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Abstract
Key message  In polyploids, linkage mapping is carried out using genotyping with discrete dosage scores. Here, we 
use probabilistic genotypes and we validate it for the construction of polyploid linkage maps.
Abstract  Marker genotypes are generally called as discrete values: homozygous versus heterozygous in the case of diploids, 
or an integer allele dosage in the case of polyploids. Software for linkage map construction and/or QTL analysis usually 
relies on such discrete genotypes. However, it may not always be possible, or desirable, to assign definite values to genotype 
observations in the presence of uncertainty in the genotype calling. Here, we present an approach that uses probabilistic 
marker dosages for linkage map construction in polyploids. We compare our method to an approach based on discrete dos-
ages, using simulated SNP array and sequence reads data with varying levels of data quality. We validate our approach using 
experimental data from a potato (Solanum tuberosum L.) SNP array applied to an F1 mapping population. In comparison 
to the approach based on discrete dosages, we mapped an additional 562 markers. All but three of these were mapped to the 
expected chromosome and marker position. For the remaining three markers, no physical position was known. The use of 
dosage probabilities is of particular relevance for map construction in polyploids using sequencing data, as these often result 
in a higher level of uncertainty regarding allele dosage.

Introduction

Polyploid species, including commercially important crops 
like potato, leek, rose, and chrysanthemum, have more than 
two copies of the genome. This makes the genetics of these 
species more complex than that of diploids and dedicated 
genetic analysis tools as well as much larger numbers of 
genetic markers are required. With the development of next-
generation sequencing such datasets can now be generated. 
Meanwhile, a range of genetic analysis tools for polyploids 
has been developed (see the review of Bourke et al. 2018b). 
In most cases, raw genotyping data (e.g., fluorescence inten-
sity ratios from single nucleotide polymorphism (SNP) 
arrays or read counts from sequencing data) are first pro-
cessed to assign discrete genotypes to individuals; in the 
case of polyploid species, these processed genotypes are 

often in the form of marker allele dosage counts, or simply 
“dosages” (Bourke et al. 2018b). These dosages are then 
used as input for subsequent applications such as linkage 
map construction and quantitative trait locus (QTL) analysis.

However, discrete genotype calling may introduce errors 
and missing values in the data, resulting in loss of informa-
tion (Tumino et al. 2016). In polyploid species, particularly 
those with higher ploidy levels (i.e., hexaploid and upwards), 
it becomes increasingly difficult to distinguish between 
heterozygous classes, especially if using sequencing data 
at lower read depth (Uitdewilligen et al. 2013). Therefore, 
downstream applications that can accommodate uncertainty 
in genotype calls (probabilistic genotypes) can carry more 
information through the analysis, leading to greater retention 
of markers and the possibility of increased genomic resolu-
tion. This may come at a cost however, as the discretizing of 
genotypes may also function as a marker filtering procedure.

Important downstream applications of genotype data are 
the construction of genetic linkage maps, QTL analysis, 
recombination mapping (identification of recombination 
hot and cold spots), or genome assembly, to name a few. 
This is especially true for polyploid species, many of which 
still lack a reference physical map. In autopolyploid species, 
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linkage maps are usually developed using the F1 (or Full-
Sib) progeny of a cross of two non-inbred, heterozygous 
parents. For polyploids, several software packages have been 
developed that perform linkage mapping, including Tetra-
ploidSNPMap (Hackett et al. 2017), PolyGembler (Zhou 
et al. 2020), polymapR (Bourke et al. 2018a), MAPpoly 
(Mollinari and Garcia 2019), and netgwas (Behrouzi et al. 
2017).

From the perspective of probabilistic genotypes, SNP 
array data are directly comparable to sequencing-based data 
from which bi-allelic SNPs have been called. Our method is 
applicable to both data types. Raw SNP array data consist 
of two signal intensities, corresponding to each of the two 
alleles. In a scatterplot of these SNP signal intensities, clus-
ters are often visible, corresponding to the different dosage 
classes (Fig. 1). When the clusters are compact and well 
separated, it is easy to distinguish these classes, resulting in 
high concordance between the true underlying genotype and 
the assigned genotype call. However, in cases where these 
clusters are not well-defined, genotype calling becomes 
problematic. A similar visualization can be generated for 
sequencing-based genotypes, with the numbers of reads for a 
particular allele replacing signal intensities on the axes (see 
for example Gerard et al. 2018).

Several software packages are available to convert array 
intensities to dosages in polyploids, including SuperMASSA 
(Serang et al. 2012), fitPoly (Voorrips et al. 2011; Zych et al. 
2019) and ClusterCall (Schmitz et al. 2017). For sequence-
based genotypes, specific polyploid-oriented software 
options include updog (Gerard et al. 2018) and polyRAD 
(Clark et al. 2019).

In genotype calling of sequence reads, the quality of the 
call is related to read depth (Gerard et al. 2018; Matias et al. 
2019; Uitdewilligen et al. 2013; Yamamoto et al. 2020). A 
read depth of 60× to 80× was recommended by Uitdewil-
ligen et al. (2013) to obtain high-quality dosage estimates in 
an autotetraploid. Gerard et al. (2018) suggested read depths 
of 25× and 90× for autotetraploids and autohexaploids, 
respectively. In experimental studies mean read depths of 
41×, 63×, and 44× were applied in triploid banana (Davey 
et al. 2013), autotetraploid potato (Uitdewilligen et al. 2013), 
and hexaploid sweetpotato (Yamamoto et al. 2020). In those 
studies, discrete dosages were generated. Here, we investi-
gated whether the use of probabilistic genotypes could be 
helpful in situations where read depth is moderately low. 
In practice, the recommended read depths are not always 
achieved. Indeed, a balance must be found between accu-
rate genotyping (high depths) and cost-effectiveness (lower 
depths).

