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Abstract
Key message Association mapping with immortalized lines of landraces offers several advantages including a high 
mapping resolution, as demonstrated here in maize by identifying the causal variants underlying QTL for oil content 
and the metabolite allantoin.
Abstract Landraces are traditional varieties of crops that present a valuable yet largely untapped reservoir of genetic variation 
to meet future challenges of agriculture. Here, we performed association mapping in a panel comprising 358 immortalized 
maize lines from six European Flint landraces. Linkage disequilibrium decayed much faster in the landraces than in the elite 
lines included for comparison, permitting a high mapping resolution. We demonstrate this by fine-mapping a quantitative trait 
locus (QTL) for oil content down to the phenylalanine insertion F469 in DGAT1-2 as the causal variant. For the metabolite 
allantoin, related to abiotic stress response, we identified promoter polymorphisms and differential expression of an allan-
toinase as putative cause of variation. Our results demonstrate the power of this approach to dissect QTL potentially down 
to the causal variants, toward the utilization of natural or engineered alleles in breeding. Moreover, we provide guidelines 
for studies using ancestral landraces for crop genetic research and breeding.

Introduction

Landraces of crop species have been the traditional vari-
ety type cultivated under extremely diverse environmental 
conditions for centuries before being replaced by modern 

elite cultivars of lines and hybrids. Collected from the entire 
ecogeographic distribution of the species, the large num-
ber of landraces stored in gene banks harbor unique genetic 
diversity not present in elite breeding material (McCouch 
et al. 2013; Langridge and Waugh 2019). Thus, they rep-
resent a rich reservoir for plant breeding to meet the global 
challenges of agriculture (Dwivedi et al. 2016; Navarro et al. 
2017; Mayer et al. 2020). Nevertheless, landraces of most 
crops remain largely untouched as they are phenotypically 
and genetically unexplored. Recent progress in efficient 
development of pure-breeding lines by the doubled-haploid 
technology (Melchinger et al. 2017; Chaikam et al. 2019; 
Kalinowska et al. 2019) or speed breeding (Watson et al. 
2018; Jähne et al. 2020) opens new possibilities to exploit 
this treasure for research and breeding.

Association mapping has become a routinely applied 
tool in plant genetic research (Yu et al. 2006; McMullen 
et al. 2009; Navarro et al. 2017). Available experimental 
approaches are based on panels with more or less diversity, 
each of which has its limitations. If a panel of very diverse 
genotypes is used, potentially a worldwide collection, the 
mapping resolution can be high, but population structure 
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with its confounding effects is present and in addition, 
many traits will be confounded by adaptation issues of the 
employed material. If, by contrast, only adapted material 
is used, this often lacks the rapid decay of linkage disequi-
librium required for fine-mapping. With recent advances in 
gene editing, however, the aim is now to go beyond quan-
titative trait loci (QTL) down to the level of the underlying 
genes and the causal alleles.

As an alternative approach, association mapping in lan-
draces has previously been suggested, which is best realized 
with representative samples of immortalized, homozygous 
lines (Reif et al. 2005; Strigens et al. 2013; Böhm et al. 
2017; Mayer et al. 2017; Melchinger et al. 2017). The advan-
tages of association mapping with immortalized libraries 
of landraces can be summarized as follows: (1) The map-
ping populations can display a rapid decay of linkage dis-
equilibrium, because like in humans, for allogamous crop 
species they are derived from panmictic populations with 
accumulated historical and evolutionary recombination, 
which offers excellent conditions for high-resolution map-
ping. Mayer et al. (2020) have recently used three landrace 
doubled haploid libraries of maize to map a QTL for tillering 
to a 1.3-Mb interval on chromosome 1, in which the leading 
haplotype pointed to a 46-kb interval overlapping perfectly 
with the well-known teosinte branched 1 locus and its regu-
latory upstream region. (2) Within mapping populations of 
immortalized lines from landraces, an absence of popula-
tion structure is expected. (3) Using immortalized lines for 
phenotyping in replicated trials warrants high heritability. 
Moreover, QTL detection power with fully homozygous 
lines is at least doubled compared with non-inbred popu-
lations and provides estimates of additive effects not con-
founded with dominance effects. (4) The test statistic for 
QTL detection depends on contrasts between genotypes 
from the same landrace and, therefore, avoids artifacts due 
to extreme differences between genotypes for adaptation to 
the test environments. The recently proposed FOAM design 
also uses landraces for association mapping by sampling 
one individual per landrace for genotyping and phenotyping 
its testcross progeny with a common tester (Navarro et al. 
2017). In contrast to mapping within landraces, however, 
using highly diverse landrace collections faces the same 
problem as other diverse panels of having confounding 
effects of adaptation on target traits.

