polygenic) and the size of gene effect (Chen 2013). One 
of the issues that comes with defining YR resistance with 
such a broad range of criteria is the assumptions associated 
with each of them. For example, APR is typically non-race 
specific, more durable than seedling resistance and condi-
tioned by genes with minor or partial effect. Nevertheless, 
some APR genes have been shown to exhibit race specificity, 
such as Yr11, Yr12, Yr13 and Yr14 (Johnson 1992; McIntosh 
et al. 1995).

All‑stage resistance

Initially expressed at the seedling stage, all-stage resistance 
extends throughout the growth of the wheat plant and is 
characterised by a hypersensitive response. It is generally 
effective against some, but not all, Pst races and is there-
fore also referred to as ‘race-specific resistance’. All-stage 
resistance is underpinned by the gene-for-gene model, 
first explored by Flor (1956) in the flax-rust pathosystem, 
whereby the product of an R gene must be recognised by the 
protein encoded by its corresponding avirulent (Avr) gene 
in the pathogen, with resistance conferred by an incompat-
ible R-Avr interaction. This results in a qualitative resistance 
phenotype that can be easily assessed, historically making 
it a popular selection criterion in breeding programmes, 
and more recently, for gene cloning. The majority of cata-
logued YR R genes exhibit this type of phenotype, and many 
become ineffective against present-day Pst races. This type 
of resistance has commonly been shown to be a short-term 
strategy for YR control. Indeed, the deployment of varieties 
with single or low-numbers of all-stage resistance Yr genes 
over large acreages inevitably exerts high selective pressure 
on the pathogen, forcing it to evolve and mutate until host 
resistance is broken down, and leading to cycles of ‘boom 
and bust’ (McDonald and Linde 2002).

Adult plant resistance

Adult plant resistance (APR) is characterised by slow rust-
ing (a long period of latent infection, small lesion size) (Guo 
et al. 2008) or partial resistance, typically manifests at the adult 
plant stage, and has long been established as a durable source 
of YR resistance. Two notable examples are Yr18/Lr34/Sr67/
Pm38, extensively deployed in spring wheat cultivars through 
the international breeding programme at CIMMYT (Singh 
et al. 2005) and Yr16, an APR gene commonly used in early 
European varieties such as ‘Cappelle Desprez’, a major hub 
in the European wheat pedigree (Fradgley et al. 2019). While 
APR is primarily non-race specific, examples of APR specific-
ity to Pst races do exist, such as Yr12 and Yr13 (Johnson 1992; 
McIntosh et al. 1995). Such APR race-specificity was initially 
reported by Johnson (1988) and has recently been observed in 
Europe following the spread of atypical Pst races (Sørensen 
et al. 2014). For example, while the APR resistance allele con-
ferred by the founder Claire at the QTL QYr.niab-2D.1 was 
effective in the UK during the 2015 and 2016 seasons (Bouvet 
et al. 2021b), it has since broken down (Simon Berry, personal 
communication). Another example is that of Yr49, which was 
initially found to be non-race specific against all Australian Pst 
isolates, but when tested against Chinese races showed race-
specificity (Ellis et al. 2014). These occurrences undermine the 
durability of APR and puts into question whether this patho-
type criteria should be used to describe this type of resistance. 
It has been suggested that as some APR genes confer resist-
ance against multiple biotrophic pathogens, this characteris-
tic is a good indicator of durability. Examples include Yr18/
Lr34/Sr67/Pm38 (Spielmeyer et al. 2005; Lillemo et al. 2008), 
Yr29/Lr46/Sr58/Pm39 (Lagudah, 2011), Yr30/Lr27/Sr2 (Mago 
et al. 2011) and Yr46/Lr67/Sr55/Pm46 (Herrera-Foessel et al. 
2014). Interestingly, some of these genes are also associated 
with traits such as leaf tip necrosis (Yr18/Lr34/Sr67/Pm38, 
Singh et al. 1992; Yr29/Lr46/Sr58/Pm39, Rosewarne et al. 
2006; Yr46/Lr67/Sr55/Pm46, Herrera-Foessel et al. 2014) and 
pseudo-black chaff (Yr30/Lr27/Sr2, Kota et al. 2006). Finally, 
some APR resistances are more effective at high temperature 
(usually 25–30 °C), and are termed High Temperature Adult 
Plant (HTAP) resistance. Yr36 was initially characterised as 
HTAP (Uauy et al. 2005), with subsequent studies showing 
resistance was effective over 25 °C at all growth stages (Fu 
et al. 2009), and that the lower effective temperature range is 
18 °C (Bryant et al. 2014).