Fig. 1   Examples of simulated SNP array data for a single SNP locus 
with different levels of overdispersion, for the same set of underly-
ing SNP genotypes across a tetraploid F1 population. The X and Y 
dimensions represent the signal intensities for the two alleles of a 
SNP locus. In a tetraploid (as shown here), a maximum of five clus-

ters is expected, representing five possible dosages of the counted 
SNP allele: 0 (nulliplex—N), 1 (simplex—S), 2 (duplex—D), 3 (tri-
plex—T), and 4 (quadruplex—Q). Similarly, a maximum of seven 
dosage classes (0–6) is expected in a hexaploid
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Here, we investigate the use of dosage probabilities 
instead of discrete dosages in the context of linkage mapping 
in autopolyploid F1 populations. We used simulation studies 
to compare the results of linkage estimation based on both 
discrete and probabilistic dosage data from SNP array and 
sequence reads. We also performed simulations to study the 
effect of read depth on the quality of genotype calling and 
subsequent linkage analysis. Furthermore, we validated our 
approach by re-analyzing an experimental tetraploid potato 
dataset, comparing our results with those from a previously 
published high-density integrated map that was based on 
discrete dosage scores obtained from the same array data 
(Bourke et al. 2016).

Materials and methods

Genotype calling

Genotype calling was performed on simulated SNP array 
and sequence read data and on actual potato SNP array data, 
as described below. Simulated and real SNP array data were 
processed with fitPoly (Voorrips, et al. 2011; Zych et al. 
2019), and simulated sequence read data were processed 
with updog (Gerard et al. 2018) to obtain discrete dosages 
and dosage probabilities. In both platforms, mixture mod-
els are fitted to the signal intensity ratios or sequence read 
counts. This results in a set of probabilities, summing to 1, 
of each of the (ploidy + 1) dosage classes of the alternative 
allele of a marker, per individual. From these dosage proba-
bilities, discrete dosage scores are obtained by assigning the 
dosage with the maximum probability, if that is above a user-
defined threshold (e.g., 0.95). A missing value is assigned 
if all probabilities are below the threshold. A marker is 
discarded when the proportion of individuals with missing 
dosages is above another user-defined threshold (0.4). As 
a consequence, potentially large numbers of markers may 
be removed. In our study we directly used the probabilities 
and omitted the filtering for the dosage probabilities and 
minimum fraction of scored individuals, thereby retaining 
all available information.

Data filtering

A number of pre-mapping steps are included in polymapR 
(Bourke et al. 2018a) which we have adopted here and gen-
eralized for probabilistic genotypes. These include the iden-
tification and removal of duplicate individuals, poorly scored 
individuals, or markers with unclear segregation types. Note 
that discrete dosage data can include missing values, while 
probabilistic dosages do not (even if individuals and markers 

with low-quality data are removed, the remaining dataset has 
no missing values).

Duplicate individuals

In the polymapR pipeline, duplicate individuals are cur-
rently detected by calculating the Pearson correlation coef-
ficients between all pairs of individuals over all marker 
scores. For discrete dosages this is straightforward; using 
probabilistic dosages, we define the weighted marker dos-
age Xij of the ith marker in the jth individual as:

where c is the ploidy. All pairs of individuals with a cor-
relation coefficient higher than 0.95 were assumed to be 
duplicates and merged, where merging consists of taking 
the average of the probabilities for each dosage class over 
the duplicate individuals.

Poorly scored individuals

Some individuals may be poorly scored overall, perhaps 
due to low DNA quality or deviating ploidy; these indi-
viduals should be identified and omitted from the analy-
sis. We identified problematic individuals as those where 
fewer than half of their markers had a probability greater 
than 0.6 for one of the dosage classes.

Marker segregation type

In an autopolyploid F1 cross progeny, the combination of 
the parental dosage scores defines the marker segregation 
type (Supplementary Table 1). For instance, the notation 
‘SN marker’ refers to a Simplex × Nulliplex marker with 
dosage 1 (Simplex, S) in the first parent and dosage 0 (Nul-
liplex, N) in the second parent and an expected 1:1 (nulli-
plex: simplex) segregation in the progeny. For each marker 
we tested whether the (probabilistic) segregation observed 
in the progeny matches the segregation type defined by the 
most probable dosages of the parents. More details about 
the determination of marker segregation types are included 
in Appendix 1.

Linkage estimation

Before estimation of recombination frequencies, marker 
dosages are converted to their simplest form in the poly-
mapR pipeline to simplify the linkage analysis (Bourke 
et al. 2016). This method was adapted to accommodate 
probabilistic dosages.

Xij =

c
∑

n=0

n ⋅ P
(

Xij = n
)
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The two-point linkage analyses rely on the method of 
maximum likelihood to estimate recombination frequency 
(r) assuming bivalent pairing. In Bourke et al. (2018a), the 
observed counts of individuals in each class O

(

nij
)

 and the 
expected frequency of each offspring class E

(

nij
)

 , where 
nij is the number of individuals with dosages i and j at 
the two loci, together yield the likelihood function (with 
n = ploidy/2):

With probabilistic genotypes, the full likelihood equation 
must be employed:

where pij,z is the probability of genotype (i, j) for individual z 
(Mollinari and Garcia 2019). In cases where each individual 
is assigned a discrete genotype (i.e., one dosage class’ prob-
ability is one and all other classes are zero), formula (2) 
simplifies to formula (1). In our study, the linkage estimation 
was done with MAPpoly using an implementation of Eq. (2). 
Later, the output was converted to be compatible with poly-
mapR for further constructing of the linkage groups.

Ordering

The ordering of the markers was done with MDSMap 
(Preedy and Hackett 2016). After the first ordering, the 
nearest neighbor fit (NNfit, the absolute difference between 
the observed and estimated distance of a marker to its 
nearest informative neighbor) was used to remove outli-
ers (NNfit > 5) and ordering was performed again for the 
remaining markers (Preedy and Hackett 2016) to minimize 
the effect of deviating markers.

