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Abstract
Key message  Blossom-End Rot is Quantitatively Inherited and Maps to Four Loci in Tomato.
Abstract  Blossom-end rot (BER) is a devastating physiological disorder that affects tomato and other vegetables, result-
ing in significant crop losses. To date, most studies on BER have focused on the environmental factors that affect calcium 
translocation to the fruit; however, the genetic basis of this disorder remains unknown. To investigate the genetic basis of 
BER, two F2 and F3:4 populations along with a BC1 population that segregated for BER occurrence were evaluated in the 
greenhouse. Using the QTL-seq approach, quantitative trait loci (QTL) associated with BER Incidence were identified at 
the bottom of chromosome (ch) 3 and ch11. Additionally, linkage-based QTL mapping detected another QTL, BER3.1, on 
ch3 and BER4.1 on ch4. To fine map the QTLs identified by QTL-seq, recombinant screening was performed. BER3.2, the 
major BER QTL on ch3, was narrowed down from 5.68 to 1.58 Mbp with a 1.5-LOD support interval (SI) corresponding 
to 209 candidate genes. BER3.2 colocalizes with the fruit weight gene FW3.2/SlKLUH, an ortholog of cytochrome P450 
KLUH in Arabidopsis. Further, BER11.1, the major BER QTL on ch11, was narrowed down from 3.99 to 1.13 Mbp with 
a 1.5-LOD SI interval comprising of 141 candidate genes. Taken together, our results identified and fine mapped the first 
loci for BER resistance in tomato that will facilitate marker-assistant breeding not only in tomato but also in many other 
vegetables suffering for BER.

Introduction

Tomato (Solanum lycopersicum L.) is the second most pro-
duced and consumed vegetable in the world. The demand 
for this vegetable has increased over the years since the 
produce offers wide-ranging health benefits. This grow-
ing demand has led to a steady increase in tomato pro-
duction in the world, exceeding 182 million tons in 2018 
(FAOSTAT 2020). Yet, this crop faces major biotic and 
abiotic challenges that can lead to a substantial amount 
of the produce being lost. Among these, physiological 

disorders are abiotic syndromes that affect either the whole 
plant or specific parts of the plant such as fruits, roots, 
and leaves. These disorders render the vegetable or fruit 
unmarketable and thus result in significant yield losses 
and penalized market prices (Hagassou et al. 2019; Ikeda 
and Kanayama 2015). As one of the most common physi-
ological disorders in tomato, blossom-end rot (BER) alone 
causes serious economic losses that may reach up to 50% 
in this vegetable (Taylor and Locascio 2004). Just as an 
example, in 2018, Hickory Hill Farm in Carlton GA, USA, 
experienced dramatic yield losses due to BER in organi-
cally grown hybrid tomatoes that reached up to 80% (Josh 
Johns and Gary Shaw, personal communication, August 9, 
2018). Unfortunately, the unpredictability of BER occur-
rence and adverse weather conditions aggravate this prob-
lem since extreme weather events are becoming increas-
ingly more prevalent (Barickman et al. 2014; Penella and 
Calatayud 2018). Despite its economic importance, the 
underlying causes of BER are not well understood. The 
occurrence of BER has been primarily attributed to cal-
cium (Ca2+) deficiency (Adams and Ho 1993; Raleigh 
and Chucka 1944). Along this vein, aberrant regulation of 
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cellular Ca2+ distribution and partitioning, especially in 
the distal placenta, appears to be linked to BER (de Freitas 
et al. 2011, 2012b, 2014). Ca2+ plays an important role as 
a structural component of cell walls and membranes, and 
previous studies have suggested that higher concentration 
of Ca2+ in the apoplastic space ([Ca2+]apo) affects cell wall 
strength and stability (de Freitas et al. 2012a; Thor 2019). 
Just as important is the role of calcium as an intracellular 
secondary messenger. Therefore, Ca2+ concentration in the 
cytosol ([Ca2+]cyt) is tightly regulated as well (Clapham 
2007; Clarkson et  al. 1993; Kudla et  al. 2010; Thor 
2019). Transient, sustained, or oscillatory elevations in 
the [Ca2+]cyt initiate a signaling cascade that orchestrates 
induction of downstream responses needed for given stim-
ulus, such as defense and stress response gene expression, 
and Ca2+-controlled stomatal closure (Dodd et al. 2010; 
Ng et al. 2001). Even though a central role for Ca2+ in the 
development of BER has been postulated for many years, 
neither a consistent solution nor a direct link to fruit Ca2+ 
concentration has been conclusively demonstrated (Ho 
and White 2005). Therefore, other physiological links to 
the causes of BER such as reactive oxygen species (ROS) 
formation have recently gained prominence (Rached et al. 
2018). Because of its destructive activity, excessive ROS 
release upon exposure of plants to stress conditions causes 
cell membrane lipid peroxidation, membrane leakage, and 
subsequently cell death, which can lead to the develop-
ment of BER (Aktas et al. 2003; Rached et al. 2018; Van 
Breusegem and Dat 2006). Moreover, ROS production 
reaches a maximum, when the rate of cell expansion dur-
ing fruit growth is at its maximum (Aktas et al. 2003). As 
a defense mechanism against ROS, plants produce anti-
oxidants to neutralize or alleviate the negative impact of 
ROS. Hence, tomato varieties that feature high levels of 
antioxidants show resistance to BER (Rached et al. 2018). 
In addition to aberrant regulation of calcium and ROS, 
much emphasis has been placed on other physiological 
and genetic factors, such as accelerated fruit growth rate, 
phytohormones, salinity, drought, high light intensity, fruit 
weight and shape to explain BER (Hagassou et al. 2019; 
Ho and White 2005). Typically, fruit weight and elongated 
shape are positively correlated to BER occurrence (Ho 
and White 2005; Marcelis and Ho 1999). Yet not all large 
fruited or oval-shaped tomato varieties feature BER to the 
same degree. This implies that there may be genetic basis 
for the disorder that is hitherto unknown. Nonetheless, 
only a few genetic and mapping studies have been car-
ried out for BER, despite the desire to identify resistance 
loci to utilize them for crop improvement (Uozumi et al. 
2012). Hence, the objective of this study is to investigate 
the genetic basis of BER tomato. It is our expectation that 
these findings will ultimately provide novel knowledge 
about the causes of BER and to enable marker-assisted 

breeding not only in tomato but also in other crops that 
suffer from the disorder.