Maize kernel oil is a valuable renewable resource for 
food, feed, and bioenergy. Thus, manipulating oil content 
and a tailored design of the oil composition are attractive 
targets for a sustainable bioeconomy. Purines are essen-
tial components of nucleic acids and other cellular com-
ponents, and in contrast to animals, plants are capable of 
a complete degradation of the purine ring to recycle both 
carbon and nitrogen (Zrenner et al. 2006; Werner and Witte 
2011). Allantoin is an intermediate metabolite of this purine 

catabolism and is metabolized to allantoate by the enzyme 
allantoinase.

The aim of this study was to assess the potential of librar-
ies of immortalized lines from landraces for crop genetic 
studies. We performed genome-wide association mapping 
with doubled haploid libraries of ancestral landraces of 
maize and demonstrate the potentially high mapping reso-
lution down to causal allelic variants for an oil content QTL 
and a QTL for the metabolite allantoin. In addition, we pro-
vide general conclusions and guidelines for the future utili-
zation of libraries of immortalized lines from landraces for 
research and breeding.

Material and methods

Plant material and phenotyping of agronomic traits

The basis of our study was the plant materials and pheno-
typic data taken from a field experiment with 460 inbred 
lines from the maize breeding program of the University 
of Hohenheim, described by Böhm et al. (2017). Besides 
18 lines of miscellaneous origin, the experiment included 
53 elite Flint lines (EF) and a total of 389 doubled-haploid 
(DH) lines developed from six Flint landraces originating 
from different countries: Campan-Galade (CG, France), Gel-
ber Badischer (GB, Germany), Strenzfelder (SF, Germany), 
Rheintaler (RT, Switzerland), Walliser (WA, Switzerland), 
and Satu Mare (SM, Romania). Field trials for evaluating 
the per se performance of all lines were conducted in four 
agro-ecologically diverse environments in Germany in 2013, 
always using a 46 × 10 α-lattice design with two replications 
and single-row plots. The four agronomic traits analyzed 
in this study represent different trait categories: the growth 
trait early vigor (EV), the yield component trait kernel row 
number (KRN), the disease resistance trait Fusarium ear rot 
resistance (FUS), and the quality trait oil content (OC), that 
were assessed as detailed by Böhm et al. (2017), and showed 
high heritabilities of 0.82, 0.83, 0.71 and 0.91, respectively, 
calculated as heritabilities among DH lines within landraces 
and subsequently averaged across the six landraces. Early 
vigor was assessed on a scale from 1 (no shoot viable) to 
9 (excellent shoot vigor). Fusarium ear rot resistance was 
assessed just before harvest on a scale from 1 (all ears with 
symptoms) to 9 (all ears showing no symptoms).

SNP genotyping and imputation

A molecular characterization of these doubled haploid lan-
drace libraries has been reported by Melchinger et al. (2017). 
For genotyping, genomic DNA was extracted from pooled 
leaf tissue samples of about six plants using the CTAB 
method following standard protocols. All 53 EF lines and 
358 DH lines randomly sampled from the six landraces were 
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assayed with the MaizeSNP50 BeadChip from Illumina® 
(Ganal et al. 2011) containing 56,110 unique SNPs. Addi-
tional genotypes with available marker profiles, not part of 
this study, were included to improve the imputation step 
and removed afterward; 426 landrace DH lines and 229 EF 
lines were used for imputation. Imputation was done sepa-
rately in the landrace DH lines and in the EF lines. Before 
this step, landrace genotypes with more than 20% missing 
marker values or more than 5% heterozygous scores were 
excluded from all further analyses. Markers with more than 
50% missing values or more than 5% heterozygous calls in 
the landrace genotypes were removed from the data set; the 
remaining heterozygous scores were set to NA. Imputation 
was carried out with BEAGLE 5.0 (Browning et al. 2016). 
The final dataset comprised a panel of 358 landrace lines 
with both genotypic and phenotypic data. The same markers 
that remained for the landrace DH lines were filtered in the 
EF lines, and imputation was performed separately within 
the EF lines. Fifty-one EF lines with genotypic and pheno-
typic data remained for analysis. For analyses comparing 
the landraces with the elite lines (e.g., LD, PCoA, MAF), 
the dataset with 358 landrace DH lines and 51 EF lines was 
filtered for markers that showed a minor allele frequency 
(MAF) < 1% in the landrace DHs or in the EF lines, as these 
were assumed to more likely be genotyping errors, resulting 
in 39,054 markers. Thus, applying this threshold, markers 
can be monomorphic in either the landrace DH lines or the 
EF lines, but in either of the two must have a minor allele 
frequency > 1%.

