
Vol.:(0123456789)1 3

Theoretical and Applied Genetics (2021) 134:2063–2077 
https://doi.org/10.1007/s00122-021-03805-2

ORIGINAL ARTICLE

Population genomics of Mediterranean oat (A. sativa) reveals high 
genetic diversity and three loci for heading date

F. J. Canales1  · G. Montilla‑Bascón1  · W. A. Bekele2  · C. J. Howarth3  · T. Langdon3  · N. Rispail1  · 
N. A. Tinker2  · E. Prats1 

Received: 19 November 2020 / Accepted: 24 February 2021 / Published online: 26 March 2021 
© The Author(s) 2021

Key message Genomic analysis of Mediterranean oats reveals high genetic diversity and three loci for adaptation to 
this environment. This information together with phenotyping and passport data, gathered in an interactive map, 
will be a vital resource for oat genetic improvement.
Abstract During the twentieth century, oat landraces have increasingly been replaced by modern cultivars, resulting in loss 
of genetic diversity. However, landraces have considerable potential to improve disease and abiotic stress tolerance and may 
outperform cultivars under low input systems. In this work, we assembled a panel of 669 oat landraces from Mediterranean 
rim and 40 cultivated oat varieties and performed the first large-scale population genetic analysis of both red and white oat 
types of Mediterranean origin. We created a public database associated with an interactive map to visualize information 
for each accession. The oat collection was genotyped with 17,288 single-nucleotide polymorphism (SNP) loci to evaluate 
population structure and linkage disequilibrium (LD); to perform a genome-wide association study (GWAs) for heading 
date, a key character closely correlated with performance in this drought-prone area. Population genetic analysis using both 
structure and PCA distinguished two main groups composed of the red and white oats, respectively. The white oat group 
was further divided into two subgroups. LD decay was slower within white lines in linkage groups Mrg01, 02, 04, 12, 13, 
15, 23, 33, whereas it was slower within red lines in Mrg03, 05, 06, 11, 21, 24, and 28. Association analysis showed several 
significant markers associated with heading date on linkage group Mrg13 in white oats and on Mrg01 and Mrg08 in red oats.

Introduction

Oat is an important crop of Mediterranean origin that is used 
worldwide as food, feed grain, green fodder and as a winter 
cover crop in no-till rotations (Stevens et al. 2004). Avena 
sativa L. subsp. sativa and subsp. byzantina sometimes 
known as the white and red oat, respectively, are the main 
cultivated oats. They are grown most widely in temperate 
areas, with an increasing interest to expand the crop to sub-
tropical areas and Mediterranean countries (Stevens et al. 

2004). This is mainly due to its good adaptation to a wide 
range of soil types and because on marginal soils oats can 
perform better than other small-grain cereals (Stevens et al. 
2004). Currently, the cultivated area of oats in the Mediterra-
nean rim is equal to that of the northern European countries 
(Rispail et al. 2018). However, in Mediterranean areas, oat 
is sensitive to hot and dry weather due, in part, to a high 
transpiration rate (Ehlers 1989). Indeed, drought is the main 
limiting factor for oat yield, exceeding losses from all other 
causes under some conditions (Stevens et al. 2004). In addi-
tion, oat fungal diseases such as powdery mildew, caused by 
Blumeria graminis f.sp. avenae, and crown rust, caused by 
Puccinia coronata, are major constrains for this crop. The 
use of resistant varieties is one of the best control alterna-
tives (Stevens et al. 2004). However, most of the current 
oat cultivars used for winter cropping in the Mediterranean 
rim are spring cultivars bred in northern countries that are 
not well-adapted to Mediterranean conditions (Prats et al. 
2014). This might explain the poor oat adaptation observed 
in this area.
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In contrast to the poor adaptation observed in many oat 
cultivars growing under Mediterranean conditions, lan-
draces (for which this area is particularly rich) are region-
ally adapted to this environment. They provide a tangible 
gene pool for future genetic breeding programs and food 
security (Chalak 2015). Transfer of beneficial traits from 
landraces is relatively straightforward as there is no bar-
rier for crossing. However, during the last century, the 
replacement of landraces by modern cultivars has led to a 
significant genetic erosion in many cereal crops (Newton 
et al. 2010). Studies on maize (Warburton et al. 2008) and 
wheat (Reif et al. 2005; Roussel et al. 2004) have iden-
tified a significant reduction in diversity. These studies 
also suggest that landraces may be a good source of new 
allelic diversity for breeding programs. Germplasm banks 
are facilities designed to provide long-term conservation 
of genetic resources including landraces. However, more 
exhaustive characterization of these collections, ranging 
from morphological or agronomical features to genome 
information, is necessary to assure maximum utilization 
of this germplasm. Moreover, association of genetic mark-
ers with regions of the genome controlling different traits 
would enable the development of marker-assisted selec-
tion for efficient and precise transfer of useful alleles from 
landraces to modern cultivars.