Simulation of SNP array genotyping data

Simulated datasets

The simulation software PedigreeSim (Voorrips and 
Maliepaard 2012) was used to generate datasets of bipa-
rental F1 populations. We simulated 200 F1 individuals of a 
fully autotetraploid species with 1 chromosome of 100 cM 
and the centromere in the middle. SN, SS, SD, DN, and DD 
markers (Supplementary Table 1) were simulated at 1 cM 
spacings, resulting in 505 markers over the chromosome. 
One hundred such datasets were simulated. Based on the 
known (simulated) allele dosages, an in-house script (Sup-
plementary file 2) was used to simulate SNP array signal 
intensities for all F1 individuals and both parents with six 

(1)L(r) ∝

2n
∏

i,j=0

E
(

nij
)O(nij)

(2)L(r) ∝

n ind
∏

z=1

2n
∑

i,j=0

pij,zE
(

nij
)

different settings of an “overdispersion” parameter (rang-
ing from 0.01 to 0.06; Fig. 1). Overdispersion (Gerard et al. 
2018) was used to describe additional variability relative to 
the expected variation under a basic model. Details about the 
simulation parameters are described in Appendix 2. Dosage 
probabilities were then estimated by fitting mixture models 
using fitPoly (an extension of the fitTetra package Voorrips 
et al. 2011; Zych et al. 2019) available from CRAN).

Linkage analysis with simulated datasets

The simulated data was used for linkage estimation using 
two approaches: ‘Probabilistic’ (the probabilities of all 
five possible marker dosages as estimated by fitPoly) and 
‘Discrete’ (the discrete dosage with the highest probability, 
but the dosage replaced by a missing value if this highest 
probability was less than 0.95). For both approaches we fol-
lowed the same workflow; only the linkage estimation func-
tion was different. For the ‘Discrete’ and the ‘Probabilistic’ 
approaches, the likelihood functions (1) and (2) were used, 
respectively.

The fraction of markers for which fitPoly was able to fit a 
mixture model differed between different levels of overdis-
persion. To investigate the marker quality in our simulated 
datasets, we looked at the average maximum genotype prob-
abilities among all loci for all individuals. We compared the 
marker segregation type expected from the parental dosage 
scores and the segregation type best fitting the offspring data 
across the two sets of data; non-fitting markers were filtered 
out (as mentioned in ‘Marker Segregation Type’). An exam-
ple of the difference between ‘Probabilistic’ and ‘Discrete’ 
in the determination of the marker segregation is shown in 
Appendix 3. To examine the results of the marker segre-
gation determination, we evaluated the number of markers 
retained after filtering, and the fraction of the retained mark-
ers assigned an incorrect segregation type.

Before performing linkage analysis, we followed the data 
curation workflow described by Bourke et al. (2016). Under 
different levels of overdispersion, different numbers of mark-
ers were accepted for mapping. Because we applied a thresh-
old (0.1) for the maximum allowed fraction of missing data 
per marker, fewer markers were retained for ‘Discrete’ than 
for ‘Probabilistic’.

After the evaluation of the assignment of segregation 
type, we compared the accuracy of phasing and recombina-
tion frequency estimation between datasets. The fraction of 
incorrect pairwise marker phases was obtained by compar-
ing the estimated and true (=simulated) phasings. Marker 
ordering was performed as described using MDSMap. After-
ward, we examined how many markers were mapped by the 
two approaches and evaluated their estimated positions.
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Simulation of sequence reads genotyping data

Based on the same population settings that we used for the 
simulated SNP array data (biparental F1 population of 200 
individuals, fully autotetraploid species, one chromosome 
with 100 cM length, centromere in the middle, and all pos-
sible marker types at 1 cM spacings, totally 505 markers), 
dosages were simulated by PedigreeSim for 10 populations. 
Based on these simulated dosages, read counts were gener-
ated by updog. The read depth varied between data points 
from 50× to 200×, the sequencing error rate was fixed 
at 0.001 and the allelic bias at 0.7 for all markers (refer-
ence/alternative). Overdispersion ranged 0.01–0.06. Once 
sequence read counts were generated, updog was used for 
genotype calling. The probabilistic dosages obtained from 
updog were processed as the array-derived dosage prob-
abilities, using the pipeline described above. The simulated 
datasets were then processed through the pipelines of the 
‘Probabilistic’ and ‘Discrete’ approaches, and the results 
were compared.

Effect of read depth on the mean probability 
of correctly assigned dosages

Based on the same population settings as were used for the 
simulated sequence reads data, we simulated a wider range 
of fixed read depths, 10×, 20×, 40×, 60×, 80×, 100×, and 
120× coverage per individual to investigate the effect of read 
depth on dosage calling; overdispersion levels of 0, 0.06, 
and 0.13 were used. Coverages of 10× and 20×, lower than 
the minimum read depths (25×) suggested by the authors of 
updog (Gerard et al. 2018), were used to explore the behav-
ior in low-depth situations. Coverages of 40×, 60×, and 80× 
were close to reported depths in autotetraploid studies. Cov-
erages of 100× and above, considered high read depth, were 
used assuming that these would result in high-quality dosage 
calls by updog.

Effect of thresholds on discrete dosage calling

To understand whether any advantage accrues from the use 
of probabilistic dosages, we investigated the effects of differ-
ent thresholds on the number of markers retained, as well as 
the consequences for linkage analysis. Based on the results 
of the simulations to study the effect of read depth, we used 
probability thresholds of 0.85, 0.9, and 0.95 for assigning a 
dosage score, and thresholds of 0.05, 0.1, 0.15, and 0.2 for 
the fraction of missing dosage scores that resulted in reject-
ing a marker.