Material and methods

Plant materials and population construction

Two segregating F2 populations, 17S28 (n = 192) and 
20S166 (n = 192), were generated by crossing BER-resist-
ant accessions BGV007900 (Solanum lycopersicum var. 
cerasiforme) and BGV008224 (S. lycopersicum var. lyco-
persicum), respectively, with BER-susceptible accession 
BGV007936 (S. lycopersicum var. lycopersicum). Further-
more, a BC1 population (18S243, n = 144) was created using 
the susceptible accession (BGV007936) as the recurrent par-
ent in the BGV007900 x BGV007936 F1. These phylogeneti-
cally closely related accessions (Razifard et al. 2020) were 
selected from the “Varitome” collection, and SNP data in 
this collection are publicly available at SGN (https://​solge​
nomics.​net/​proje​cts/​varit​ome/). The 17S28 and 20S166 F2 
mapping populations were, respectively, grown in Spring 
2017 and Fall 2020 and included the F1 and parental con-
trols. The 18S243 BC1 mapping population was grown in 
Spring 2018 without controls. Follow-up mapping popu-
lations were 19S499 (n = 171) and 20S74 (n = 192) F3:4 
populations that were grown in Spring and Summer 2020, 
respectively. Only recombinant plants in the QTL interval 
on ch3 and ch11, respectively, were selected and grown with 
parental checks. All populations were grown in greenhouse 
where the irrigation, temperature, and supplemental light 
settings are Argus controlled at the University of Georgia 
(Athens, USA). Briefly, plants were grown in 3.79-L pots 
filled with a commercial potting mix (Sun Gro® Fafard® 
3B Mix/Metro-Mix 830, Sun Gro Horticulture Inc, Aga-
wam, MA) and fertilized with Nutricote controlled release 
fertilizer (CRF) (18N-6P-8K with 37.5 g/pot, Florikan, 
Sarasota, FL) and MEG-IRON V micronutrient mix (7.5 g/
pot, Florikan, Sarasota, FL) following the manufacturers’ 
recommendations.

BER phenotyping

To assess BER, three continuous assays and one nominal 
assay were developed. These assays were the following: (1) 
BER Severity 1, the ratio of the BER diameter to the whole 
fruit diameter (DBER/DFruit); (2) BER Severity 2, the ratio of 
the weight of the affected part of the fruit to the total fruit 
weight (WBER/WALL); (3) BER Incidence, the ratio of the 
number of fruit affected to the total number of fruit (AFN/
TFN); and (4) BER Visual, where each fruit was scored by 
using a scale of 1–5 with 1 = healthy with no BER symptoms 
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and 5 = extensive BER (Fig. 1). BER was evaluated using 
only the first 3–5 fruits on the first three inflorescence.

DNA isolation and library preparation 
for sequencing

The DNA extraction and library preparation were performed 
as described before (Illa-Berenguer et al. 2015). Briefly, the 
genomic DNA of the plants was extracted from young true 
leaves using the DNeasy Plant Mini Kit (Qiagen, Valencia, 
CA) following the manufacturer’s recommendation. For 
the recombinant screening, the genomic DNA of the plants 
was extracted from cotyledons following the Geno/Grinder 
method described by Zhang et al. (2012). In the 17S28 F2 
population, 12 plants that represented the high BER Inci-
dence and 19 plants that represented the low BER Incidence 
(resistant) were selected. Similarly, 10 plants that featured 
high BER Severity 2 were selected for a total of three pools 
(Supplementary Table 1). Prior to library preparation, the 
genomic DNA of the plants selected for each bulk was quan-
tified using the Qubit 2.0 Fluorimeter (Invitrogen, Carlsbad, 
CA, USA). For the library preparation, the NEBNext Ultra™ 
II DNA Library Prep Kit (New England Biolabs, USA.) and 
three barcoded primers from the NEBNext® Multiplex Oli-
gos for Illumina kits (New England Biolabs, USA.) were 
used. Libraries were subjected to whole genome sequencing 

using the Illumina NextSeq 550 (300 cycles) paired-end 
150-bp (PE150) flow cells at the Georgia Genomics and 
Bioinformatics Core at University of Georgia (Athens, GA).

Genome sequence analysis for QTL‑seq

The generated FASTQ files were merged and then assessed 
using the FastQC program (version 0.11.4) (Andrews 
2010). Prior to further analysis, FASTQ files were filtered 
and trimmed using Trim Galore (version 0.4.5) for a quality 
value of at least 28 ( https://​github.​com/​Felix​Krueg​er/​TrimG​
alore). The remaining 150-bp paired-end reads were aligned 
to the genomes of the inbred tomato cultivar “Heinz 1706; 
version SL4.0” (Sato et al. 2012) using Burrows-Wheeler 
Aligner (BWA) with the default parameters (Li and Durbin 
2009). Average coverage for each bulk was calculated using 
SAM tools (Li et al. 2009). After alignment, the SAM files 
were converted into BAM files using SAM tools (Li et al. 
2009). The BAM files were sorted and filtered using Picard 
software (version 2.17.4) ( https://​broad​insti​tute.​github.​io/​
picard/). Next, the variant calling including SNP-calling was 
performed using Genome Analysis Toolkit (GATK) (version 
3.4–0) (McKenna et al. 2010). The recommended default 
settings for GATK Haplotype caller were used, and SNPs 
with QUAL > 30 were kept (Van der Auwera et al. 2013). 
The final variant call format (VCF) file was converted into 
a tab-delimited table using the “VariantsToTable” function 
from GATK. The tab-delimited table format file was used 
for downstream analyses. R package “QTLseqR” was used 
to identify QTL (Mansfeld and Grumet 2018).

KASP marker development and genotyping

The parental lines were genotyped for known fruit weight 
and shape genes (Supplementary Table 2) including CNR 
(FW2.2), KLUH (FW3.2), CSR (FW11.3), OVATE (OVATE), 
OFP20 (SOV1), LOCULE NUMBER (LC), and FASCIATED 
(FAS) (Chakrabarti et al. 2013; Ramos 2018; Rodríguez et al. 
2011; Wu et al. 2018). The 17S28 F2 population is segregat-
ing for FAS and FW3.2, whereas the 20S166 F2 population 

Fig. 1   BER Visual scale from 1 to 5. As the scale number increases, 
the Severity of BER increases with 1 = healthy fruit with no BER 
symptoms and 5 = extensive BER completely affecting the fruit

Table 1   Genotyping results of the accessions used in the study for known fruit weight and shape genes

1: derived allele; 2: resulting in large fruit or more locules, 3: Wild-type allele; resulting in small fruit or fewer locules, n equals the size of the 
population

F2population Parental name Fruit weight genes Locule number genes Fruit shape genes