Genetic diversity, assessed by various tools including 
DNA markers, is important information both for genetic 
conservation and for the efficient breeding of new com-
mercial varieties. DNA markers such as amplified frag-
ment length polymorphisms (AFLPs), random amplified 
polymorphic DNA (RAPDs) or simple sequence repeats 
(SSRs or microsatellites) have been used to assess oat 
genetic diversity and to examine allelic diversity changes 
over 100 years of oat breeding in both Nordic countries 
and Canada (e.g., Fu et  al. 2007). Recently however, 
genotyping-by-sequencing (GBS) has emerged as a more 
robust genomic approach to explore plant genetic diver-
sity of species with complex genomes that lack extensive 
genomic resources such as oat (Elshire et al. 2011). GBS 
has been used to identify genomic regions associated with 
particular traits by bi-parental mapping (e.g., Kebede et al. 
2020) or genome-wide association analysis (GWAS, e.g., 
Esvelt Klos et al. 2017).

In this work, we characterized 709 oat accessions, 
mainly consisting of Mediterranean red and white oat lan-
draces, from 24 different countries. We created an interactive 
map to easily access their main morphological and passport 
information and we dissected their genetic relationships 
using a detailed genetic diversity study through GBS. Fur-
thermore, we carried out a GWAS of heading date, a key 
character determining performance in this drought-prone 
area, that validates the strength of this collection and the 
genetic information developed.

Materials and methods

Plant material

A collection of 709 accessions of white and red Avena sativa 
L. was assembled, containing a majority of landraces from 
the Mediterranean area. Seeds were obtained from “Cen-
tro de Recursos Fitogenéticos” (INIA, Madrid, Spain) and 
United States Department of Agriculture (USDA, Washing-
ton, USA). Cultivars included within the collection were 
provided by various institutions as reported by Sánchez-
Martín et al. (2014). They were included for comparison 
since they are widely cultivated in the Mediterranean area. 
All accessions were purified through single seed descent 
over three generations prior to genotypic and phenotypic 
evaluation.

Phenotypic data

The Mediterranean oat collection was evaluated in three dif-
ferent environments in Spain for heading date. Trials were 
performed in two contrasting locations, Santaella (Spain), 
with 238 m altitude, and light clay eutric gleysol during 
growing season 2017–2018 and Córdoba (Spain), with 90 m 
altitude and light clay calcic cambisol during growing sea-
sons 2016–2017 and 2017–2018. At each location-year, an 
alpha lattice square design with three replicates was used 
and the cultivar ‘Patones’ was used as check. The randomi-
zation of genotypes was done with SPSS v. 25 software 
(IBM Corp. Armonk, NY, USA). Each replicate consisted 
of 27 × 27 1-m-long rows containing the 709 genotypes plus 
additional checks included in each row and column until 
completing the lattice square. Rows were separated from 
each other by 30 cm, at a sowing density of 200 seeds  m−2. 
Replications were bordered by cv ‘Flega’. Sowings took 
place in December, according to local practices. No irriga-
tion was performed in the trials. Hand weeding was car-
ried out when required, and no herbicides or fertilizers were 
applied. Phenotypic data are available in Online Resource 1.

Interactive map

The interactive map with the 709 oat accessions was created 
with Google Maps (Google-LTD 2021). Each accession was 
located according to its site of origin taken from the passport 
data provided by the germplasm bank database. For each 
located accession, additional data were stored including (1) 
general information from its passport data, (2) agronomic 
information collected from field experiments joined by pic-
tures of spikelets and seeds. In addition, different map layers 
were added where each variety can be visualized by spot 
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color depending on subspecies (byzantina, sativa or admix-
ture), heading date (early, mid or late heading), improve-
ment status (cultivar, landrace or breeding material) and 
geographic elevation (low or high altitude).

DNA extraction, library construction 
and sequencing

Leaf tissue was harvested from single plants growing in 
the field and lyophilized before DNA extraction. DNA was 
extracted according to the CTAB protocol (Murray and 
Thompson 1980) and the complexity reduced, multiplexed 
GBS libraries were constructed by Plateforme d’Analyses 
Génomiques of the Institut de Biologie Intégrative et des 
Systèmes (IBIS), Université Laval (Quebec City, Canada), 
based on the PstI–MspI method described by Huang et al. 
(2014). Complexity reductions were multiplexed using bar-
code adapters, with 96 samples per pooled library. Sequenc-
ing of each pooled library was performed on a single lane 
of a HiSeq 2500 platform (Illumina, San Diego, CA, USA) 
using standard Illumina protocols and kits, producing high-
output paired-end 150 bp reads at the Genome Quebec 
sequencing center (Montreal, Canada).