Re‑analysis of an experimental potato dataset

A potato SNP array dataset that had previously been used 
for autotetraploid linkage map development (Bourke et al. 
2016) was re-analyzed to evaluate the use of dosage prob-
abilities in experimental data. This dataset consists of an 
F1 population of 237 individuals from a cross between 
two tetraploid cultivars (Altus × Colomba), with 17,987 
SNPs genotyped using the SolSTW Infinium SNP array 
(Vos et al. 2015). The output of fitPoly was analyzed using 
the ‘Probabilistic’ approach as described in the previous 
sections. The results of this approach were compared with 
published results which used the ‘Discrete’ approach as 
described in the previous section.

In this study, we constructed both an integrated map 
and maps of all homologs separately. The integrated map 
combines all markers per linkage group from all homolo-
gous chromosomes across both parents. The homolog 
maps were based on the recombination frequencies among 
only the markers tagging each separate homolog. Link-
age mapping was performed for dosage probabilities and 
included the major steps: linkage estimation, clustering, 
ordering, and checking of the map quality. A detailed 
description of the steps in map construction is given in 
Bourke et  al. (2016) followed by marker ordering (as 
described in ‘Ordering’). Marker pairs with a Pearson 
correlation coefficient higher than 0.99 were treated as 
identical. For each set of identical markers, only the one 
with the largest number of significant linkages to other 
markers in the same linkage group was retained as the 
representative marker. After map construction, the identi-
cal markers that were previously set aside were assigned 
to the same position and homolog (s) as the representative 
mapped marker of their set.

After construction of the ‘Probabilistic’ map we com-
pared it with the published map. Both linkage maps were 
aligned with the potato reference genome v4.03 (Potato 
Genome Sequencing Consortium 2011). The integrated 
‘Probabilistic’ map was also aligned with the homolog 
maps to check the consistency of the map integration. To 
quantify the consistency between the ‘Probabilistic’ map 
and the published map, we used the positions of the mark-
ers appearing on both maps to fit a linear regression, where 
we calculated the adjusted R2 and slope for each homolog. 
To check whether additional markers in the ‘Probabilistic’ 
map that did not appear in the published map have credible 
positions, we BLASTed the sequences of all additional 
markers to the potato reference genome v4.03 to check 
their putative physical location. We also calculated the 
average maximum probability (over individuals) of these 
additional markers and compared these values with those 
of the markers in the published linkage map.
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Results

Simulation of SNP array genotyping data

Effect of overdispersion on dosage probabilities

Dosage classes can be distinguished better if the clusters of 
allele signal ratios of individuals corresponding to different 
dosages are well separated. With increasing overdispersion, 
the probability of the most probable dosage classes (aver-
aged over all individuals) decreases.

Accuracy of marker segregation determination

The expected segregation in the F1 population is determined 
from the most probable dosages of the parents. At higher 
levels of overdispersion more parental dosages became 
missing, resulting in fewer markers being retained for both 
genotyping approaches. When overdispersion was relatively 
low (≤ 0.03), there were only minimal differences between 
these two methods. When overdispersion was higher than 
0.03, no markers were kept in the ‘Discrete’ approach due 
to a high rate of missing values (threshold for the fraction 
missing values: 0.05). At overdispersion of 0.04, 48% of 
the markers were retained in the ‘Probabilistic’ approach; 
for the other 52% at least one of the parental dosages was 
missing. Ten percent of the retained markers was assigned 
an incorrect segregation type. This mainly involved: (a) DN 
markers incorrectly identified as TS markers (45%); (b) DD 
markers incorrectly identified as SS markers and vice versa 
(41%); (c) SD markers identified as TN markers (10%). In 

all these cases the true segregation (a: 1:4:1; b: 1:8:18:8:1; c: 
1:4:4:1) was similar to the incorrectly assigned segregation 
(a and b: 1:2:1; c: 1:1).

Accuracy of recombination and phase estimation

After the segregation check, the number of markers retained 
with ‘Probabilistic’ was larger than with ‘Discrete’ and the 
difference increased with increasing overdispersion. The 
same was true for the number of marker pairs available for 
recombination frequency estimation: at an overdispersion of 
0.04 and higher, no marker pairs were left for ‘Discrete’. At 
lower levels of overdispersion (< 0.03), no differences were 
observed in accuracy of the recombination frequency and 
phasing estimate between the two methods At an overdisper-
sion of 0.03, an average of 39 individuals were retained for 
linkage estimation in the ‘Discrete’ due to the large amount 
of missing values per individual; in the ‘Probabilistic’ case 
all 200 individuals were retained. Therefore, the recom-
bination frequency estimation of ‘Probabilistic’ approach 
outperformed the ‘Discrete’ approach (Fig. 2). The phase 
estimation of ‘Discrete’ was slightly better than for ‘Prob-
abilistic’ (up to 4% less incorrectly phased marker pairs) 
when overdispersion was below 0.04. This was due to the 
fact that for some of the marker pairs that were incorrectly 
phased with the ‘Probabilistic’ method, one or both markers 
were rejected in ‘Discrete’. At higher levels of overdisper-
sion (> 0.03), the comparison was not possible as there were 
no marker pairs left for ‘Discrete’ (an example of SN-SN 
pairs is given in Supplementary Figures 1 and 2).