Cloned yellow rust resistance genes

Nucleotide Binding Sequence Leucine Rich Repeat (NBS-
LRR) proteins are the most common class of proteins 
encoded by plant R genes, and act predominantly by rec-
ognising the effector molecules that pathogens produce to 
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inhibit host defence responses (Jones et al. 2016). To help 
fight against potential infecting pathogens, plant NLR gene 
families have radiated and diversified, for example via local-
ised gene duplication or mutation within their LRR domains 
that bind pathogen effectors (Sarris et al. 2016). Further-
more, some NBS-LRRs contain additional ‘integrated’ 
domains, the most common of which are kinase and DNA-
binding domains (Andersen et al. 2020; Steuernagel et al. 
2020), and are thought to be involved in receptor activa-
tion or downstream signalling (Sarris et al. 2016). Of the 19 
genes conferring all-stage resistance to wheat rusts (yellow 
rust, stem rust, leaf rust) that have been cloned, 17 encode 
NBS-LRRs (Table 1). Furthermore, all but two of these 17 
NBS-LRRs contain coiled coil (CC) domains towards their 
N-termini; the exceptions being Yr7 and the allelic R genes 
Yr5/YrSP, each of which contains an N-terminus integrated 
BED zinc finger domain (Marchal et al. 2018) and Sr60, 

which is race-specific but confers a partial resistance pheno-
type and encodes a protein with two putative kinase domains 
(Chen et al. 2020). Finally, the broad-spectrum ASR gene 
Yr15 encodes a tandem kinase-pseudokinase protein (Kly-
miuk et al. 2018) similar to that encoded by the barley stem 
rust resistance gene Rpg1 (Brueggeman et al. 0.2002), and 
has recently been shown to be allelic with YrG303/YrH52 
(Klymiuk et al. 2020).

The ongoing changes and rapid spread of Pst popula-
tions around the world has led to growing interest in more 
durable sources of resistance. To date, three adult plant 
YR resistance genes have been cloned. Yr36 encodes a 
protein with a kinase and a START lipid-binding domain 
(WHEAT KINASE START 1, WKS1; Fu et al. 2009), and 
is thought to regulate reactive oxygen species (ROS) via 
phosphorylation of the thylakoid ascorbate peroxidase pro-
tein, resulting in increased levels of ROS during immunity 

Table 1   Cloned wheat rust resistance (R) genes.

ASR  all-stage resistance. APR  adult plant resistance. Lr  leaf rust, Sr  stem rust, Yr  yellow rust. TKP  tandem kinase-pseudokinase. Chr.  chromo-
some.
† In bread wheat, the Sr50 locus from rye has been translocated to chromosome 1D
*See also Yuan et al. (2018), who indicate the CC-NBS-LRR gene identified by Liu et al. (2014) may not be the underlying gene

Cloned YR resistance 
genes

Original source Chr R gene class NCBI protein acces-
sion number

Gene functional anno-
tation

Reference

Lr1 T. aestivum 5D ASR ABS29034 CC-NBS-LRR Cloutier et al. (2007)
Lr10 T. aestivum 1A ASR AAQ01784 CC-NBS-LRR Feuillet et al. (2003)
Lr21 Ae. tauschii 1D ASR ACO53397 NBS-LRR Huang et al. (2003)
Lr22a Ae. tauschii 2D ASR ARO38244 CC-NBS-LRR Thind et al. (2017)
Sr13 T. turgidum ssp. durum 6A ASR ATE88995 CC-NBS-LRR Zhang et al. (2017)
Sr21 T. monococcum 1D ASR AVK42833 CC-NBS-LRR Chen et al. (2018)
Sr22 T. monococcum 7A ASR CUM44200 CC-NBS-LRR Steuernagel et al. 

(2016)
Sr33 Ae. tauschii 1D ASR AGQ17384 CC-NBS-LRR Periyannan et al. (2013)
Sr35 T. monococcum 3A ASR AGP75918 CC-NBS-LRR Saintenac et al. (2013)
Sr45 Ae. tauschii 1D ASR CUM44213 CC-NBS-LRR Steuernagel et al. 