Tag‐level haplotype and SNP analysis

Raw sequence files in FASTQ format were processed using 
initial steps of the UNEAK-GBS pipeline within TASSEL 
3.0 bioinformatics analysis package (Lu et al. 2013) to trim 
the reads, de-convolute the barcodes and produce a single 
tag count file for each sample. These files were then used 
by the Haplotag production pipeline (Tinker et al. 2016) 
to call marker genotypes (including both tag-level haplo-
types and GBS SNPs) based on pre-determined genetic loci 
identified previously in a set of 4,657 A. sativa accessions 
reported by Bekele et al. (2018). The resulting data matrix 
was filtered using in-house software, to remove all mark-
ers with lower than 80% completeness, less than 5% minor 
allele frequency, or greater than 10% heterozygosity from 
the data matrix. Since the production mode was developed 
in a population that was dominated by North American 
germplasm, which might introduce ascertainment bias, a 
second dataset was created by running the Haplotag pipe-
line in discovery mode together with a representative set 
of North American landraces from the population reported 
by Esvelt Klos et al, (2016). These data were filtered using 
the same parameters as the genotype calls from the pro-
duction mode. The genetic positions of the markers on 
the consensus map (Bekele et al. 2018) were identified. 
Structure and PCA analyses showed no differences in the 
population structure and clustering of the Mediterranean 
accessions between the production and discovery dataset. 
Therefore, all subsequent analyses were performed with 

the production dataset to take advantage of the marker map 
position except for the PCA analysis.

Population structure and kinship

Population structure of the Mediterranean oat GBS data-
set was inferred in the production mode matrix with 17,288 
polymorphic GBS-SNP markers by the software STRU CTU 
RE 2.3.4 (Pritchard et al. 2000) using the admixture model 
and the option of correlated allele frequencies between pop-
ulations, as this configuration is considered best by Falush 
et al. (2003). Similarly, we let alpha (the degree of admix-
ture) be inferred from the data. Each simulation included 
10,000 burn-in iterations, 20,000 iterations and ten inde-
pendent simulations per k value. The number of subpopula-
tions and the percentages of admixture of each accession (Q 
matrix) were given by STRU CTU RE HARVESTER (Earl 
and vonHoldt 2012), an online software to visualize STRU 
CTU RE output implementing the Δk method (Evanno et al. 
2005). For subsequent analyses, accessions were assigned 
to a subpopulation when they showed more than 60% mem-
bership in a subpopulation. Visualization of STUC TUR E 
data was done with the online software STUC TUR EPLOT 
(Ramasamy et al. 2014).

Principal component analysis (PCA) was also performed 
as an alternative method to infer the structure of the col-
lection with the software package TASSEL 5 (Bradbury 
et  al. 2007). In addition, two UPGMA dendrograms of 
white and red oat accessions were computed using TAS-
SEL 5 with default settings (Bradbury et al. 2007). The esti-
mated trees were then drawn with the ggplot2 package in 
R (R-Team, 2017). Accessions were labeled with different 
colors according to their geographic origin (north Mediter-
ranean, west Mediterranean, south Mediterranean and east 
Mediterranean).

Linkage disequilibrium

Pairwise measures of LD based on r2 were computed using 
TASSEL 5 for the whole collection of Mediterranean oat 
as well as for each oat subspecies (sativa and byzantina). 
LD test was calculated for each marker pair (full matrix) 
and per chromosome to assess the overall linkage disequilib-
rium of the collection and the distance of linkage decay per 
linkage group. The LD decay plots were generated by using 
locally estimated smoothed lines (LOESS) (Jacoby 2000) in 
R (R-Team, 2017).

Genome‐wide association mapping for heading 
date

Marker-phenotype associations were estimated with the soft-
ware package TASSEL 5, according to Rispail et al. (2018). 
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Associations were tested using a general linear model with 
PCA covariates (GLM-PCA) and with a mixed linear model 
(MLM) using the PCA coordinates for Q and the kinship dis-
tances for K, as proposed by Yu et al. (2006). Models were 
run using mean heading dates across the three environments 
as phenotypes. Mean heading date values for each genotype 
within an environment were normalized according to their 
respective checks. Combined quantile–quantile plots drawn 
to compare the observed distribution of –  log10(P) values for 
each marker-trait association using the cumulative distribu-
tion to assess the correct fitting of the data and the control 
for type I error. Selection of the optimal model was per-
formed by estimating the genetic inflation factor λmedian, as 
follows: λmedian = median (Sc + 1, Sc + 2, …, Sn)/0.456. A 
genetic inflation factor higher than 1.25 (λ > 1.25) indicates 
data stratification even after structure corrections. Therefore, 
p values for all models with λ > 1.25 were adjusted with their 
respective λ to avoid false positives (Reed et al. 2015). The 
critical adjusted p values for assessing the significance of 
associations were corrected for multiple testing based on the 
false discovery rate (FDR) criteria (Benjamini and Hochberg 
2000). The matrix of p values was used to estimate the cor-
responding q values with the Qvalue package (Storey 2002) 
in R (R-Core-Team, 2017. Manhattan plots of GWAS results 
were drawn with the qqman package in R (R-Team, 2017).