FW2.2 CNR FW3.2 
KLUH 

FW11.3 
CSR 

LC WUSCHEL FAS CLV3 OVATE 
OVATE

SOV1 
OFP20

17S28 n = 192 BGV007900 1 3 1 1 1 3 3
BGV007936 1 1 1 1 3 3 3

20S166 n = 192 BGV008224 1 1 1 1 3 3 3
BGV007936 1 1 1 1 3 3 3

https://github.com/FelixKrueger/TrimGalore
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https://broadinstitute.github.io/picard/


	 Theoretical and Applied Genetics

1 3

was fixed for all the known fruit weight and shape genes 
(Table 1). Additionally, fluorescence-based KASP markers 
were developed using SNPs data identified from the genome 
sequencing data using the Primer Express® Software ver-
sion 3.0.1 (Applied Biosystems, Carlsbad, CA). The Tm 
of two allele-specific forward primers were selected in the 
range of 58–61 °C (optimum: 60 °C) with minimum total 
GC content of 30%. Tm difference between primer pairs was 
set to be maximum 1 °C, and the desired product size was 
determined to be between 60–200 bp. Moreover, each primer 
had less than five repeating nucleotides in a row and was at 
least 25 bp in length. Next, we BLASTed each allele-specific 
forward primers against the SL4.0 tomato reference genome 
assembly in SGN (http://​solge​nomics.​net/​tools/​blast/), and 
primers that only corresponded to the target sequence were 
selected. IDT oligo analyzer tool (https://​www.​idtdna.​com/​
calc/​analy​zer) was used to test possible secondary structures, 
such as hairpins and primer dimers. Primer3Plus software 
(http://​www.​bioin​forma​tics.​nl/​cgi-​bin/​prime​r3plus/​prime​
r3plus.​cgi) was used to design the reverse primer. Finally, 
allele-specific primers along with common primer were 
tested for possible cross-dimer formation in primer pairs 
using multiple primer analyzer function in Thermo Scien-
tific Web Tools (https://​www.​therm​ofish​er.​com/… /thermo-
scientific-web-tools.html). Either FAM™ (GAA​GGT​GAC​
CAA​GTT​CAT​GCT) or HEX™ (GAA​GGT​CGG​AGT​CAA​
CGG​ATT) unique tail sequences were attached to the 5’ end 
of the allele-specific primers. The KASP markers used in 
this study are summarized in Supplementary Table 2. KASP 
genotyping was conducted in 384-well plates with a total 
reaction volume of 5 μL, containing 2 μL of 20–100 ng/μL 
genomic DNA. A total of 3 μl of the KASP PCR reaction 
mix was dispensed into each well using Mantis® micro-
fluidic liquid handler (FORMULATRIX®, Bedford, MA). 
KASP PCR mix and PCR conditions are summarized in 
Supplementary Table 3. Tecan Infinite M200 Pro micro-
plate reader (Tecan, Group Ltd., Mannersdorf, Switzerland) 
was used for KASP fluorescent end-point readings after the 
amplification. Automated genotype calling was performed 
using KlusterCaller software (Version 3.4.1.39, LGC 
Genomics LLC) using the raw data imported from Tecan 
microplate reader.

Linkage map construction and QTL analysis

The R/QTL (version 1.46–2, (Broman et al. 2003)) was 
employed to estimate genetic distances and construct genetic 
linkage maps. The Kosambi map function (Kosambi 1943) 
was used to estimate mapping distance in centimorgan (cM) 
by converting recombination frequencies. The logarithm of 
odds (LOD) scores was estimated using nonparametric inter-
val mapping (scanone function; model = “np”) in R/QTL 
since the BER Incidence data does not meet the normality 

assumption. To declare the presence of a significant QTL, a 
99% significance threshold was determined using permuta-
tion test with 1000 permutations.

Statistical analysis

The assumption of normality was checked using the Shap-
iro–Wilk tests and quantile–quantile (Q-Q) plot. Significant 
differences were considered at p < 0.05. Histograms, scat-
ter and box plots were created in R open-source software 
(version 1.2.5001, (R Core Team 2019)). Pearson correla-
tion coefficient was calculated using JMP software (version 
13.2.0 (SAS Institute Inc 2017)). The broad sense heritabil-
ity of each trait (H2) was calculated as described by Kearsey 
and Pooni 1996. In brief, roughly six to nine F1 progenies 
and six to nine plants from each parent were grown with the 
populations, and the following formula was used to estimate 
H2;

where VF2 denotes the variation amongst F2 individu-
als, VP1 and VP2 represent the variation amongst parents 
and finally VF1 shows the variation amongst F1 plants. The 
phenotypic variance for F2 lines is due to the combination of 
both genetic and environmental factors. However, the phe-
notypic variance amongst parental lines and F1 progenies is 
due to only environmental factors.

The gene action or degree of dominance (D/A) was 
calculated as the ratio between dominance and additive 
effects. Additive effect (A) was estimated as ½ (A1A1—
A2A2), where A1A1 is the mean phenotypes of homozy-
gous BGV007900 allele and A2A2 is the mean phenotypes 
of homozygous BGV007936. Dominance effect (D) was 
estimated as A1A2 – ½ (A1A1 + A2A2). The software QTL 
IciMapping (Version 4.1 (Meng et al. 2015)) was used to 
calculate/infer D/A values. Based on the estimates of domi-
nance effect with those of additive effect, QTL were divided 
into additive effect (− 0.25 ≤ d/a ≤ 0.25), incomplete or 
partial dominance (± 0.25 ≤ d/a ≤  ± 0.75), complete domi-
nance (± 0.75 ≤ d/a ≤  ± 1.25), overdominance (d/a >  ± 1.25) 
(Tanksley 1993).