In addition, 92  S0 plants from five of the six landraces 
(GB, N = 23; RT, N = 23; SF, N = 23; SM, N = 12; WA, 
N = 11) were genotyped with the Affymetrix® Axiom® 
Maize Genotyping Array (Unterseer et al. 2014), contain-
ing 616,201 unique SNPs. The high-density genotypic data 
of these  S0 plants were used to increase the marker density 
in the landrace DH lines of the mapping population by impu-
tation. We filtered these markers for ‘PolyHighResolution’ 
markers and used only those for further analyses. Imputation 
was again carried out with BEAGLE 5.0, first within the 92 
 S0 plants, then using them as a reference panel to impute 
the landrace mapping population. Subsequently, the panel 
of 358 landrace lines was filtered for markers with a minor 
allele frequency < 5%, that were removed from the data set, 
resulting in 281,881 markers. The EF lines were not imputed 
with the 600 k data from the landrace  S0 plants in order to 
avoid imputation of landrace-specific alleles or haplotypes 
into the elite lines. Thus, the final data set used for asso-
ciation mapping consisted of 358 landrace DH lines (CG, 
N = 19; GB, N = 51; RT, N = 34; SF, N = 55; SM, N = 104; 
WA, N = 95) and 22,095 markers from the 50 k array, while a 
total of 281,881 SNP markers resulting after the imputation 
from the 600 k data were used to assist the fine-mapping. 
The chromosomal positions of these SNPs and the candidate 

genes identified in subsequent analyses refer to the B73 ref-
erence genome (B73 RefGen_v4) (Jiao et al. 2017).

Metabolite analyses

For the laboratory analysis of metabolites, we randomly 
sampled five seeds from the same seed lot as used for the 
field trials from each of the 460 lines. From each seed, 
60 mg of coarsely ground material was used for extraction 
of metabolites and derivatized according to the method of 
Lisec et al. (2006). Odd-carbon number alkanes were used 
as retention index standards. GC–MS analysis was carried 
out on a Pegasus IV GC-TOFMS (Leco, St. Joseph, Mich-
igan, USA) equipped with a multipurpose sampler and a 
cold injection system (Gerstel, Mülheim, Germany). One 
microliter samples were injected at 65 °C, and CIS was 
ramped at 12 °C/s to a final temperature of 250 °C. Gas 
chromatography was performed by a 10 m guard column 
and a 30 m × 0.35 mmi.d. Optima 35 MS separation column 
with a 0.25 μm film at 2 ml/min constant helium flow and 
an oven program ramping from 85 to 360 °C at 12 °C/min. 
Mass spectra were acquired by − 70 V EI at 250 °C in the 
mass range of 50–800 m/z at 50 spectra/s. Derivatized sam-
ples were measured within 20 h.

Data preprocessing and peak quantification were per-
formed using the xcms (Smith et al. 2006) and CAMERA 
(Kuhl et al. 2012) R software packages. Annotation was car-
ried out with the ChromaTOF Software, version 4.5 (Leco, 
St. Joseph, Michigan, USA), based on the NIST 11 Mass 
Spectral Library (Scientific Instrumental Services, USA), 
the FAMEs Fatty Acid Methyl Esters Mass Spectral Data-
base (Mondello 2011, Wiley, UK), the Golm Metabolome 
Database (Hummel et al. 2010) and an in-house compound 
library at TU Munich (Römisch-Margl, unpublished data).

We used a resolvable incomplete block design (40 × 12 
α-design) for sample preparation and chemical analysis of 
the five biological replicates of the 460 genotypes. Days on 
which the analysis was carried out were treated as incom-
plete blocks. Twelve consecutive days constituted a complete 
replicate so that the entire design required 60 working days. 
While the initial design was for 480 genotypes, a number 
divisible by 40, which was the maximum number of sam-
ples processable per day, we defined a group of 20 dummy 
genotypes that were later dropped in the final design so that 
the incomplete blocks (corresponding to days) comprised 
either 38 or 39 genotypes.

Out of the 288 metabolites measured by this assay, we 
exemplarily chose allantoin, stigmastan, galacturonic acid 
and an unknown metabolite UN_322_870, as these all 
showed high heritabilities of 0.87, 0.68, 0.91 and 0.91, 
respectively. Three of the metabolites were chosen to have 
known identity (allantoin, stigmastan, and galacturonic acid) 
and one to have an unknown identity. In addition to their 
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high heritabilities, all four metabolites produced clear peaks 
in the Manhattan plots, indicating at least one QTL with 
large enough effect to warrant fine-mapping.

Phenotypic analyses

For the agronomic data, Best Linear Unbiased Estimates 
(BLUEs) for each genotype were obtained by the two-step 
analysis detailed by Böhm et al. (2017). First, adjusted-entry 
means were calculated with ordinary lattice analysis for data 
from each environment that in a second step were used to 
estimate BLUEs in a combined analysis across all environ-
ments (Cochran and Cox, 1957).

Following Riedelsheimer et  al. (2012), raw data of 
the metabolites were first subjected to a Box–Cox power 
transformation to meet approximately the assumptions of 
a Gaussian normal distribution (Box and Cox, 1964). For 
each metabolite, an ordinary lattice analysis of variance for 
the incomplete block design was conducted with covariance 
adjustment for the position of the sample analyzed within 
an incomplete block (day). Outlier detection was performed 
by examining residuals standardized by the median absolute 
deviation (MAD), known to yield robust estimates (Leys 
et al. 2013). Subsequently, one percent of the most extreme 
data points identified by this procedure were treated as miss-
ing values, including 23 seeds for which concentrations of 
several metabolites were suspiciously high. This procedure 
was repeated a second time, and afterward BLUEs for each 
genotype and metabolite were calculated. Heritabilties ( h2 ) 
of the metabolites were estimated after Piepho and Möhring 
(2007). All mixed model analyses were performed with the 
R package ‘ASReml’ (Butler et al. 2009).