Sequence homology

We used GBS markers with known genetic position on the 
oat consensus map (Bekele et al. 2018) to find nearby anno-
tated genes in two sequenced diploid oat genomes (Avena 
atlantica (AA)  and Avena eriantha (CC) described by 
Maughan et al. (2019) and in a recently released pseudomol-
ecule assembly of hexaploid oat from the Canadian breeding 
line ‘OT3098’ (available July 2020 at https:// wheat. pw. usda. 
gov/ GG3/ node/ 922). GBS marker positions in the diploid 
genomes were declared based on the best BLAST match of 
the reference sequences of the GBS markers. In the hexa-
ploid genome, GBS positions were declared when an exact 
match of a 64-base tag-level haplotype belonging to a given 
locus was found at one and only one genome position. At 
the time of submission, the finalization of hexaploid chro-
mosome names and orientations was still before the Nomen-
clature Committee of the International Oat Conference, thus 
we refer to chromosome identities and genome positions as 
“Hexaploid Oat Reference OT3098 V1”. Online Resource 
2 shows a working correspondence between Mrg consensus 
groups and chromosome identities in the above diploid and 
hexaploid pseudomolecules based on the best match of ten 
random markers for each linkage group. The function BlastX 
of the BLAST algorithm (Altschul et al. 1990) was used 
to validate protein identities in the NCBI non-redundant 
protein database (database released on 27 Julio 2020), as 

implemented in the NCBI webserver (http:// blast. ncbi. nlm. 
nih. gov/ Blast. cgi).

Results

Characterization of the oat collection 
and localization in an interactive map

Data from the accessions of the oat Mediterranean col-
lection including the north-European cultivars are shown 
on the interactive map (https:// www. google. com/ maps/d/ 
viewer? mid= 1t- O7OUo UPJ_ qY5qG Qsq66 O5zg7k) where 
the different classification criteria may be used as filters 
yielding several layers that show a different color code 
according to the selected criteria. The data underlying the 
map are also available at Dryad Data (Canales et al. 2021; 
https:// doi. org/ 10. 5061/ dryad. 0gb5m km0g). Different 
layers of the map (e.g., Figure 1), showed approximately 
even representation across most classifications other than 
improvement status, where the majority of accessions (546 
of 709) were landraces (Fig. 1b). The oldest landrace was 
accession 370, which is a landrace from Evros in Greece 
collected in 1904. Most landraces were collected between 
1940 and 1970, albeit some recently collected landraces 
were also included, such as accessions 245 and 246, col-
lected in Balearic island, Spain, in 2009. Interestingly, some 
of the cultivars are even older than the landraces, including 
cv ‘Selma’ from Germany and ‘Joanette’ from France, both 
white oats from 1889. A total of 251 red and 435 white oats 
were included in the collection. As observed in Fig. 1a, both 
subspecies were collected from all around Mediterranean 
rim. There were accessions representing low- or high-alti-
tude sites (Fig. 1c) and covering a wide range of heading 
dates (Fig. 1d). In addition to the main classification crite-
ria, other passport data as well as detailed pictures of the 
spike morphology and seed morphology, color and size are 
available by clicking on the corresponding accession (e.g., 
Online Resource 3, 4).

Genetic relationships among Mediterranean oats

The Haplotag production pipeline provided data for 
164,652 tag-level haplotypes and 240,958 SNPs. After 
the filtering based on MAF, heterozygosity and missing 
values, a total of 17,288 polymorphic SNP markers cor-
responding to 12,418 tags were obtained. Of these tags, 
4,829 were located on the hexaploid consensus map. 
Sequence read data from these accessions are available 
from NCBI SRA archive as BioProject PRJNA693576. 
The GBS-SNP marker datasets were deposited in the pub-
lic T3/oat database (https:// oat. triti ceaet oolbox. org/ breed 

https://wheat.pw.usda.gov/GG3/node/922
https://wheat.pw.usda.gov/GG3/node/922
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.google.com/maps/d/viewer?mid=1t-O7OUoUPJ_qY5qGQsq66O5zg7k
https://www.google.com/maps/d/viewer?mid=1t-O7OUoUPJ_qY5qGQsq66O5zg7k
https://doi.org/10.5061/dryad.0gb5mkm0g
https://oat.triticeaetoolbox.org/breeders/trial/4667
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ers/ trial/ 4667) and on the Dryad Data site (Canales et al. 
2021, https:// doi. org/ 10. 5061/ dryad. 0gb5m km0g).