(2016)
Sr46 Ae. tauschii 2D ASR AYV61514 CC-NBS-LRR Arora et al. (2019)
Sr50 Secale cereale 1R† ASR ALO61074 CC-NBS-LRR Mago et al. (2015)
Sr60 T. monococcum 5A ASR LRRK123 Tandem kinase Chen et al. (2020)
SrTA1662 Ae. tauschii 1D ASR Not listed CC-NBS-LRR Arora et al. (2019)
YrAS2388 Ae. tauschii 4D ASR QDW65446 CC-NBS-LRR Zhang et al. (2019)
Yr5/YrSP T. spelta album 2B ASR QEQ12705/

QEQ12706
BED-NBS-LRR Marchal et al. (2018)

Yr7 T. aestivum 2B ASR QEQ12704 BED-NBS-LRR Marchal et al. (2018)
Yr10* T. aestivum 1B ASR AAG42168 CC-NBS-LRR Liu et al. (2014)
Yr15/YrG303/YrH52 T. turgidum ssp. dicoc-

coides
1B ASR AXC33067 TKP Klymiuk et al. (2018)

Yr18/Lr34 T. aestivum 7D APR ACN41354 ABC transporter Krattinger et al. (2009)
Yr36 T. turgidum ssp. dicoc-

coides
6B APR ACF33187 Kinase-START​ Fu et al. (2009)

Yr46/Lr67 T. aestivum 4D APR ALL26331 Hexose transporter Moore et al. (2015)
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(Gou et al. 2015). More recently, WKS1 has been shown to 
phosphorylate a protein component of photosystem II, sbO, 
resulting in reduced photosynthesis, leaf chlorosis and Pst 
resistance (Wang et al. 2019). Yr18/Lr34 encodes an ABC 
transporter (Krattinger et al. 2009) involved in the transloca-
tion of abscisic acid (Krattinger et al. 2019) while Yr46/Lr67 
encodes a hexose transporter (Moore et al. 2015).

Designing yellow rust resistant wheat

Pyramiding multiple resistance genes with additive effects 
into single genetic backgrounds should help prevent dra-
matic breakdown of wheat Pst field resistance. This first 
iteration of resistance gene pyramiding was developed using 
conventional breeding techniques. Indeed, the CIMMYT 
wheat breeding programme has made extensive use of the 
‘Yr18 complex’ (Yr18 and at least two to three additional 
slow-rusting genes), which has provided durable resistance 
against yellow rust (Singh et al. 2005). Tools to help such 
approaches are available. These include protocols for the use 
of diagnostic molecular markers for marker-assisted breed-
ing for many of the cloned resistance genes listed above 
(https://​maswh​eat.​ucdav​is.​edu/), as well as ‘speed breed-
ing’ methods that include the use of extended day lengths 
and controlled temperatures to shorten the wheat lifecycle 
(Watson et al. 2018). Indeed, knowledge of which resist-
ance genes are present within breeders germplasm/released 
wheat varieties would help prioritise parental lines for future 
breeding efforts. However, combining numerous unlinked 
genes via crossing is time-consuming. For example, a 
recent crossing scheme for the incorporation of 12 resist-
ance genes in a single recurrent background involved 20 
generations (Hafeez et al. 2021). Additionally, sources of 
YR resistance commonly originate from species related to 
bread wheat (see Table 1), including diploid wheat (e.g. T. 
monococcum and Aegilops tauschii) and wild or cultivated 
tetraploid wheats (T. turgidum ssp. dicoccoides and T. turgi-
dum ssp. durum, respectively), resulting in introgression of 
linked chromosomal regions from the donor progenitor spe-
cies. Such introgressed regions may have a negative effect 
on crop performance; for example, while Sr60 has recently 
been introduced into bread wheat via the introgression of a 
small T. monococcum segment containing the R gene, it nev-
ertheless contains linked PUROINDOLINE genes which will 
affect grain texture (Chen et al. 2020). Furthermore, it can be 
challenging when crossing germplasm within conventional 
breeding programmes to maintain the desired resistance 
gene combinations in the progeny, as the loci are inherited 
independently. In practice therefore, the combinations of 
resistance genes deployed by breeders will also depend on 
the genetic architectures controlling many other agronomi-
cally important traits. This means that key resistance loci 