Genetic analyses

All analyses described in this section were based on the 
39,054 markers from the MaizeSNP50 array described 
above. Minor allele frequency was assessed in the 358 DH 
lines and in the 51 EF lines, as the frequency of the allele 
that in the 358 landrace DH lines is the minor allele. Nota-
bly, this allele may be the major allele in the 51 EF lines. To 
evaluate variations in MAF along chromosomes, a sliding 
window was applied with 5 Mbp in each direction from the 
chosen position and a stepsize of 1 Mbp. For each window 
the mean MAF was calculated. To visualize differences in 
MAF between the landraces and the elite lines, we calculated 
∆ MAF as the MAF in the 358 landrace DHs or each lan-
drace separately minus the MAF in the 51 EF lines. Thus, a 
positive ∆ MAF illustrates a higher frequency of this allele 
in the landraces, whereas a negative value shows a higher 
frequency in the elite lines.

Population structure among the 358 DH lines from the 
six landraces and the 51 EF lines was investigated by prin-
cipal coordinate analysis (PCoA) based on the genomic 
kinship calculated by Method 1 of VanRaden (2008). The 
neighbor joining tree was calculated with R package ‘ape’ 
(Paradis et al. 2004).

Linkage disequilibrium (LD) was calculated as the 
squared correlation ( r2 ) between pairs of markers, sepa-
rately in each of the landraces, in all 358 landrace DH 
lines and in the 51 EF lines (Hill and Robertson 1966). 
The decay of LD with physical distance between markers 
was assessed by fitting a cubic smoothing spline to the 
data. To assess LD along chromosomes, the same sliding 
window as for the MAF was applied. For each window, the 
mean LD was calculated and the distance after which LD 
decayed below the threshold of r2 = 0.2 was determined 
based on the fitted cubic smoothing spline. For calculating 
the linkage phase similarity (LPS) in different populations, 
the cosine similarity was used as described by Schopp 
et al. (2017). LPS was assessed for a distance of 1 Mbp 
within bins of 20 kb. For the LPS within landraces and 
within the elite Flint lines, two subsets of equal size were 
randomly sampled from each group, for the landraces tak-
ing half of the lines from each landrace in each subset, and 
the results averaged over 100 replications.

Association mapping

Genome-wide association mapping was performed in the 
mapping panel of 358 landrace DH lines, based on the 
BLUEs of the four agronomic traits and four metabolites, 
and the 281,881 markers obtained in this panel after impu-
tation and quality checks. A linear mixed model was used 
for association mapping, incorporating a kinship matrix 
calculated based on the genome-wide marker data to cor-
rect for relatedness (Yu et al. 2006). To account for inter-
population differences, a fixed effect was additionally 
included in the model that defines the origin of each DH 
line as one of the six landraces. Genome-wide associa-
tion mapping was done with the R package ‘GenABEL’ 
(Aulchenko et al. 2007). As significance threshold, we 
applied a conservative Bonferroni-corrected threshold 
of P < 0.05 at the genome-wide level and show both the 
threshold for markers from the 50 k array only, as well as 
for all markers resulting after the imputation. The results 
from the genome-wide scan for marker–trait associations 
were visualized in Manhattan plots, drawn as circular plots 
with ‘Circos’ (Krzywinski et al. 2009). To identify can-
didate genes underlying the identified peaks in the Man-
hattan plots, we used the genome browser at maizeGDB 
(www. maize gdb. org/ gbrow se) to zoom into the respective 
chromosomal regions.

http://www.maizegdb.org/gbrowse
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Evaluation of candidate genes

For oil content, we sequenced DGAT1-2 (gene symbols: 
Zm00001d036982, GRMZM2G169089, LOC103629820) 
and for allantoin the allantoinase (gene symbols: 
Zm00001d026635, GRMZM2G173413, LOC100274212). 
Longer genomic regions were PCR-amplified as shorter, 
overlapping products. The primers used for (1) the PCRs, 
(2) the sequencing of the PCR products, (3) the KASP 
markers developed for some of the identified polymor-
phisms, and (4) the markers for the allantoinase qPCR are 
provided in Supplementary Table 1.

The proportion of genotypic variance ( �
G

 ) explained by 
these polymorphisms was estimated by fitting them in a 
linear model to obtain R2

adj
 , from which the proportion of 

explained genotypic variance was derived as the ratio �
G

 
= R2

adj
/h2 , where h2 is the heritability of the trait (Utz et al. 