According to the position of the breaking point in the 
L(k) curve and the peak in the Δk distribution, accessions 
were assigned by STRU CTU RE to two groups (K = 2). 
This binary classification distinguished between the 
white (subsp. sativa) and the red (subsp. byzantina) oats 
(Fig. 2a). Out of the 709 accessions, 435 accessions were 
clustered in the white group, 251 accessions in the red 
group, 13 were classified as admixtures, and 10 showed a 
high level of missing data or heterozygocity and were not 
classified. Of the 699 classified accessions, only 28 assign-
ments disagreed with prior passport data, and these are 
most likely due to previous classification errors. Based on 
passport data, it appears that admixtures are more common 
among red oat accessions than among white oats (Fig. 2a

The high genetic divergence between white and red 
oats may mask further population structure within groups. 
Therefore, separate analyses were performed on each group. 
Both the white and red oat UPGMA tree showed additional 

clustering when performed separately (Online Resource 6, 
7). STRU CTU RE analysis within the white group revealed 
two subgroups (Fig. 2b and c). Interestingly, most of the 
west-Mediterranean accessions, the majority of which were 
Spanish, were in subgroup 1, whereas most of the north-
Mediterranean accessions were in subgroup 2. However, half 
of the east-Mediterranean accessions and a small part of 
north-Mediterranean accessions were in subgroup 1. Both 
subgroups contained accessions with a similar range of 
heading dates. However, further inspection of the UPGMA 
dendrogram showed that many of the west- and north-Medi-
terranean accessions tended to cluster based on heading date 
while those from the east- and south-Mediterranean acces-
sions did not.

To explore the potential biological drivers of subpopu-
lations, we performed PCA analysis (Fig. 3), highlighting 
different variables that could explain the splitting of these 
populations. In agreement with STRU CTU RE analysis, 
PCAs separated the white and red oat groups (Fig. 3a). The 
first two PCs explained approximately 50% of the observed 

Fig. 1  Example of the interactive oat map as can be seen in google 
maps. In this example, the accessions were filtered according to a 
subspecies where white, red, yellow and gray dots indicated sativa, 
and byzantina subsp, admixture and unknown, respectively, b 
improvement status, where green, yellow, purple and gray dots indi-
cated landraces, cultivars, breeding materials and uncertain materi-

als, respectively, gray dot indicated that information is not available, 
c altitude where brown, blue and gray dots indicated landraces col-
lected in high (> 400 m) or low (< 400 m) altitude regions, cultivars 
and other accessions for which altitude was not available were repre-
sented by gray dots, d heading date, where green, yellow and red dots 
indicated early, mid or late flowering accessions

https://oat.triticeaetoolbox.org/breeders/trial/4667
https://doi.org/10.5061/dryad.0gb5mkm0g
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Fig. 2  Estimated population 
structure of oat accessions 
according to STRU CTU RE 
software. a Estimated popula-
tion structure of the whole 
Mediterranean oat collection. 
The two colors indicate the two 
subpopulations in which STRU 
CTU RE software classified 
the oat accessions, with the 
admixture barplot showing the 
admixture proportions of each 
individual. b, c Estimated struc-
ture of the white oat subpopula-
tion, according to origin and 
flowering time
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genetic variance. Interestingly, cultivars were distributed 
among both red and white groups and also within both 
subpopulations of the white group (Fig. 3b). Most of the 
west-Mediterranean accessions clustered in the upper part 
of the PCA plot in three smaller subgroups, whereas most 
of the north-Mediterranean accessions clustered in the lower 
part of the figure with a small group of east-Mediterranean 
accessions (Fig. 3c). Figure 3d shows that the clustering of 
the three smaller groups of west-Mediterranean accessions 
could be explained based on heading date, with one group 
showing most of the early accessions, another with most 
of the late accessions and the middle group with mixed or 
intermediate heading dates. In addition, most of the acces-
sions that clustered in the lower part of the plot had late 
or intermediate heading dates. Interestingly, overall  no 
red accessions were late, confirming the earliness of this 
subpopulation.

We further compared the genetic relationships of the 
Mediterranean accessions with a stratified diverse subset of 
69 North American landraces previously characterized by 
Bekele et al. (2018). For this, we used de-novo SNP dis-
covery to avoid potential ascertainment bias. After filtering, 
20,493 polymorphic SNP markers were available for this 
analysis. Clustering of Mediterranean accessions obtained 
with this dataset was identical to the clustering obtained 
with the dataset from the production pipeline. Based on 
PCA analysis of these data (Fig. 4), we observed that North 
American landraces clustered in two groups corresponding 
approximately with the two subgroups of Mediterranean 
white oat. The southern USA landraces clustered nearest to 
the west-Mediterranean accessions, in particular the early 
heading Spanish group, whereas the remaining North Amer-
ican accessions clustered with the north-Mediterranean 
accessions (Fig. 4). In an additional analysis, we performed 
the PCA after downsampling Mediterranean oats to equal 

the number of US oats, to rule out possible artifacts due to 
group size and obtained similar results (Online Resource 8). 
Overall, this analysis revealed a high level of diversity in the 
Mediterranean oat collection when compared to the North 
American accessions.

Genome‑wide association analysis of heading date

Assessment of LD is critical for association analysis since 
it may determine the power and resolution of associations. 
The patterns of LD were assessed by pairwise comparison 
of markers presented as the relationship between r2 vs. P 
(Online Resource 9). The rate of LD decay against genetic 
distance was calculated for total genome data (Fig. 5) as well 
as for each linkage group (Online Resource 10).