Fig. 2   Estimated vs. true (simulated) recombination frequencies (r) at an overdispersion of 0.03 for pairs of SN-segregating markers in coupling 
phase. The red line shows y =  x 
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Accuracy of marker positions

After establishing the marker order, estimated marker posi-
tions were compared with the simulated positions. For lower 
values of overdispersion (< 0.03), 354 markers or more (out 
of 505) were mapped with both methods and their estimated 
and simulated positions agreed well (in regression of the 
estimated vs. simulated positions the slope was 1.05, the 
adjusted R2: 0.95). At an overdispersion of 0.03, on aver-
age 156 and 304 markers mapped with the ‘Discrete’ and 
‘Probabilistic’ approaches, respectively. For ‘Discrete’, the 
estimated positions were inaccurate (slope: 1.6; adjusted R2: 
0.32), while ‘Probabilistic’ still gave good estimates (slope: 
1.09; adjusted R2: 0.94). For overdispersion above 0.04, no 
marker pairs were retained for ‘Discrete’ and therefore the 
marker order and positions could not be studied. For ‘Proba-
bilistic’, at an overdispersion of 0.04, on average 197 mark-
ers were mapped (slope: 0.99; adjusted R2 0.71). Markers 
with an incorrect assigned segregation type were always 
removed at the mapping stage because of not fitting well 
with neighboring markers. The effect of incorrect phasing 
due to an incorrect segregation type therefore was minimal. 
At overdispersion > 0.04, few markers (less than 50) were 
retained also with ‘Probabilistic’ and their mapped positions 
did not show a clear linear relationship with the true posi-
tions in our simulation.

Simulation of sequence reads genotyping data

The analysis of simulated sequence reads data showed 
similar results to the SNP array simulations: more mark-
ers were retained for analysis using the ‘Probabilistic’ 
approach. At overdispersion of 0.01, the segregation type 
of all markers was correctly assigned for both approaches. 
In linkage estimation, no markers were incorrectly phased. 
Both the ‘Probabilistic’ and the ‘Discrete’ approach gave 
high accuracy of recombination frequency under different 
levels of overdispersion. We fitted a regression model of 
estimated r on simulated r. For ‘Probabilistic’ and ‘Dis-
crete’ approach, the slope and adjusted R2 were 0.95 vs. 
0.96 and 0.78 vs. 0.78, respectively. In the map ordering, 
the ‘Probabilistic’ approach gave slightly better results than 
the ‘Discrete’ approach from the regression of estimated vs. 
simulated position (slope: 1.11 vs. 1.16; adjusted R2: 0.99 
vs. 0.99). With overdispersion above 0.01, no markers were 
kept for analysis in ‘Discrete’ approach. In the ‘Probabilis-
tic’ approach, at overdispersion between 0.02 and 0.06, at 
least 400 of the 505 markers were retained. When fitting the 
regression model of estimated r and simulated r, the slope 
was between 1.04 and 1.1 and adjusted R2 was 0.99 over all 
simulated overdispersion levels. (The results of marker seg-
regation, linkage estimation, and map ordering evaluation 
are given in Supplementary Figures 3, 4, 5.)

Fig. 3   Comparison of correctly and incorrectly assigned genotypes 
at various levels of overdispersion (0, 0.06, and 0.13), and differ-
ent read depths (rD). a The fraction of correctly genotyped markers 
(when discrete dosages are used). b–d The probability of the most 

probable dosage (max probability): the mean is indicated by dots; the 
ends of the bars represent the 25% and 75% quantiles (the bars are not 
observable for the upper left figure because the ranges are very small)
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Effect of read depth on the mean probability 
of correctly assigned dosages

The fraction of correctly assigned dosages under the ‘Dis-
crete’ approach and the probability scores with different 
overdispersion and read depth values are shown in Fig. 3.

Fraction correctly assigned dosages: Lower read depths 
led to more incorrect genotype calling. Without overdis-
persion, 83%–91% of the assigned dosages were correct at 
low read depths (10×, 20×), and 96%–99.2% at higher read 
depths (40×, 60×, 80×). At very high read depths (100×, 
120×), more than 99.6% of the assigned dosages were cor-
rect. With overdispersion 0.06 and 0.13, 82.1% and 75.6% of 
the assigned dosages were correct, respectively, when read 
depth was above 40× (Fig. 3A).

Probability scores: With increasing overdispersion, the 
maximum probabilities of correctly and incorrectly assigned 
dosages become closer (no threshold used for filtering). 
Without overdispersion, at low read depths (10×, 20×) the 
mean maximum probability of correctly assigned dosages 
was 0.89, while that of incorrectly assigned dosages was 
0.7 (Fig. 3B). This suggests that a threshold of 0.8 could 
help in limiting the number of genotyping errors under these 
conditions. When read depth was higher than 40×, the mean 
maximum probability for incorrect dosages was 0.74, while 
for correct dosages this was 0.98. For higher read depths 
therefore, a threshold of 0.85 or higher could be used. At 
overdispersion of 0.06, the difference of the mean maxi-
mum probability between incorrectly (0.77) and correctly 
(0.9) assigned dosages was smaller at read depth >=40× 
(Fig. 3C), and even more so at an overdispersion of 0.13 
(0.75 and 0.88, respectively; Fig. 3D). This shows that is not 
straightforward to set a threshold for the maximum probabil-
ity, and the result will depend not only on the (known) read 
depth but also on the (unknown) level of overdispersion.

Effect of thresholds on discrete dosage calling

In the ‘Discrete’ case, different thresholds for the maximum 
dosage probability and for the missing value rate in the 
subsequent marker filtering are expected to lead to differ-
ent numbers of markers retained for mapping. The results 
from the simulation study confirmed this. An example of 
how many markers are retained in the ‘Discrete’ case under 
different threshold values when overdispersion is zero is 
shown in Supplementary Figure 6. With a read depth of 40× 
(representative for a number of previous experimental stud-
ies, listed above) 62.5% of the markers were retained with 
a minimum probability threshold of 85% and a maximum 
missing value rate of 0.15. In contrast, in the ‘Probabilistic’ 
case no markers are filtered out, resulting in almost 40% 
more markers being retained for mapping.

Re‑analysis of the experimental potato dataset

Data filtering

We constructed a potato linkage map using the ‘Probabil-
istic’ approach, starting with results from the same fitTetra 
analysis of array data as Bourke et al. (2016). After fitting 
the F1 segregation, with dosage probabilities more markers 
were retained than in the published map. All markers availa-
ble for mapping in both cases had the same estimates for the 
segregation type. After removing monomorphic (non-seg-
regating) markers and markers with more than 10% missing 
values, 6912 markers (38.4%) were used for linkage analysis 
in the case of the published map based on discrete dosages 
(Bourke et al. 2016). Because no markers were rejected due 
to missing values for the ‘Probabilistic’ approach, all 7487 
segregating markers were available for mapping (Table 1).