2000).
Analysis of several polymorphisms in the allantoinase 

gene and its promoter suggested the promoter polymor-
phisms to be causal. In that case the polymorphisms might 
result in differential gene expression. To study the expres-
sion of the allantoinase, we first formed a discovery set 
of lines comprising 16 genotypes. From each landrace, 
one line with the insertion and one line with the dele-
tion in the promoter at position −350 were selected. For 
the elite lines, the only line with insertion and three lines 
with the deletion were chosen. These lines were grown 
in a randomized design in a growth chamber, and shoot 
and root tissue of seedlings were harvested. RNA of two 
biological replicates was extracted with the Qiagen RNe-
asy® Plant Kit and reverse transcribed into cDNA with the 
M-MuLV reverse transcriptase from Genaxxon bioscience. 
Gene-specific primers were designed for the allantoinase, 
and elongation factor 1 alpha (EF1α) was used as con-
trol gene (Lin et al. 2014) (Table S1). Quantitative PCRs 
were performed on a Roche LightCycler® 480 II with the 
Genaxxon bioscience GreenMasterMix and four techni-
cal replications per biological replicate, resulting in eight 
expression values per genotype. To analyze allantoinase 
expression in the landrace ‘Walliser,’ ten lines with the 
insertion and ten lines with the deletion were selected to 
sample shoot and root tissue of seedlings from a field trial. 
The trial was grown at the experimental station Heidfeld-
hof of the University of Hohenheim in Stuttgart, Germany, 
in 2020, with two replications. Plants were sampled from 
both field replications and RNA isolated twice from each 
sample. With each cDNA sample, 2 to 3 qPCR runs were 
performed, resulting in 4 to 6 expression values per bio-
logical sample and, across the two field replications, in 8 
to 12 expression values per genotype.

Results

Maize landraces present an untapped reservoir of variation

Our population comprised 358 immortalized maize lines 
from six geographically diverse ancestral European Flint 
landraces that were developed by the doubled-haploid 
technology, as well as 51 elite Flint inbred lines included 
for comparison. Molecular differentiation of the landraces 
and the elite lines was supported by the results of the prin-
cipal coordinate, phylogenetic, and minor allele frequency 
analyses (Fig. 1a, Fig. S1, S2). Clustering of the landraces 
was in agreement with their geographic origin, with ‘Satu 
Mare’ from Romania being most distant from the other 
landraces, which originated from the Alp/Pyrenean region 
(‘Walliser,’ ‘Campan-Galade’) and Upper Rhine valley 
(‘Gelber Badischer,’ ‘Rheintaler’). ‘Strenzfelder’ was 
presumably derived from ‘Gelber Badischer,’ explaining 
their close association.

All traits showed a high heritability and a broad pheno-
typic range, with the variation present in the doubled haploid 
libraries of landraces often exceeding that of the elite lines 
(Fig. 1b, Fig. S3). For susceptibility to diseases or other 
undesired characteristics, the variation was expectedly lower 
in the elite material, because breeders have strongly selected 
against these traits since decades. Thus, the allele frequen-
cies and consequently the power of QTL detection for such 
traits should be higher in landraces.

Rapid decay of linkage disequilibrium in maize landraces

The crucial factor determining the mapping resolution of 
association mapping is the decay of linkage disequilib-
rium with distance from the causal allelic variants. Linkage 
disequilibrium decayed much faster in the landrace asso-
ciation mapping population (r2 ≤ 0.2 at 0.18 Mbp) than in 
the elite lines (r2 ≤ 0.2 at 3.66 Mbp) (Fig. 2). Within each 
landrace, linkage disequilibrium also decayed faster com-
pared to the elite lines, but with substantial variation among 
them (r2 ≤ 0.2 ranging from 0.34 to 2.93 Mbp), which is in 
line with previous findings (Mayer et al. 2017). Analysis 
of linkage disequilibrium along chromosomes revealed the 
expected slower decay in centromeric regions, but substanti-
ated the much faster decay in non-centromeric regions in the 
landraces, facilitating a higher mapping resolution in most 
of the genome (Fig. S4). This difference between the lan-
draces and elite lines was further corroborated by the short 
persistence of the same linkage phase (Fig. S5). Collectively, 
these results emphasize the importance of analyzing linkage 
disequilibrium before selecting landraces as targets for asso-
ciation mapping, and highlight the potential of the present 
panel for high-resolution mapping.
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Landraces enable high‑resolution mapping of causal 
variants

Genome-wide association mapping in the panel of 358 
immortalized landrace lines yielded associations for all traits 
(Fig. 3, Table S2). We chose two of these QTL with clear 
signal in the Manhattan plot, a QTL of the agronomic trait 
oil content and a QTL for the metabolite allantoin, to explore 
the mapping resolution permitted by this approach.