Results

Phenotypic evaluation of BER traits in the 17S28 F2 
population

BER was quantified using four methods: BER Severity 1 
(DBER/DFruit), BER Severity 2 (WBER/WALL), BER Incidence 
(AFN/TFN), and BER Visual (a scale of 1–5). The parents 
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of the 17S28 F2 population showed striking differences in 
terms of BER Incidence and Severity. While the resistant 
parent BGV007900 showed consistently low Incidence and 
low Severity, the susceptible parent BGV007936 displayed 
an opposite trend (Fig. 2a, Supplementary Fig. 1). The dis-
tribution of F2 plants exhibited continuous variation for each 
trait, indicating BER Severity 2 that the traits were quan-
titatively inherited (Fig. 2b-e). Yet, all distributions (BER 
Severity 1, BER Severity 2 and BER Visual) were skewed 
toward BER-resistant parent BGV007900 except for BER 
Incidence where the distribution was skewed toward BER-
susceptible parent. The broad sense heritability for all the 
four BER-related traits in the 17S28 F2 population ranged 
from H2 = 0.48 to H2 = 0.80, suggesting a strong genetic 
basis to the BER traits (Table 2). The BER traits were also 
found to be significantly correlated to one another rang-
ing from r = 0.78 to r = 0.98 (Table 3).Correlation analy-
sis between BER Incidence and BER Severity 2 indicated 
that some F2 plants displayed high BER Incidence while 
showing low BER Severity 2 (Fig. 2f). This suggested that 
BER Incidence and BER Severity 2 may be controlled by 
different loci. As shown in the BER Severity 2 frequency 
histogram (Fig. 2d), 101 F2 plants were slightly affected by 
BER (less than 0.1 BER Severity 2). However, 6 F2 indi-
viduals were completely consumed by BER. A Chi-square 

goodness-of-fit test shows that data are consistent with a 
15:1 and two segregating loci scenario (χ2(0.01,1) = 0.075, 
Prob > ChiSq = 0.783 for BER Severity 2). With respect to 
BER Incidence, 48 F2 plants produced healthy fruits and 
featured less than 0.1 BER Incidence, whereas 17 plants pro-
duced fruit that were all affected by BER (Fig. 2b). The ratio 
of 48:17 is consistent with 3:1 and one segregating locus 
scenario (χ2(0.01,1) = 0.046, Prob > ChiSq = 0.829) for BER 
Incidence. Since we expected few loci for BER, a QTL-seq 
approach was used. For this purpose, genomic libraries were 
constructed using DNA from plants showing most extreme 
phenotypes from the 17S28 F2 population. The high BER 
Incidence and high BER Severity 2 plants in each pool did 
not overlap (Supplementary Table 1).

Identification and mapping of QTL using QTL‑seq

The next-generation sequencing (NGS)-based Illumina pro-
tocol generated between 224,961,232 and 394,052,926 mil-
lion 150-bp paired-end reads that after filtering were mapped 
to tomato reference genome (Supplementary Table 4). A 
total of 434,022 and 424,900 high-quality SNPs were called 
by comparing the BER Incidence and BER Severity 2 bulks, 
respectively (Supplementary Tables 5, 6). The absolute 
Δ(SNP index) for “SNP-index_resistant Bulk—SNP-index_ 

Fig. 2   Phenotypic evaluations of BER parents and BER frequency 
distributions in 17S28 F2 population. a Phenotypic difference 
between BER-resistant parent BGV007900 (P1, with no BER Inci-
dence), BER-susceptible parent BGV007936 (P2, with high BER 
Incidence), and their F1 generation 17S29. b BER Incidence fre-
quency histogram in F2 progenies (17S28, n = 192). Gray and black 
triangles indicate the plants selected to generate Resistant Bulk 

(RB) and Susceptible Bulk (SB). White, gray, and black arrow-
heads on each histogram show the average of BGV007900, F1 and 
BGV007936 plants, respectively, for the trait of interest. Frequency 
distribution of c BER Severity 1, d BER Severity 2, and e BER Vis-
ual traits. f Correlation between BER Severity 2 and BER Incidence 
traits
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Incidence _Bulk” and “SNP-index_resistant Bulk—SNP-
index_ Severity _Bulk” with a statistical confidence of 
p < 0.05 was calculated. As a result, two significant genomic 
positions were identified for both BER Incidence and Sever-
ity 2 traits on ch1 and ch3 (Supplementary Fig. 2,3). For 
BER Incidence, another genomic region was identified on 
ch11, whereas a different genomic position was identified for 
BER Severity 2 on ch8 (Supplementary Figs. 2,3). To fur-
ther examine additional putative small effect QTL (the aver-
age absolute Δ(SNP-index)) was close to the 95% confidence 
interval), additional KASP markers were developed for ch2, 
ch6, ch8, and ch10 for both BER Incidence and Severity 2 
traits (Supplementary Figs. 2, 3; Supplementary Table 2).

Validation of identified QTL by SNP markers

To validate QTL(s) identified by QTL-seq, polymorphic 
SNPs were converted into molecular markers to flank and 
encompass the identified loci. Next, marker–trait association 
analyses for BER Incidence and Severity 2 traits were con-
ducted using entire 17S28 F2 population. Once marker–trait 
associations were found to be significant, additional molec-
ular markers were developed and QTL analysis was per-
formed. Although the QTL-seq approach found three can-
didate regions, only QTL at ch3 and ch11 were validated 
using the entire 17S28 F2 population (Fig. 3). KASP markers 
developed for BER QTL on ch1 did not show significant 
association with both BER Incidence and Severity 2 traits 

(p > 0.05). Furthermore, most of the minor QTLs were not 
validated using marker trait association analysis except on 
ch4 (Fig. 3).

Of the two analyzed traits, BER Incidence showed the 
highest association with molecular markers compared to 
BER Severity 2. Hence, only BER Incidence was further 
investigated in follow-up studies. The largest effect BER 
QTL on ch3, BER3.2, accounted for 16.35% phenotypic 
variation and exhibited a LOD score of 7.44 (Fig. 3b). To 
determine the confidence intervals of the identified QTLs, 
BER3.2 showed a 1.5-LOD SI extending from 15.7 to 
42.1 cM (closest genetic markers 19EP596 and 18EP730, 
respectively), which corresponded to the physical positions 
of SL4.0 54,214,617 – SL4.0 59,891,210-bp (equaling 5.68 
Mbp) region on the tomato reference genome of version 
SL4.0. Furthermore, the additive effect and D/A values 
for this QTL were -0.19 and 0.01, respectively. This indi-
cated that BER3.2 acted in an additive manner (Table 4). 
QTL BER4.1 was flanked by markers 19EP885 (SL4.0ch4 
5,481,420) and 18EP625 (SL4.0ch4 55,400,792) (Fig. 3f). 
The highest associated markers with BER4.1 were located 
near the centromeric region of ch4, and 1.5-LOD SI covered 
nearly the entire chromosome. BER4.1 explained a small 
portion of the phenotypic variance (8.57%) with a maximum 
LOD score of 3.74. The D/A was -0.16, suggesting that the 
alleles largely acted in an additive manner (Table 4). On 
ch11, BER11.1 explained 17.24% of the phenotypic variation 
with a LOD of 8.22. BER11.1 had a 1.5-LOD SI extending 