Map construction

Based on the dosage probabilities approach outlined in 
the M&M section, we constructed both an integrated map 
and maps of all individual homologs. The integrated map 
(‘Probabilistic’ map) was compared with the published inte-
grated map (Bourke et al. 2016) that was based on the same 
array data. The ‘Probabilistic’ map and published map both 
cover all 12 potato chromosomes. The published map has 
a total map length of 1061 cM and includes 6902 markers. 
The ‘Probabilistic’ map is 1082 cM long and includes 7244 
markers. The two maps have 6682 markers in common.

The published map contains 228 markers over different 
chromosomes that are not on the ‘Probabilistic’ map. Of 
these, 23 were filtered out in the ‘Probabilistic’ approach 
because the segregation type did not match between the 

Table 1   Marker filtering steps in the published linkage study and in 
the ‘Probabilistic’ approach

*For the marker segregation type determination, Bourke et al. (2016) 
used discrete dosages, while ‘Probabilistic’ uses dosage probabilities 
as returned by fitTetra.

Steps in SNP filtering Number of markers

Bourke et al. 
(2016)

‘Probabilistic’

Total SNPs on array 17,987 17,987

Probabilities and dosages 
assigned by fitTetra

15,266 84.9% 15,266 84.9%

F1 pattern acceptable* 13,774 76.6% 14,003 77.8%
Monomorphic 6558 36.5% 6516 36.2%
Polymorphic 7216 40.1% 7487 41.6%
Polymorphic and ≤ 10% missing 6912 38.4% –
Available for mapping 6912 7487
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assignment by parental dosages and the assignment by 
the observed segregation in the F1 progeny. A total of 140 
markers were filtered out due to the weak linkage (LOD < 3) 
with SN markers in the marker assignment step. The other 
75 markers were filtered out in the marker ordering step, 
because they did not fit well with neighboring markers (near-
est neighbor fit (NNfit) > 5 cM in MDSMap).

On the other hand, the ‘Probabilistic’ map contains 562 
markers that are not on the published map (locations and 
segregation types of these additional markers are provided in 
Supplementary Figure 7). The average maximum genotype 
probability over all markers on the published potato map was 
0.995, compared to an average of 0.963 for these additional 
562 markers. Physical map positions of 559 out of the 562 
additional markers were available and corresponded well 
with their genetic map positions (Fig. 4).

Map quality

To check the concordance of the ‘Probabilistic’ map with 
the reference genome, the maps were aligned per linkage 
group (Fig. 4). High consistency between ‘Probabilistic’ 
map and the published map was observed (Fig. 5). The 
maps of the individual homologs constructed from the dos-
age probabilities were also aligned to the integrated ‘Proba-
bilistic’ map to check the quality of the integration across 
homologs. Here also a high consistency between the inte-
grated map and the individual homolog maps was observed 
(Supplementary Figure 8).

Discussion

The use of dosage probabilities

In genotyping of polyploids, genotypes may either be 
assigned as discrete dosages, or as probabilities of a range of 
possible dosages. The latter type is arguably more informa-
tive—having no missing values as well as providing infor-
mation on the level of uncertainty in a particular estimated 
genotype call. When two or more dosage classes have ele-
vated probabilities, and therefore all are below a threshold 
of, say 0.90 or 0.95, it is not possible to assign a reliable 
discrete dosage score. The missing values introduced by 
this filtering lead to rejection of markers in a subsequent 
filtering based on missing value rate. Setting thresholds in 
filtering ensures the quality of markers retained for linkage 
analysis. However, strict thresholds also lead to the loss of 
usable markers. Lowering this threshold on the maximum 
probabilities has the effect of retaining more markers, but it 
also may also lead to more erroneous discrete dosage scores. 
However, the probabilities themselves still provide infor-
mation about the possible dosages and this can be used in 

linkage analysis as demonstrated in this study. Probabilis-
tic marker dosages enable these genotype uncertainties to 
be taken into consideration and carried through a linkage 
analysis, allowing more marker information to be used for 
downstream applications, such as genetic mapping and QTL 
analysis. In the high-quality potato dataset used here, using 
the dosage probabilities allowed for 577 (3%) more markers 
to be kept for linkage analysis.

Most of the steps in the probabilistic approach (‘Proba-
bilistic’), are similar to the approaches using discrete dos-
ages, including the determination of segregation type, which 
is now based on sums of probabilities instead of discrete 
counts per dosage class. In both cases markers showing a 
mismatch between the observed segregation in the F1 and 
that expected from the parental genotypes are discarded. In 
simulations with overdispersion, the use of dosage prob-
abilities resulted in a slightly larger fraction of markers with 
an incorrect assigned segregation type. For the ‘Discrete’ 
approach, these markers were mostly rejected due to an 
excess of missing values. For the ‘Probabilistic’ approach, 
markers with an incorrect segregation type mostly result in 
incorrect phasing estimates and subsequently still drop out in 
the mapping process and therefore do not affect the quality 
of the final map. In the experimental potato dataset, for all 
but 23 markers the estimated segregation types were identi-
cal between two approaches.

In our simulation study with both SNP array and sequence 
reads data, more markers were retained for mapping with the 
‘Probabilistic’ approach than with the ‘Discrete’ approach. 
These additional markers fitted well in the linkage maps, 
and their estimated positions corresponded well with the 
simulated positions. In the experimental potato dataset, an 
additional 562 markers were mapped. Of these, 559 aligned 
well with the potato reference genome (the putative physi-
cal chromosome and position); the remaining three had no 
known physical position. The map length of the ‘Proba-
bilistic’ map is slightly higher (1082 cM, vs. 1061 cM for 
the published map); however, the two map lengths are not 
directly comparable because they use a different marker 
ordering algorithm: here we used MDSMap (Preedy and 
Hackett 2016) whereas the published map order was calcu-
lated using JoinMap® (Van Ooijen 2006).