may be at risk of being used alone, leaving them exposed 
to be overcome by the pathogen. Such considerations mean 
development of resistance gene cassettes containing mul-
tiple R genes could provide a useful breeding tool, pro-
viding multiple sources of resistance inherited as a single 
genetic unit. Assuming their effects will be additive (i.e. 
show no epistasis), the three cloned APR genes, Yr18, Yr36 
and Yr46, possibly combined with one or more ASR genes 
such as Yr15, represent obvious immediate targets. Indeed, 
a transgene cassette containing four stem rust ASR genes 
and one APR gene has recently been shown to confer broad-
spectrum field resistance (Luo et al. 2021). However, such 
approaches do not come without their challenges: genetic 
modification regulations and consumer acceptance remains 
an important barrier in many parts of the world, relatively 
low numbers of Yr genes have been cloned, and further work 
is needed to determine how specific genes work in combi-
nation within the context of inbred lines and F1 hybrids. 
Towards tackling some of these issues, proposals to generate 
an R gene atlas for the major diseases of wheat have been 
made (Hafeez et al. 2021). Such concepts would be aided 
by the systematic identification and monitoring of the cor-
responding Pst effectors and their standing variation across 
the agricultural environment, and should be extended to 
identify, characterise and eliminate wheat susceptibility (S) 
genes that act to increase YR susceptibility (e.g. Corredor-
Moreno et al. 2021). Underpinning such aims is the avail-
ability of new genomic techniques and resources in wheat 
that complement classical map-based cloning methodologies 
(recently reviewed by Adamski et al. 2020). For example, 
candidate gene association mapping using diversity panels 
of wheat or wheat relatives genotyped via reduced represen-
tation sequencing of classes of genes known a priori to be 
prevalent in disease resistance (such as NBS-LRRs or wall-
associated kinases). This method, termed ‘RenSeq’ (Jupe 
et al. 2013), alongside functional validation via chemical 
mutagenesis of germplasm containing the functional allele 
of interest, has been used to identify the wheat stem rust 
resistance genes Sr46 and SrTA1662 (Arora et al. 2019). 
Such association mapping approaches can be extended to 
include more representative coverage across the genome, 
for example using promotor/exome capture arrays (Gardiner 
et al. 2019) or whole-genome sequencing at low-coverage 
combined with imputation of SNPs and haplotypes, aided 
by the use of reference genome assemblies (e.g. for bread 
wheat: IWGSC, 2018; Walkowiak et al. 2021). Furthermore, 
the availability of Pst genome assemblies (e.g. Cantu et al. 
2011, 2013; Zheng et al. 2013; Schwessinger et al. 2018, 
2020) and mutant populations (Li et al. 2020), as well as 
gene expression resources and interrogation tools for both 
species (e.g. Adams et al. 2021) should help identify and 
characterise pathogen effectors. Detailed knowledge of the 
specificity of the recognition interactions between wheat R 

https://maswheat.ucdavis.edu/
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genes and their corresponding Pst effectors could be used, 
for example, to monitor the functionality of each component 
of R stacks, and to design synthetic R genes engineered to 
recognise multiple races (as demonstrated for example by 
editing of the rice NBS-LRR gene PikP to recognise multi-
ple variants of the effector AvrPik from the rice blast patho-
gen Magnaporthe oryzae; De La Concepcion et al. 2019). 
Similarly, identification of wheat S genes would allow their 
elimination, via marker assisted approaches, mutation breed-
ing or gene editing. Finally, further understanding of the 
exact developmental stages at which different adult plant 
resistance genes become effective, how best to deploy these 
in the agricultural landscape to best protect the crop from 
infection throughout the key growth stages, and understand 
which R genes exhibit the lowest yield cost, will further help 
protect wheat against the effects of YR.

Future perspectives

The wide-ranging spread of new genetically diverse Pst 
races has meant that YR is likely to become an increasing 
threat to global wheat production, resulting in lower yields 
and increased financial and environmental costs. Here, we 
conclude with a series of bullet-point recommendations for 
future research and development in YR management over 
the next decade:

Host genetics

1.	 Systematic programmes to identify and clone known and 
novel R genes, particularly those conferring adult plant 
or non-host resistance.

2.	 Informed design and development of durable R gene 
pyramid combinations, via traditional crossing and/or 
R gene cassettes.

3.	 Identification and targeted removal of susceptibility (S) 
genes from breeders’ germplasm.

Monitoring

1.	 Regional and international networks to rapidly monitor 
the emergence and spread of Pst pathotypes.

2.	 Field networks to monitor R gene effectiveness at 
regional/international scales.

Agronomy

1.	 Regional monitoring for the emergence and spread of 
fungicide resistances.

2.	 Innovation in fungicide application technology and crop 
monitoring to allow more timely, accurate and efficient 
fungicide application.

Implementation of these recommendations will work best 
when national programmes are integrated or are coordinated 
at a regional, or even global, level. Such coordination would 
require funding over timescales that go beyond that typically 
available for crop disease resistance research, and might best 
be best addressed by establishing regional coordination cen-
tres. Such networks would need to ensure fast and efficient 
data release and work closely with the crop breeding indus-
try. Ultimately, the success of advances in integrated YR 
management approaches will depend on timely communi-
cation of information to wheat growers. Therefore, trusted 
grower-facing networks and sources of information that can 
rapidly and succinctly inform and advise farmers of threats 
and best practice within each growing season will become 
increasingly critical in realising future ambitions to better 
protect wheat yields from diseases such as YR.
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