Table 2   Trait evaluations in the 17S28 F2, 18S243 BC1 and 20S166 F2 populations along with parental lines

BER blossom-end rot, AFN affected fruit number, TFN total fruit number, DBER diameter of blossom-end rot scar, DFruit diameter of tomato fruit, 
WBER weight of tissue showing blossom-end rot, WALL fruit weight of all tomato fruits evaluated. BER visual scale from 1 (with no symptoms) to 
5 (severe symptoms that cover the entire fruit); Var, Variance: Min, minimum trait value; Max, maximum trait value; H2, broad sense heritabil-
ity. Comparisons for all pairs were made using the Tukey–Kramer HSD, and levels not connected by the same letter are significantly different at 
α = 0.05 significance level. n equals the size of the population. ± Std deviation based on sample

Parent 1 F1 Parent 2 Mean SD Upper 
95% 
mean

Lower 
95% 
mean

Var Min Max H2

Traits BGV007900
 n = 9

17S29
 n = 9

BGV007936
 n = 9

17S28 F2 population (n = 192)
BER Visual (on a 1–5 Scale) 1.00 ± 0.00bz 1.38 ± 0.62b 3.17 ± 0.54a 2.27 1.14 2.43 2.11 1.29 1.00 5.00 0.79
BER Incidence (AFN/TFN) 0.00 ± 0.00c 0.72 ± 0.33b 1.00 ± 0.02a 0.40 0.32 0.45 0.36 0.10 0.00 1.00 0.48
BER Severity 1 (DBER/DFruit) 0.00 ± 0.00c 0.32 ± 0.15b 0.88 ± 0.15a 0.29 0.29 0.34 0.25 0.09 0.00 1.00 0.80
BER Severity 2 (WBER/WALL) 0.00 ± 0.00b 0.15 ± 0.08b 0.65 ± 0.25a 0.18 0.23 0.21 0.15 0.05 0.00 1.00 0.62
18S243 BC1 population (n = 144)
BER Visual (on a 1–5 Scale) 2.84 0.77 2.97 2.72 0.59 1.00 4.60 n.a
BER Incidence (AFN/TFN) 0.81 0.20 0.84 0.77 0.04 0.00 1.00 n.a

BGV008224
 n = 6

20S167
 n = 6

BGV007936
 n = 6

20S166 F2 population (n = 192)
BER Visual (on a 1–5 Scale) 1.19 ± 0.14c 3.18 ± 0.52a 4.91 ± 0.07b 3.29 0.90 3.42 3.16 0.80 1.50 5.00 0.82
BER Incidence (AFN/TFN) 0.15 ± 0.11b 0.91 ± 0.07a 1.00 ± 0.00a 0.85 0.16 0.87 0.82 0.03 0.27 1.00 0.80
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Fig. 3   Mapping of BER Incidence in the 17S28 F2 population. a−d 
Mapping of BER3.2. e−h Mapping of BER4.1. i−l Mapping of 
BER11.1. a, e, i Absolute Δ(SNP-index) plots of a ch3, e ch4, and 
i ch11. X-axis shows the genomic position in Mb and Y-axis shows 
Absolute Δ(SNP-index). Tricube-weighted abs Δ(SNP-index) was 
used to facilitate visualization and interpretation of the graphs (solid 
blue line). Green and pink lines indicate the 99% and 95% confidence 
interval (CI), respectively, under the null hypothesis of no QTLs is 
present (p < 0.01 and 0.05. Triangles on the X-axis show the approxi-
mate genomic positions of the first and last genotyped marker in Mb. 
b, c, f, g, j, k Linkage-based QTL mapping. Partial genetic maps and 
map distances of b, c ch3, f, g ch4, and j, k ch11. The triangles on the 
x-axis show the position of the genotyped markers and their corre-

sponding genetic distances in cM, and the y-axis represents the LOD 
scores. A logarithm of odds (LOD) threshold of α = 0.01 was found 
at 3.05 after 1000 permutation test (red dotted line). Bars show 1.0-
LOD SI, and the whiskers represent 1.5-LOD SIs for each QTL. d, 
h, l Box plots of allelic effects of the highest associated SNP mark-
ers in each QTL interval for the trait of BER Incidence. The allelic 
effect of d BER11.1, h BER4.1, and l BER11.1. Comparisons for all 
pairs were made using Tukey–Kramer HSD, and levels not connected 
by the same letter are significantly different at α = 0.05 significance 
level. “RR” are plants homozygous for the resistant BGV007900 
allele, “RS” are plants heterozygous at this locus, and “SS” are plants 
homozygous for the susceptible BGV007936 allele
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from 9.6 to 32.1 cM (closest genetic markers 18EP789 and 
18EP1043, respectively), which corresponded to the physi-
cal positions of SL4.0 48,131,615—SL4.0 52,123,165 
(equaling 3.99 Mbp) (Fig. 3j). The additive effect and D/A 
for this QTL were -0.18 and 0.38, respectively. In contrast 
to BER3.2 and BER4.1, BER11.1 exhibited an incomplete 
or partial dominance gene action for the BGV007900 allele 
(low BER occurrence). In addition, box plots of the highest 
associated SNP markers in each QTL interval are shown in 
Fig. 3d,h,l. Furthermore, digenic interactions of BER QTLs 
in the 17S28 F2 population were tested, but no significant 
epistatic or additive interactions were found among the loci 
(Prob > F = 0.1486 [ch3 and ch4, Fig. 4a], Prob > F = 0.5574 
[ch3 and 11, Fig. 4b], Prob > F = 0.8959 [ch4 and ch11, 
Fig. 4c]).  

BER mapping in the other two populations

Since most distributions in 17S28 F2 population were 
skewed toward BER-resistant parent BGV007900 and BER 
appeared to be additive, a backcross population 18S243 
BC1 population was generated using the BER-susceptible 
BGV007936 as a recurrent parent. BER Incidence showed 
continuous variation in the BC1 population with a skewed 
distribution toward BER-susceptible parent BGV007936 
(Fig. 5a). BER Visual also displayed continuous variation 
with a normal distribution (Shapiro–Wilk W test, W = 0.99, 
Prob < W = 0.66). Pearson correlation coefficient between 
BER Incidence and BER Visual was r = 0.81, indicating 
that both traits were highly correlated as expected. In the 
backcross population, BER11.1. has a 1.5-LOD SI extended 
from 16.7 to 40.4 cM (closest genetic markers 18EP951 and 
18EP1117, respectively), corresponding to position SL4.0 
50,569,217—SL4.0 54,182,901 bp (3.61 Mbp) (Fig. 5d,g). 
BER11.1. explained 13.75% of the phenotypic variance with 
a LOD score of 4.62 (Table 4). Box plots of allelic effects of 
the highest associated SNP marker 18EP879 are shown in 
Fig. 5j. In the 18S243 BC1 population, BER3.2 and BER4.1 
were not segregating.