According to the full LD matrix, a total of 9,298,006 
marker pairs showed a significant LD, with an average 
probability of p = 0.006. Of these, 5,773,494 marker pairs 
showed r2 < 0.1, which is considered a nominal value for oats 
(Montilla-Bascón et al. 2015; Newell et al. 2011). When the 
two subspecies were assessed separately, 2,869,144 markers 
pairs showed a significant r2 < 0.1 within white oats, whereas 
a much lower number of marker pairs (99,327) showed a 
significant r2 < 0.1 within red oats (Online Resource 9).

Both the red and the white groups showed a similar LD 
decay, but the decays were faster than that across the full 
population (Fig. 5). Inspection of the LD by linkage groups 
showed differential trends. In white oat, several linkage 
groups showed higher LD decay including Mrg03, 05, 06, 
11, 21, 24 and 28, whereas in red oat LD decayed faster 
on Mrg01, 02, 04,12, 23 and 33. Strikingly, linkage group 
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Fig. 4  Scatterplot of principal component analysis scores of compo-
nents 1 and 2 of Mediterranean and 69 North American oat acces-
sions based on 20,493 polymorphic SNP markers

Fig. 5  Linkage disequilibrium (LD) decay by distance across the sub-
species sativa (blue line), byzantina (red line) and both subspecies 
(black line)  (color figure online)
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Mrg04 showed a much slower LD decay in white oat than in 
red oat or in the combined population. The remaining link-
age groups showed similar LD decay for white and red oats 
(Online Resource 10).

Due to the strong population structure, association studies 
were performed separately for white and red oats. Despite 
the fact that both models were corrected for population struc-
ture, data for white oat did not fit either the GLM-PCA or the 
MLM models. Increasing the numbers of PCs up to 20 in the 
GLM-PCA and 10 for MLM data improved the fit of these 
models, but the genetic inflation factor was still far from the 
proposed λ = 1.2 threshold (Fig. 6a, Rispail et al. 2018). To 
avoid false positives, we adjusted the models based on the 
genetic inflation factor, which resulted in a much better fit 
(Fig. 6b). Following this, one significant marker associated 
with heading date was found within white oat. This marker, 
avgbs_80864.1, was located in Mrg13 at cM position 60. It 
was significant in both the GLM-PCA and MLM models 

with an adjusted of P = 7.3e−5 and an r2 = 0.103. Both GLM-
PCA and MLM models revealed two significant associa-
tions with marker avgbs_cluster4923.1 located on Mrg01 
at cM position 52 (Fig. 7) with an adjusted of P = 3.18e−4 
and r2 = 0.044 and marker avgbs_cluster_1918.1 located 
on Mrg08 at cM position 147 (Fig. 7) with an adjusted of 
P = 2.56e−5 and r2 = 0.069. 

Identification of candidate genes

To identify potential candidate genes involved in heading 
date, we located the markers onto the diploid (Maughan et al. 
2019) and hexaploid (https:// wheat. pw. usda. gov/ GG3/ node/ 
922) oat reference genomes and examined the genomic space 
surrounding each associated marker using the Gbrowse tool 
implemented in the EPIC-CoGe Avena genome repository 
(Table 1, Online Resource 11). The marker avgbs_80864.1 
(on Mrg13) was localized to the C genome chromosome 
AE05 in A. eriantha at position 463,706,207 bp and to posi-
tion 472,093,139 bp on chromosome 2C in the hexaploid. 
The closest gene in the diploid, named AE025378-RA, was 
detected at 10 kb downstream of the associated marker. This 
gene showed similarity with the NAC domain-containing 
protein 100 (NAC100) of Arabidopsis thaliana which was 
validated by BLASTX (Table 1, Online Resource 11). Addi-
tional genes in the vicinity of avgbs_80864.1 marker were 
located more than 100 kb away. Annotated genes in the hexa-
ploid genome were not located in this region, and although 
BLAST matches can be located, many of these appear to be 
repetitive domains, and further gene discovery in the hexa-
ploid will require further annotation.

The avgbs_cluster_4923.1 marker (Mrg01) was local-
ized to chromosome AA2 of A. atlantica at position 
364,214,519 bp and to chromosome 1D at 249,647,335 bp 
in the hexaploid. Two potential candidate genes were 
detected downstream from this marker in the diploid. 
One, AA010050-RA, located 27  kb upstream and the 
other, AA010051-RA, at 33 kb downstream. According to 
BLASTX comparison, AA010050-RA shared more than 
70% similarity with a Phosphatidylinositol N-acetylglucosa-
minyltransferase subunit P-like protein of Zea mays. In turn, 
AA010051-RA encodes a Rop guanine nucleotide exchange 
factor 3 (ROPGEF3), as confirmed by the BLASTX show-
ing a similarity of 90.13% and 55.41%, respectively, with 
ROPGEF3 homologues in Hordeum vulgare and Arabidop-
sis thaliana (Table 1, Online Resource 11). Three additional 
genes were also identified between 40 and 50 Kb down-
stream of the associated marker, one with homology to a 
pectin acetylesterase and two unknown proteins. The closest 
upstream gene, had unknown function and was located more 
than 140 kb away.