We fine-mapped the major QTL for oil content on chro-
mosome 6 to a narrow region containing DGAT1-2, a gene 
encoding an acyl-CoA:diacylglycerol acyltransferase that 
catalyzes the final step of oil biosynthesis (Fig. 4a). DGAT1-
2 is known to have a comparably large effect on oil content 
(Li et al. 2013); in particular, a phenylalanine insertion at 
position 469 (F469) was shown to be the causal polymor-
phism for increased oil and oleic acid concentration (Zheng 
et al. 2008). Sequencing of DGAT1-2 identified the polymor-
phisms described previously, including the causal phenyla-
lanine insertion (Table S3).

For the metabolite allantoin, a major association signal 
was identified on chromosome 10. Fine-mapping identi-
fied the allantoinase as a strong candidate for this QTL, and 
sequencing revealed six non-synonymous polymorphisms in 
the coding region as well as several polymorphisms in the 
promoter region (Fig. 4b, Fig. S6-7, Tables S4-7). The two 
landrace populations that are likely most informative and 
may have driven the identification of this QTL are ‘Campan 
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variance explained by the first and second principal coordinate. b 
Phenotypic variation of four agronomic traits (EV early vigor; KRN 
kernel row number; FUS Fusarium resistance; OC oil content) and 
four metabolites shown as normalized trait values for the 358 ances-
tral landrace (AL) doubled haploid lines and 51 elite Flint lines
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Galade’ and ‘Walliser,’ because the marker from the SNP 
array (AX-90560856) segregates with almost equal allele 
frequencies and lines with the different marker alleles show a 
clear difference in allantoin content. For these two landraces, 
the non-synonymous mutations L107M and D454N are pol-
ymorphic. However, KASP markers for L107M and D454N 
were not significantly associated with the trait and explained 
almost nothing of the genotypic variance (Table S7). By 
contrast, the promoter polymorphisms matched the pattern 
of the SNP marker in the subset of sequenced lines. Moreo-
ver, the KASP marker tagging the TCA InDel at position 
-350, developed as a proxy for the various promoter poly-
morphisms showing the same pattern, explained the highest 
proportion of genotypic variance in the entire panel. This 
suggested that one or several polymorphisms in the promoter 
region or in another regulatory region being in LD with it, 
contribute to this QTL.

Particularly for the landrace ‘Walliser,’ both promoter 
variants are present and showed significant (P = 4.0e−10) 
differences in allantoin content (Table S8). We consequently 
assessed transcriptional expression of the allantoinase 
in shoots and roots of maize seedlings grown under con-
trolled conditions, which for ‘Walliser’ indicated differen-
tial expression (Fig. S8). Subsequent quantitative PCR of 
20 field-grown lines of this landrace confirmed significant 
differences in Allantoinase mRNA levels between the two 
promoter variants in both shoots (P = 1.0e−26) and roots 
(P = 2.3e−10) (Fig. 5). The lines with the insertion had an 
on average 2.8-fold higher expression level in shoots and 

a 2.3-fold higher expression level in roots. Lines with the 
allele characterized by a higher allantoin content had a lower 
Allantoinase expression, which is in line with a reduced 
turnover of allantoin in this metabolic pathway.

Discussion

Improvement of oil content and allantoin content 
in maize

In this study, we exemplarily chose QTL for oil content and 
allantoin content, as both traits produced a clearly defined 
peak in the Manhattan plot that warranted fine-mapping. 
For oil content, this identified the well-known phenylalanine 
insertion at position F469 in DGAT1-2 (Zheng et al. 2008). 
The allele with F469 was found in various maize wild rela-
tives, suggesting it to be ancestral, whereas the 3-bp dele-
tion without F469, carried by inbred lines such as B73 and 
Mo17, is a more recent mutation selected by domestication 
or breeding (Zheng et al. 2008). Our finding that the low-oil 
allele without F469 is present in several European maize 
landraces corroborates the conclusion that it has arisen dur-
ing domestication (Chai et al. 2012). While a considerable 
increase in oil content has been achieved in maize, release of 
commercial high-oil hybrids has been hampered by its nega-
tive association with grain yield and other agronomic traits. 
Our results corroborate DGAT1-2 as a target to uncouple 
oil content and quality from other traits by utilizing natural 
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or engineered alleles in breeding of maize and other crops 
(Liu et al. 2020).

For allantoin content, the enzyme allantoinase was 
identified as candidate gene. Further analyses suggested 
promoter polymorphisms and differential expression 
of the gene as a possible cause of variation in allantoin 
content. Notably, this does not rule out an effect of the 
non-synonymous polymorphisms in the coding region. In 
fact, different polymorphisms may contribute to the dif-
ferences in allantoin levels in the different landraces. For 
example, neither the marker AX-90560856 nor the pro-
moter InDel at position -350 were polymorphic between 
the two sequenced lines of the landrace ‘Strenzfelder,’ but 
the non-synonymous mutation D454N was, which in this 

landrace explained 26.0% of the genotypic variation. In 
addition to its role in nitrogen recycling, allantoin plays a 
role in abiotic stress response. Particularly, it was found 
to accumulate under drought in various plant species (Sil-
vente et al. 2012; Degenkolbe et al. 2013; Casartelli et al. 
2019; Khan et al. 2019), but also under high salt (Wang 
et al. 2016), cold (Kaplan et al. 2004), and sulfate starva-
tion conditions (Nikiforova et al. 2005), with generally 
higher levels in more stress tolerant genotypes. Our results 
thus lay the foundation for a targeted exploitation of the 
allelic diversity controlling allantoin content toward the 
development of crops with improved stress tolerance and 
nitrogen-use efficiency.
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Association mapping with landraces