Since two loci (fw3.2 and fas) associated with fruit weight 
variation were segregating in both 17S28 F2 and 18S243 
BC1 populations, a new F2 mapping population was devel-
oped that did not segregate for any of the known fruit weight 
or shape genes. The F2 population 20S166 was derived from 
a cross between BER-resistant accession BGV008224 and 
the same BER-susceptible accession BGV007936 (Table 1). 
BER Incidence distribution of F2 plants showed skewed dis-
tribution toward BER-susceptible parent BGV007936. A 
total of 187 F2 plants were severely affected by BER (BER 
Incidence ≥ 0.50) ,whereas only five plants were slightly 
affected by BER (BER Incidence ≤ 0.50 [Fig. 5b]). For 
BER Visual, F2 plants showed continuous variation with-
out normal distribution (Shapiro–Wilk W test, W = 0.97, 
Prob < W = 0.0011[Fig. 5c]). Because of the extremely high 
BER Incidence, the BER Visual trait was used to phenotype 
the 20S166 F2 population. Using the previously identified 
regions linked to BER, incomplete linkage maps of ch3, ch4, 
and ch11 were generated, showing only two loci that segre-
gated in the 20S166 F2 population (Fig. 5e,f). Interestingly, 
the most significant markers on ch3 did not overlap with the 
map position of BER3.2 found in the other F2 population. 
Therefore, we named this locus BER3.1 because it mapped 
higher on the chromosome. BER3.1 explained 15.47% of the 
BER Visual variance with a LOD of 7.00 in 20S166 F2 pop-
ulation. The D/A was 0.02, suggesting that the alleles largely 
acted in an additive manner. The 1.5-LOD SI extended 
from 0 to 14.1 cM (closest genetic markers 20EP1015 and 
18EP703, respectively), which corresponded to the physi-
cal interval of SL4.0ch3 47,418,933…53,495,792 bp (equal-
ing 6.08 Mbp) (Fig. 5h). BER4.1 explained 19.12% of the 
phenotypic variation with a LOD of 8.85 and thus was the 
most significant BER QTL in this population (Table 4). 
BER4.1 had a 1.5-LOD SI extending from 49.6 to 66.1 cM 
(closest genetic markers 20EP139 and 18EP625, respec-
tively), which corresponded to the physical positions of 
SL4.0 49,843,412—SL4.0 55,400,792 (equaling 5.56 Mbp) 
(Fig. 5f,i). Importantly, 1.5-LOD SI of BER4.1 in 20S166 
F2 population partially overlapped with the 1.5-LOD SI of 
BER4.1 in 17S28 F2 population, suggesting that they were 

Table 3    Pearson correlation 
coefficient, r, between traits 
in the 17S28 F2 population 
(above diagonal) and associated 
p-values (below diagonal)

BER blossom-end rot, AFN affected fruit number, TFN total fruit number, DBER diameter of blossom-end 
rot scar, DFruit diameter of tomato fruit, WBER weight of tissue showing blossom-end rot, WALL fruit weight 
of all tomato fruits evaluated. BER visual scale from 1 (with no symptoms) to 5 (severe symptoms that 
cover the entire fruit); Details regarding to BER visual score are shown in Fig. 1.

r p-value BER Visual (on 
a 1–5 Scale)

BER Incidence 
(AFN/TFN)

BER Severity 1 
(DBER/DFruit)

BER Severity 
2 (WBER/
WALL)

BER Visual (on a 1–5 scale) 1 0.875 0.983 0.921
BER Incidence (AFN/TFN) 2.00E-61 1 0.838 0.783
BER Severity 1 (DBER/DFruit) 2.00E-140 1.00E-51 1 0.921
BER Severity 2 (WBER/WALL) 4.00E-79 9.00E-41 4.00E-79 1



Theoretical and Applied Genetics	

1 3

the same. Moreover, D/A for BER4.1 was 0.41, indicating 
that BER4.1 exhibited an incomplete or partial dominance 
gene action for the BGV007900 allele. Box plots of allelic 
effects of the highest associated SNP markers 20EP1012 
and 20EP194 are shown in Fig. 5k,l. Finally, epistatic, or 
additive interaction between BER3.1 and BER4.1 was evalu-
ated, and no significant interaction was found between the 
loci (Prob > F = 0.4212 [ch3 and ch4]) for the trait of BER 
Visual (Fig. 6).

Fine mapping BER3.2 and BER11.1

To further delineate the BER3.2 and BER11.1 intervals, 
recombinant screening was performed. A total of 768 F3:4 
seedlings were genotyped with markers 18EP703 (SL4.0ch3 
53,495,792) and 18EP1037 (SL4.0ch3 60,772,821) for 
BER3.2 and only recombinant plants were transplanted in 
the greenhouse (20S74 population; n = 192). After the selec-
tion, the recombinant plants were genotyped with additional 
KASP markers. The frequency histogram of 20S74 popula-
tion for the BER Incidence trait showed continuous varia-
tion with a skewed distribution toward BGV007900 resistant 
parent (Fig. 7a). QTL mapping showed that BER3.2 was 
located between 20EP1033 (SL4.0ch3 58,308,917) and 
18EP730 (SL4.0ch3 59,891,210), narrowing the locus down 
from 5.68 to 1.58 Mbp (Fig. 7b). This interval consists of 
209 candidate genes including the fruit weight locus FW3.2/
SlKLUH. The box plot of allelic effects of the SNP marker 
19EP261 is shown in Fig. 7c.

The same approach was applied to further map BER11.1. 
A total of 1152 F3:4 seedlings were genotyped with mark-
ers 18EP1049 (SL4.0ch11 51,268,187) and 18EP1114 
(SL4.0ch11 53,258,120), and the 19S499 population 
comprising of 171 recombinants were transplanted to the 
greenhouse. BER Incidence showed continuous variation 
with a skewed distribution toward BGV007936-suscepti-
ble parent (Fig. 7d). In this population, BER11.1 mapped 
between 18EP1043 (SL4.0ch11 52,123,165) and 18EP1114 
(SL4.0ch11 53,258,120), corresponding to a 1,134,955-bp 
interval (Fig. 7e). Consequently, the BER11.1 QTL was 
narrowed down from 3.69 to 1.13 Mbp interval, covering 
141 candidate genes. Box plot of allelic effects of the SNP 
marker 20EP385 is shown in Fig. 7f.