The associated marker avgbs_cluster_1918.1 on Mrg08 
was localized on A. eriantha genome to chromosome AE06 
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 log10 scale, where the solid red line represents the null expectation 
(absence of type I error). The genetic inflation factor (λ) was used for 
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at position 326,942,176  bp and to chromosome 1D at 
249,647,335 bp in the hexaploid. One potential candidate 
gene was identified only 0.75 kb downstream of this marker 
in the diploid. This gene, AE037406-RA, is likely to encode 
another NAC-related gene since it shares 84.32 and 50.22% 
similarity with Hordeum vulgare and Arabidopsis thaliana 
NAC8, respectively (Table 1).

Discussion

To our knowledge, this is the first large-scale genomic 
analysis of red and white oat landraces originating from the 
Mediterranean region. This region is the center of origin 
for many crop species and their wild relatives, including 
cultivated oat (Loskutov 2008), and oat has been cultivated 
in this region for centuries. Hence, this work will provide a 
valuable resource for future research and crop improvement 
worldwide.

Over the last two decades, the increasing worldwide cul-
tivation of elite cultivars has led to a significant reduction 
in genetic diversity of crop species (Warburton et al. 2008; 
Reif et al. 2005; Roussel et al. 2004) particularly in cereals 
(Christiansen et al. 2002; Donini et al. 2000; Koebner et al. 
2003). This highlights the role of the genetic conservation 

of crop germplasm (Frankel and Bennett 1970). Fortunately, 
genebanks are available as reservoirs of crop genetic diver-
sity. However, genebanks contain duplicated accessions, 
errors in classification and omissions of key data that would 
guide plant breeders in the utilization of this germplasm. 
In particular, many genebank accessions lack data related 
to phenotype or imagery that could allow correction of 
classification errors. Thus, this work gathered a wealth of 
information about the oat genetic and phenotyping diver-
sity of oat along the Mediterranean rim, which could be 
used to correct the genebanks database errors. The inter-
active map presented in this work provides an essential 
resource for future oat breeding for Mediterranean areas, 
by which oat breeders may select accessions taking into 
account additional agronomic and geospatial data. The 
map has been conceived as a living tool in which further 
information developed on these accessions will be added, 
including disease and abiotic stress resistance, to facilitate 
oat breeding under a scenario of climate change. Where 
possible, we have updated or corrected classifications made 
by genebanks such that the interactive map includes new 
information consistent with the genetic analyses presented 
here. When subspecies classification differed from that of 
the genebank this was highlighted in the map information, 
so genebanks can check it if desired.

Fig. 7  Distribution of p values 
by marker position on chromo-
somes for tests of association 
between markers and heading 
date using the adjusted GLM 
model in the a white oat acces-
sions and b red oat accessions. 
Red and blue colors show divi-
sions between linkage groups. 
The solid red line represents 
the genome-wide significance 
threshold calculated according 
FDR  (color figure online) 0
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This work has revealed high genetic and phenotypic vari-
ability and a complex population structure in a Mediterra-
nean oat collection. The GBS data provided high-density, 
genome-wide and genetically mapped marker set. Based on 
the Bayesian STRU CTU RE analysis, the Mediterranean oat 
landraces clustered with high confidence into two subpopu-
lations, corresponding to the sativa and byzantina subspe-
cies, with higher genetic variability and more subpopula-
tion structure in the sativa group. This was also observed 
in a previous genetic diversity study on Spanish accessions 
(Montilla-Bascón et al. 2013) suggesting that red oats have 
been less subjected to population divergence than white 
oats. As previously reported, we found a significant genetic 
divergence between white and red oats (Fu et al. 2005; New-
ell et al. 2012), supporting the independent domestication 
hypothesis of these two subspecies (Zohary and Hopf 2000). 
While the Fertile Crescent is considered the center of origin 
of A. sativa, it is argued that white oat evolved during the 
migration of its ancestors northward, where it was eventually 
established as a primary crop (Thomas 1995). In contrast, 
red oats entered cultivation from the western part of the 
Mediterranean (Loskutov 2008).