We show that the use of probabilistic dosage data pro-
duces results that are at least as good as discrete dosages 
with a high-quality data set. Also, probabilistic data allows 
the use of markers of lower quality (higher overdispersion) 
where the signal ratios are concerned. However, our simula-
tion study showed that in a scenario where all markers have 
high levels of overdispersion, very few markers are retained 
in the map even when using the ‘Probabilistic’ approach, 
so the issue of letting pass low-quality markers is moot. In 
our simulations of SNP array data, at intermediate overdis-
persion values (0.03 to 0.04), the ‘Probabilistic’ approach 
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retained more markers that have the potential to be mapped, 
while in the ‘Discrete’ approach none of these markers were 
retained. With the simulated sequence reads data, the results 
are similar to the simulated SNP array data: the ‘Probabil-
istic’ approach retained many more markers for mapping at 
elevated levels of overdispersion. After the initial mapping, 
ill-fitting markers can be removed resulting in high-quality 
curated maps.

The markers on the potato SNP array were selected to be 
of high quality, and therefore, the advantage of using dosage 
probabilities in this dataset was marginal. We expect that for 
datasets with a moderate level of overdispersion, the advan-
tages of using probabilistic genotypes will be more evident. 
Especially in datasets where the level of uncertainty varies 
between markers, the approach of using discrete dosages will 
only map the high-quality markers, whereas the probabilistic 
approach will retain more markers for mapping.

Application of probabilities for sequencing data

In crop breeding, linkage maps are used to study recom-
bination events along the chromosomes and are in general 
a pre-requisite for QTL mapping. Although the develop-
ment of next-generation sequencing allows for physical 
map assembly, in practice, genetic maps are still important 
for such studies because, contrary to physical maps, they 
reflect recombination over the chromosomes, whereas physi-
cal sequences reflect base pair distances; linkage maps can 
therefore more clearly reveal the expected extent of linkage 
drag around target loci in breeding (Bourke et al. 2018b). 
Recently published linkage maps of polyploids have primar-
ily been based on discrete genotyping data from SNP arrays. 
The issue of correctly distinguishing heterozygous dosage 
classes is potentially more challenging when using read 
counts of sequencing data instead. Nevertheless, sequenc-
ing-based approaches are very attractive for genetic studies 
of polyploids because of their greater flexibility and lower 
costs (Spindel et al. 2013) although this would depend on 
the technology and the sequencing depth.

For polyploids, the large data volume, the frequent occur-
rence of sequencing and alignment errors, the burden of 
repetitive and non-informative segments of the genome in 
sequencing data (Elshire et al. 2011), and the bioinformatics 
analyses required make the use of sequencing for genotyping 
purposes more challenging than the analysis of SNP array 
data. Furthermore, due to the variation in sequencing depth 

among markers and among individuals, accurate genotyp-
ing in polyploids based on read counts is complex (Bilton 
et al. 2018; Uitdewilligen et al. 2013). Two recently pub-
lished software packages, updog (Gerard et al. 2018) and 
polyRAD (Clark et al. 2019) perform genotype calling in 
terms of discrete dosages and probabilistic dosages based on 
sequencing data. In both software packages a large amount 
of missing values for discrete dosages was observed at rela-
tively low read depth (Clark et al. 2019; Gerard et al. 2018). 
With filtering on missing values, markers or individuals will 
be filtered out. Relaxing the threshold to save more markers 
is possible but it also introduces errors. Therefore, given 
the increasing interest in polyploid genetics and mapping 
using sequencing-based genotypes, our method will likely 
become an important addition to the toolbox of researchers 
investigating the genetics of polyploid species.

Conclusion

This study explores a method for using dosage probabilities 
rather than discrete dosages for linkage mapping in polyploid 
species, implemented in an updated version of MAPpoly (v. 
0.2.1.004) and polymapR (v.1.1.0). For high-quality dosage 
data from SNP arrays, we found that dosage probabilities 
and discrete dosages perform similarly well. However, the 
real power and added benefit of probabilistic genotypes are 
likely to be realized in the use of less-than-optimal SNP 
arrays and especially in sequence-based genotyping.

Appendix 1: Determination of the marker 
segregation type

To determine the segregation type for each marker, we look 
at the offspring segregation type and the parental dosages. 
Probabilistic dosages were used instead of discrete dosages. 
To obtain the segregation in the progeny, at each locus, we 
sum the probabilities of each dosage class over the popula-
tion, rather than summing the individuals per dosage class (as 
we would do with discrete dosages). As the tails of the prob-
ability distributions stretch over the entire dosage ratio or read 
counts ratio range, also in unexpected dosage classes small 
probabilities accumulate. A normalization step is performed 
to minimize the effect of these small estimated probabilities. 
In the normalization step, we treat the sum of all probability 
scores per dosage class as 0 if the sum is less than a threshold: 
0.05 times the number of individuals divided by (ploidy + 1), 
the number of dosage classes. For example, with 200 tetraploid 
individuals, the threshold for the probability sum would be 
(0.05*200)/(4 + 1) = 2. When the summed probabilities in a 
dosage class fall below this threshold, all probabilities in that 
class are set to 0. A subsequent re-normalization step ensures 

Fig. 4   The positions of markers on the ‘Probabilistic’ map plotted 
against their positions on the reference genome: gray dots represent 
the markers on the published map, and red dots represent the 559 
additional markers mapped only on the ‘Probabilistic’ map. The seg-
regation types and genome positions of the additional markers are 
provided in Supplementary Fig. 6

◂
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that the normalized probabilities per individual add up to 1 
again.