Discussion

Despite extensive efforts to manage BER and related disor-
ders in fruit and vegetable production, the underlying causes 
of this syndrome are poorly understood. While the genetic 
bases of physiological disorders have remained elusive, most 
emphasis has been placed on the physiological aspects of 
the syndromes. Nonetheless, these extensive efforts have Ta
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delivered limited practical solutions to the problem and led 
to diminished production of tomato and other vegetables 
around the world (Taylor and Locascio 2004). Therefore, we 
sought to gain a better understanding about the genetic basis 
of BER with the expectation that these insights may lead to 
additional and potentially more cost-effective solutions to 

BER and related syndromes. In this study, we phenotyped a 
BER segregating population by first evaluating the methods 
to score the trait. Since it was expected that the disorder was 
quantitatively controlled and under environmental control, 
accurate phenotyping was deemed imperative to success-
fully map BER as in other complex traits (Bernardo 2020). 

Fig. 4   Digenic interactions of BER QTLs in the 17S28 F2 popula-
tion. a BER3.2 × BER4.1, b BER3.2 × BER11.1, c BER4.1 × BER11.1. 
“RR” indicates plants homozygous for the resistant BGV007900 

allele, “RS” are plants heterozygous, and “SS” are plants homozy-
gous for the susceptible BGV007936 allele

Fig. 5   BER mapping in two additional populations. a−c Frequency 
distributions of BER traits. a BER Incidence distribution in 18S243 
BC1, b BER Incidence, and c BER Visual distributions in the 20S166 
F2 population. White, gray, and black arrowheads on each histogram 
show the average of BGV008224, F1 and BGV007936 plants, respec-
tively, for the trait of interest. d−i Linkage-based QTL mapping. Par-
tial linkage map and map distances of d, g ch11, e, h ch3, and f, i ch4. 

A logarithm of odds (LOD) threshold value for α = 0.01 was found to 
be 2.98 for 18S243 BC1 and 3.40 for 20S166 F2 after 1000 permuta-
tion test. j−l Box plots of allelic effects of the highest associated SNP 
markers. The allelic effect of j BER11.1, k BER3.1 and l BER4.1. 
“RR” shows plants homozygous for the resistant BGV008224 allele, 
“RS” plants heterozygous at this locus, and “SS” plants homozygous 
for the susceptible BGV007936 allele
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Despite high correlations among the four traits, some F2 
plants exhibited distinct patterns for BER Incidence and 
Severity 2, suggesting that these traits may be controlled 
by different loci. This conclusion was based on the obser-
vation that some plants carried fruits slightly affected by 
BER Severity 2, while exhibiting high BER Incidence val-
ues. Hence, these two traits were used to generate genomic 
pools for whole genome sequencing.

The QTL-seq approach has been employed to rapidly map 
QTL(s), and the results are often directly implemented in 
marker-assistant breeding (Clevenger et al. 2018; Das et al. 
2015; Illa-Berenguer et al. 2015; Imerovski et al. 2019; Lu 
et al. 2014; Paudel et al. 2019a; Ramos et al. 2020; Wang 
et al. 2016). The power of QTL-seq relies on the population 
size, the number of SNPs between the parents and quantita-
tive nature of the trait (Illa-Berenguer et al. 2015). In addi-
tion, the number of selected individuals in each bulk and 
sequencing depth also needs to be taken into consideration 
since these parameters significantly affect the power of QTL 
detection (Takagi et al. 2013). With a size of 192 plants and 
778,685 SNPs that differentiate the parents, the QTL-seq 
approach led to the identification of BER3.2 and BER11.1 
for the BER Incidence trait but missed the minor BER4.1. 
Therefore, traits controlled by many loci with a small effect, 
a higher population size (n ≥ 192) should be considered to 
capture the minor QTLs. In our study, additional markers 
that spanned the QTL-seq identified loci were mapped in the 
entire 17S28 F2 population, resulting in the confirmation of 
BER3.1 and BER11.1. The other QTL on ch1 and ch8 were 
false positives, which is not uncommon in QTL-seq experi-
ments (Paudel et al. 2019b). Generally for QTL-Seq, the 
bulk size needs to be composed of at least 15% of the total F2 
population to detect minor QTL that explain less than 10% 
of the percentage of total phenotypic variation explained 
(Takagi et al. 2013). In this study, in an effort to include only 
the most extreme phenotypes, the bulks were composed of 
6–10% of the total F2 population. This may have resulted in 

less power to detect the minor QTL, especially for BER4.1 
using the QTL-seq approach. BER11.1 was validated in the 
BC1 population, whereas BER3.2 and BER4.1 were not. The 
limited size of this population may have led to an underes-
timation of QTL numbers in this population (Beavis 1998; 
Melchinger et al. 1998; Vales et al. 2005). To further con-
firm BER3.2, BER4.1, and BER11.1, we created another 
F2 population (20S166) that was not segregating for any of 
the known fruit weight and shape genes. In this population, 
we confirmed BER4.1 and found an additional QTL on ch3 
(BER3.1). Interestingly, BER3.1 may have been detected in 
the first F2 population as a minor QTL close to the major 
QTL BER3.2 (Fig. 3b).

We sought to refine and delineate BER3.2 and BER11.1, 
the QTLs that were first detected and found to explain more 
than one third of the total phenotypic variance. BER3.2 
was narrowed down from 5.68 to 1.58 Mbp, flanked by 
20EP1033 (SL4.0ch3 58,308,917) and 18EP730 (SL4.0ch3 
59,891,210) markers. This region was comprised of 209 can-
didate genes (Supplementary Table 7) including the FW3.2/
SlKLUH an ortholog of KLUH that regulates cell prolifera-
tion in developing organs in Arabidopsis (Anastasiou et al. 
2007). It is known that increased fruit size and BER onset 
are strongly correlated despite the notion that certain large 
tomato varieties are resistant, whereas certain mid-sized 
elongated tomato varieties are susceptible to the disor-
der (Heuvelink and Körner 2001; Marcelis and Ho 1999). 
Moreover, to date, no conclusive association has been found 
between fruit weight genes and BER occurrence except Cell 
Size Regulator (FW11.3/CSR) that increases the fruit weight 
by increasing the cell size and results in high BER Incidence 
(Mu 2015). However, since FW3.2/SlKLUH was segregat-
ing in the population, we inferred that it was likely to be the 
gene underlying BER3.2. However, in addition to FW3.2/
SlKLUH, other putative genes in this interval included 
Solyc03g113920, Solyc03g113940, Solyc03g113950, 
Solyc03g113960, Solyc03g113970, and Solyc03g113980 
(Supplementary Table  7) encoding calmodulin binding 
proteins. These proteins may be involved in Ca2+ signal-
ing and ROS scavenging, which play a role in maintaining 
cell membrane integrity by inhibiting the cell membrane 
lipid peroxidation (Dhindsa et al. 1981; Van Breusegem and 
Dat 2006). ROS scavenging pathways are downregulated 
under Ca2+-deficient conditions, but their activities are up-
regulated via Ca2+/calmodulin signaling (Schmitz-Eiberger 
et al. 2002; Yang and Poovaiah 2002; Zeng et al. 2015). 
In addition, other candidates included Solyc03g114420, 
a gene encoding calmodulin and Solyc03g114110 and 
Solyc03g114450, genes related to Ca2+ sensing and transport 
(Supplementary Table 7). Hence, Ca2+-related genes may 
be considered good candidate genes for BER3.2. Further-
more, in the BER3.2 interval we also found genes encoding 
COBRA-like proteins (Solyc03g114880, Solyc03g114890, 