While association mapping in diversity panels or in elite 
breeding material and related approaches like NAM, 
MAGIC or the recently proposed FOAM, have all proven 
their value, association mapping in ancestral landraces has 
several advantages and thus complements these approaches. 
Our results demonstrate the high mapping resolution ena-
bled by this approach, despite the rather moderate popula-
tion size used here. Thus, if larger population sizes as used 
in the maize NAM and FOAM populations (McMullen et al. 
2009; Navarro et al. 2017) are employed, association map-
ping in ancestral landraces can be expected to be even more 
powerful. Our results together with the findings of Mayer 
et al. (2020) give clear evidence that the necessary detection 
power and high mapping resolution can be reached to dissect 
the genetic architecture of oligo- or even polygenic traits 
down to the level of the causal variants. Nevertheless, as for 
any other mapping approach, the target QTL obviously need 
to have a sufficiently large effect size to warrant their fine-
mapping and potential identification of the underlying genes. 
Following their validation and further characterization, the 
identified genes can be utilized for breeding by allele mining 
in gene banks or by targeted engineering of alleles through 
gene editing. In addition, high-resolution mapping could 
enlarge our knowledge on the numerous metabolites with 
unknown function (Tohge and Fernie 2010) through identifi-
cation of candidate genes affecting their metabolic pathway, 
but this warrants further research.

How to identify the target landraces

In view of the large number of landrace accessions stored 
in gene banks and the immense efforts and expenses for 
production of immortalized lines from these populations 
(Melchinger et al. 2017), a multi-stage procedure for choice 
of the landrace(s) used for association mapping appears best 
suited (Fig. 6) (Mayer et al. 2020). First, landraces harboring 
the desired characteristics are required. These can either be 
collected by a targeted search in environments that suggest 
the presence of variation for the target trait(s). Alternatively, 
a core collection of landraces is identified based on pass-
port data and/or molecular information, and subsequently 
evaluated for the trait(s) of primary interest. These landraces 
should ideally be well adapted to the environments used for 
phenotyping to avoid artifacts arising from poor adaptation, 
which could affect plant development and in turn the target 
trait(s). Promising landraces selected after this step must be 
evaluated for their success rate in production of libraries of 
immortalized lines, as a minimum sample size is required 
to provide the power to identify causal variants. For maize 
landraces, for example, there is substantial variation regard-
ing the production of doubled haploid lines, with some lan-
draces being rather recalcitrant (Melchinger et al. 2017). At 
present, doubled haploid lines can be routinely produced 
in maize and few other crops. As an alternative, recombi-
nant inbred lines from landraces can be developed by single 
seed descent, which can be accelerated by applying novel 
approaches for speed breeding (Watson et al. 2018; Jähne 
et al. 2020). In addition, the candidate landraces should 
be fingerprinted with molecular markers to identify those 
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landraces with a rapid linkage disequilibrium decay that 
facilitates fine-mapping. Analyzing 24 individual  S0 plants 
from each landrace with a 5 K SNP array was sufficient for 
obtaining representative estimates in maize (Mayer et al. 
2017).

How to design the mapping population

An important question is the number of immortalized lines 
that should be produced for the selected landrace(s). This 
depends on the available resources as well as on the research 
objectives. An important consideration is also that most of 
the molecular and genetic variation rests within landraces 
and less than one quarter between landraces (Böhm et al. 
2017; Goodman et al. 2014). In general, the overall number 
is limited by the resources required to produce them as well 
as by the capacity to phenotype them for the target trait(s). 
Thus, the available resources can be focused on one landrace 
or be used to establish libraries of several landraces. Choos-
ing a single landrace might be recommended if the focus is 
on a specific target trait that is rare to find and maybe only 
present in a particular landrace, or if a landrace is known to 
show a much stronger variation for it than all other landraces. 
If several landraces show variation for the target trait(s), the 