For each segregation type, we consider both the expected 
and non-expected dosage classes. In a tetraploid species, the 
expected offspring dosages of an SN marker are 0 and 1, while 
the unexpected dosage scores are 2, 3 and 4 (double reduc-
tion is ignored; previous results of Bourke et al. (2015) show 
that this hardly affects the estimated maps). For the expected 
dosage classes, we apply a chi-squared test to the sums of 
the probabilities per class over the population (similar to the 
test for discrete dosages, although with non-integer values). 
For non-segregating markers (e.g., NN markers), we assign a 
p-value of 1. For the unexpected dosage classes, a binomial 
test is performed to calculate the probability of observing the 
unexpected dosages, with an expected probability for the error 
scores of 0.05.

To summarize: we performed a chi-squared test for segrega-
tion over the expected classes and a binomial test for the unex-
pected classes. These values are combined with the parental 
dosage scores to estimate the marker segregation type and a 
quality score, as implemented in function checkF1 of package 
polymapR. Markers with a quality score (qmult) < 0.05 were 
rejected. Among rejected markers, the possibility of marker 
genotype misclassification was also checked, by shifting 
all dosage classes by either +1 or −1 and re-calculating the 
aforementioned quality parameters. If a higher quality score 
resulted, we retained the shifted dosage classes for this marker.

Appendix 2: Simulation parameters

Simulation of dosages using PedigreeSim

Number of chromosomes 1
Chromosome length 100 cM
Centromere position 50 cM
Ploidy level 4
Population F1 (2 parents, 200 offspring)
Inheritance Polysomic
Marker type SN, SS, SD, DN, and DD mark-

ers were simulated at 1 cM 
spacings

Simulation of SNP array intensities

For each marker and each individual, a SNP array pro-
duces two signals, X and Y, one for each of the two SNP 
alleles. These signal intensities were modeled (using the 

R script in Supplementary file 2) as the summation of two 
sources of fluorescence intensity: genetic and background.

The genetic part of the signal intensities was obtained in 
several steps. For each marker, a mean total signal inten-
sity was obtained from a normal distribution with mean 
1000 and standard deviation (sd) 0.05, and an allelic bias 
in the signal responses was obtained from a Beta distribu-
tion: Beta (2, 2). For each individual the total signal inten-
sity for that marker was obtained from a normal distribu-
tion with the mean as obtained above and a sd obtained 
from Beta (20, 100). The obtained total signal intensity 
was then divided over the X and Y signals according to 
the allele ratio and allelic bias. Finally, overdispersion 
was added to signals X and Y from a Normal distribution 
with mean 0 and sd modeled as a proportion of the mean 
intensity of the marker, ranging from 1 to 6% of the mean. 
(These values were found empirically to cover the range 
of dispersions commonly encountered.)

The background part of the signal intensities was con-
stant within a marker. The total background intensity for 
a marker was obtained from Beta (2,2); this total back-
ground was divided over the X and Y signals according to 
an imbalance factor: Yback/(Xback + Yback) ~ Beta(2,2).

Simulation of sequence reads using updog

Read depth Range from 50 to 200
Sequencing error 0.001
Allelic bias (alternative/reference) 0.7
Overdispersion Range from 0.01 to 

0.06, in steps of 
0.01

Appendix 3: Segregation estimation 
in simulation studies

In fitTetra, dosage probabilities are assigned to each dos-
age class. In a tetraploid, the possible dosage classes range 
from 0 to 4 (with probabilities P0–P4). For a SN marker 
in a tetraploid crop, a few lines of the output of fitTetra 
are given below. These lines show the results for a single 
marker, SNP001, in 4 F1 individuals, F1_1, F1_2, F1_3, 
and F1_4. Maxgeno is the dosage with the highest prob-
ability (MaxP).

For the ‘Probabilistic’ approach, the low probabilities 
shown in gray are discarded and the remaining dosages 
renormalized to add up to 1 as described in ‘Marker seg-
regation type’.

Fig. 5   Comparison of the published map of Bourke et al. (2016) with 
the ‘Probabilistic’ map, per chromosome. The little stripes along the 
x- and  y-axis indicate marker positions

◂
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Marker Sample P0 P1 P2 P3 P4 Maxgeno MaxP

SNP001 F1_1 0.12 0.88 3E-12 1E-03 5E-04 1 0.88
SNP001 F1_2 0.34 0.63 0.03 4E-15 1E-16 1 0.63
SNP001 F1_3 0.97 0.03 2E-05 1E-03 5E-12 0 0.97
SNP001 F1_4 0.01 0.48 0.51 1E-02 1E-08 2 0.51

Under the two approaches used in the simulation study 
the information from this table, for this marker and these 
four individuals as used in downstream linkage analysis 
would be:

Sample ‘Discrete’ babilistic’

F1_1 m.v.1 0: 0.12
1: 0.88

F1_2 m.v 0: 0.34
1: 0.63
2: 0.03

F1_3 Dosage 0 0: 0.97
1: 0.03

F1_4 m.v 0: 0.01
1: 0.48
2: 0.51

Segregation summary Dosage 0:1:2
segr2 1:0:0

Dosage 0:1:2
segr 1.44:2.02:0.54

1  m.v.: missing value. 2 segr: the (probability) sums per dosage.

In the ‘Discrete’ approach, the dosages of F1_1, F1_2, 
and F1_4 become missing because the maximum probability 
of these individuals at this marker is below the threshold 
(0.95). The segregation pattern estimated from the discrete 
or probabilistic data over these four individuals is shown in 
the bottom row (in the actual simulations the F1 populations 
were composed of 200 individuals). In the ‘Probabilistic’ 
approach, all the probability information is used. The seg-
regation pattern is obtained by adding up the probabilities of 
each dosage class over the whole population. For each locus, 
the sum of probabilities over all dosage classes is always 
equal to the number of individuals.
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