Fig. 6   Digenic interaction of BER3.1 × BER4.1 in 20S166 F2 popula-
tion. “RR” indicates plants homozygous for the resistant BGV008224 
allele, “RS” are plants heterozygous, and “SS” are plants homozy-
gous for the susceptible BGV007936 allele
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Solyc03g114900 and Solyc03g114910 (Supplementary 
Table 7) that are thought to be involved in secondary cell 
wall biosynthesis and fruit development. Mutations in the 
COBRA-Like genes (COBLs), such as cobl4 in Arabidop-
sis and brittle stalk 2 (bk2) in corn, affect cell wall thick-
ness and cellulose content, especially in the sclerenchyma 
cells and vascular bundles (Brown et al. 2005; Ching et al. 
2006). Strikingly, suppression of SlCOBRA-like gene in 
tomato leads to impaired cell wall integrity in develop-
ing fruit, coinciding with the first symptoms of BER (Cao 
et al. 2012). Finally, this interval included six expansion 

genes (Solyc03g115270, Solyc03g115300, Solyc03g115310, 
Solyc03g115320, Solyc03g115340, and Solyc03g115345) 
that may play an important role in cell wall modification 
and stress resistance in tomato (Lu et al. 2016; Minoia et al. 
2016).

The fine mapping of BER11.1 led to the reduction of 
the interval from 3.99 to 1.13 Mbp flanked by 18EP1043 
(SL4.0ch11 52,123,165) and 18EP697 (SL4.0ch11 
53,250,673) markers. This region was comprised of 141 
candidate genes including FASCIATED (fas), which can 
affect fruit weight by controlling locule number during 

Fig. 7   Fine mapping of the BER3.2 and BER11.1. a−c Recombinant 
screening and fine mapping of BER3.2 d−f Recombinant screening 
and fine mapping of BER11.1 Frequency distribution of recombinant 
F3:4 plants for a BER3.2 in 20S74 and d BER11.1 in 19S499 F4 popu-
lations. White, gray, and black arrowheads on each histogram show 
the average of BGV007900, F1 and BGV007936 plants, respectively, 
for the trait of interest. b, e Linkage-based QTL mapping. b BER3.2 
was further delineated to approximately 1.58-Mb region flanked 
by 20EP1033 (SL4.0ch3 58,308,917) and 18EP730 (SL4.0ch3 
59,8912,10) markers. e BER11.1 was further fine mapped to 1.13-Mb 

region flanked by 18EP1043 (SL4.0ch11 52,123,165) and 18EP1114 
(SL4.0ch11 53,258,120) markers. The numbers between genetic 
markers represent the number of recombinant plants. Bars show 1.0-
LOD SI, and the whiskers represent 1.5-LOD SIs for each QTL c,f) 
Box plots of allelic effects of the most significant markers identified 
in the 1.5-LOD SI. The allelic effects of the most significant mark-
ers c 19EP2161 in BER3.1 region and f 20EP385 in BER11.1 region. 
“RR” indicates plants homozygous for the resistant BGV007900 
allele, “RS” shows plants heterozygous at this locus, and “SS” plants 
homozygous for the susceptible BGV007936 allele
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flower development and is due to a regulatory mutation in 
SlCLV3 (Chu et al. 2019) (Supplementary Table 8). Even 
though fas segregated in the population, it is less likely a 
candidate for BER11.1 since the fruit shape allele is derived 
from the BER-resistant parent BGV007900. We also found 
two pectin methylesterase genes (PMEs) (Solyc11g070175 
and Solyc11g070187). The role of PMEs in BER develop-
ment has been studied previously, and suppression of PMEs 
decreases fruit susceptibility to BER (de Freitas et  al. 
2012a). Similar to BER3.2, the BER11.1 interval contained 
two genes (Solyc11g071740 and Solyc11g071750) encod-
ing Ca2+-binding proteins. In addition to these candidates, 
other genes related to calcium (Solyc11g069580), cell divi-
sion and expansion (Solyc11g069500, Solyc11g069570, and 
Solyc11g069720), and nutrient uptake (Solyc11g069735, 
Solyc11g069750 and Solyc11g069760) may be plausible 
candidates for BER11.1 (Supplementary Table 8).

Finally, we showed that further mapping of QTLs by 
evaluating only the recombinant plants resulted in excellent 
power to detect and fine map the loci. Other methods such 
as progeny testing, where 10 to 20 plants derived from a 
single recombinant parent are evaluated, work well also but 
relatively few recombinants are investigated at a time. The 
progeny testing often results in multiple years before a locus 
is fine mapped to a few candidates (Chakrabarti et al. 2013; 
Huang and van der Knaap 2011). Therefore, space and time 
limitations may be met by only analyzing the recombinants 
near and around the locus, especially in earlier generations. 
Furthermore, QTL mapping can tolerate some phenotypic 
outliers, whereas one outlier in a progeny test can obscure 
the proper interpretation of the data.

To conclude, we employed the QTL-seq and linkage-
based QTL-mapping approaches to genetically map four 
loci in three populations that were associated with BER in 
tomato. BER3.2 and BER11.1 QTL were further mapped to 
intervals of less than 1.6 Mb, whereas BER3.1 and BER4.1 
await further fine mapping. The eventual cloning of the 
underlying genes will facilitate marker assistant breeding 
not only in tomato but also offer knowledge to other breed-
ers working on vegetables and fruits that suffer from BER.
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