more promising option might be to establish libraries for 
several of them. Even with a similar variation, the genetic 
architecture of the target trait may differ and thus, assessing 
several landraces increases the chance of identifying large-
effect QTL suitable for introgression into elite material. If 
the genetic architecture is identical between landraces, there 
is no difference whether one or several are chosen. In asso-
ciation mapping, the QTL detection power depends on the 
size of the mapping population. In our study, the QTL for 
allantoin content may only segregate in the landrace ‘Wal-
liser’ with 95 individuals, indicating that a population size 
of around 100 can be sufficient to detect large-effect QTL. 
Notably, this will also depend on the linkage disequilibrium 
structure in the QTL region. Thus, a sample size of 250 as 
used by Mayer et al. (2020) should generally be sufficient 
to identify large- and medium-effect QTL and only if the 
aim is to identify also QTL with smaller effect should the 
sample size be increased further. If the aim is to use the 
mapping population for different target traits, even some not 
yet defined when screening the landraces, the chances for 
success are increased when libraries of several landraces 
are established. The sample size per landrace library must 
then be balanced with the number of landraces, potentially 
with a stronger focus on some landraces that appear most 
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Fig. 6  Schematic roadmap for association mapping in landraces. Numbers are given exemplarily for maize. Figure adapted from Mayer et al. 
(2020)
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promising. The use of multiple immortalized landraces 
increases the number of polymorphic QTL and also opens 
the possibility to test for heterogeneity of QTL effects in dif-
ferent landraces, as frequently observed in QTL studies with 
multiple bi-parental populations (e.g., Blanc et al. 2006; Liu 
et al. 2011).

Maximizing the mapping resolution

The basis for a high mapping resolution in association map-
ping is a rapid decay of linkage disequilibrium. As expected, 
linkage disequilibrium was found to decay faster in the lan-
drace population than in the elite lines, which is in line with 
previous findings (van Inghelandt et al. 2011; Truntzler et al. 
2012; Unterseer et al. 2014; Mayer et al. 2017; Brauner et al. 
2018). In very diverse collections of maize, the linkage dis-
equilibrium decay can be even faster than in the landraces, 
but as mentioned, these panels usually have the issue of a 
strong population structure and non-adaptation to the test 
environments (Yan et al. 2009).

Maximizing the diversity within each landrace library 
supports achieving a high mapping resolution. To exclude 
closely related lines, which may occur if several immortal-
ized lines are recovered from the same  S0 plant, we recom-
mend to produce an excess of immortalized lines and, based 
on marker data, choose less related ones for the associa-
tion mapping panel. In addition, the rapid decay of linkage 
disequilibrium in landraces must be matched with a high 
marker density to take full advantage of the high mapping 
resolution achievable with this approach. The marker density 
provided by the 50 k SNP array in our study was at the lower 
end. In view of the advances in sequencing technology and 
the decreasing costs, whole-genome sequencing should be 
the method of choice for association mapping in landrace 
libraries.

Landrace association mapping and genetic load

Performing association mapping with immortalized 
lines from landraces instead of the landraces themselves 
increases the QTL detection power and might have the 
advantage that detrimental QTL alleles contributing to the 
genetic load are largely purged from the landraces during 
the process of producing the immortalized lines. However, 
in maize a comparison of SNP allele frequencies in the 
original landrace and the immortalized lines derived from 
them provided little evidence that this occurs frequently 
(Melchinger et al. 2017; Zeitler et al. 2020). Neverthe-
less, detection of QTL with detrimental effects could help 
to identify different variants of beneficial alleles in elite 

germplasm and eradicate the negative alleles if still pre-
sent at low frequencies.

Joint utilization for hybrid breeding

If the immortalized landrace lines are to be used for broad-
ening the genetic basis in hybrid breeding programs, molec-
ular information about the landraces and elite germplasm 
can help choosing landraces that maximize the genetic dis-
tance to the heterotic group targeted for introgression and the 
opposite group in the heterotic pattern. This should increase 
the chances to detect novel alleles absent in breeding popu-
lations and improve the heterotic response in hybrids. With 
this goal in mind, we recommend to additionally evaluate 
their testcross performance with suitable testers as practiced 
in choosing the landraces for this study (Böhm et al. 2014).

Conclusions

The approach of utilizing landraces for association map-
ping is most suitable for allogamous or partially alloga-
mous crops. For genetically narrow landraces of autogamous 
crops, it is sufficient to sample a single representative line 
to be included in a diversity panel, as recently demonstrated 
for barley (Milner et al. 2019). However, autogamous crops 
also display a certain degree of outcrossing, and if ancestral 
landraces have a sufficiently large effective population size 
and segregate for the trait(s) of interest, association mapping 
may also be successfully applied to landraces of autogamous 
crops, which warrants further research.

Association mapping in landraces has special appeal due 
to the rapid decay of linkage disequilibrium over a short 
distance and as these may harbor rare alleles absent in elite 
material. Both criteria are a direct function of the effective 
population size Ne, which depends on both, the evolutionary 
history of the landraces as well as their collection and main-
tenance. While the latter, including the strategy for their col-
lection, cannot be changed for gene bank material, for their 
future use in research and breeding, it is of utmost impor-
tance that maintenance of these accessions preserves a large 
Ne, which requires a revision of the number of genotypes and 
mating schemes currently used by many gene banks.

In conclusion, using libraries of ancestral landraces for 
association mapping allows tapping a huge, largely unex-
ploited reservoir of genetic resources for genetic research 
and breeding.
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