Interestingly, the oat cultivars included in the collection 
for comparison purposes clustered nearer to the north- and 
east-Mediterranean landraces than to the west-Mediterra-
nean landraces. This could explain the low adaptation of 
most of the cultivars currently grown in Spain, the major-
ity of which are spring cultivars bred in northern areas (Prats 
et al. 2014; Rispail et al. 2018; Sánchez-Martín et al. 2017). 
Our previous study based on 36 north-European cultivars 
indicated a narrow genetic basis among the tested varieties. 
Similarly, a lack of genetic diversity has been reported in a 
collection of Canadian and Chinese oat cultivars, leading to 
a call for broadening the genetic variation for a sustainable 
oat improvement (Baohong et al. 2003; Fu et al. 2004). In 
contrast, the current Mediterranean oat collection showed 
no tight clustering of cultivars. Although cultivars did not 
cluster near to Spanish accessions as stated above, they were 
distributed over the PCA plot near landraces from various 
regions and distributed between the white and red oat clus-
ters. This pattern suggests that different landraces may have 
contributed to the improvement of these cultivars and broad-
ened their genetic base.

Adding the data gathered previously on a set of North 
American oat accessions to our data confirmed the high level 
of diversity in the Mediterranean collection. It also provided 
interesting information on the potential breeding history of 
oat accessions. North American oat landraces clustered pri-
marily with the white oat landraces, suggesting that they had 
not significantly differentiated after migration to the new 
world, and that they had integrated little or no red oat germ-
plasm. The fact that southern USA landraces grouped with 
the western Mediterranean landraces, most of which coming G
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from Spain, may reflect both human migration patterns, as 
well as an adaptation to a Mediterranean-type production 
regime.

Population structure and LD are primary obstacles to 
the successful identification of linkage-based associa-
tions between markers and phenotypic traits (Buckler and 
Thornsberry 2002). Indeed, the power of association studies 
depends on the LD between the functional allele responsible 
for the observed phenotype and the marker. Our data showed 
extensive LD among markers, in agreement with previous 
studies (Montilla-Bascón et al. 2015; Rispail et al. 2018) and 
a sufficient marker coverage for a GWAS approach (Newell 
et al. 2011). Furthermore, our results revealed a variable 
LD pattern in the different linkage groups that was unique 
to each of the sativa and byzantina groups. Such patterns 
have also been found for other crop species such as maize, 
wheat and sugar beet (Li et al. 2011; Van Inghelandt et al. 
2011). Interestingly, Mrg04 showed a much slower LD decay 
in subs. sativa than in byzantina. According to Alheit et al. 
(2012), regions containing strong LD blocks probably har-
bor QTL responsible for agronomically important traits that 
reduce LD decay. Thus, our data suggests the presence of 
QTLs responsible for agronomically important traits in this 
region, but only in subsp. sativa. In addition, according to 
Chao et al. (2010), this divergence in the extent of LD might 
be attributed to unique breeding histories and selection pres-
sures applied to genes located in different genomes/chromo-
somes during the process of cultivar development.

Based on LD and structure results, association studies 
were performed separately for the two subspecies. The 
GWAS analysis was performed to test the suitability of the 
GBS approach and the Mediterranean oat collection for 
association studies by identifying significant associations 
with heading date. This trait is of fundamental importance 
for the local adaptation of oats in Mediterranean environ-
ments, since oats are particularly susceptible to drought dur-
ing flowering time and heading date plays an important role 
for drought avoidance responses (Mahadevan et al. 2016). 
Our data highlighted markers associated with heading date 
on three chromosomes. Associations on these chromosomes 
have been previously reported on Mrg1 at 117.9 cM (Tumino 
et al. 2016) and at 39.3 cM (Esvelt Klos et al. 2016), on 
Mrg8 at 71 cM (Bekele et al 2018) and on Mrg13 at 58.6 cM 
(Tumino et al. 2016) and at 30.3, 33 and 35.9 cM (Esvelt 
Klos et al. 2016).Specifically, the associated marker that 
we identified on Mrg13 was only 1.4 cM apart from the 
QTL highlighted by Tumino et al. (2016), further validating 
the presence of a QTL for heading date in this region. By 
contrast, the markers identified on Mrg1 and Mrg08 were 
located in different regions than those reported previously 
suggesting the presence of additional QTLs. Interestingly, 
(Bekele et al. 2018; Esvelt Klos et al. 2016; Tumino et al. 
2016) highlighted markers associated with heading date in 

Mrg02, which were not found in our study. This differences 
might be due to the different photoperiod during flowering 
for autumn and spring sowed oats.

Interestingly, two of the associated markers were located 
near genes with high similarity to NAC-domain transcrip-
tion factors that have been involved in many developmen-
tal processes, including flowering. In particular, the closest 
gene on Mrg13 showed similarity to a NAC domain-con-
taining protein 100 (NAC100), a transcription factor than 
controls ethylene-regulated cell expansion in flower petals 
(Pei et al. 2013). The closest gene to Mrg08 marker showed 
high homology with a suppressor of gamma response 1 
(SOG1 / AtNAC8), which is a transcription factor govern-
ing multiple responses to DNA damage (Yoshiyama et al. 
2009) and showing high expression in Arabidopsis thaliana 
during flowering (Klepikova et al. 2016). Comparison of 
the Mrg08 region between the A. byzantina and A. sativa 
preliminary genome assemblies also identified as potential 
candidate genes a GASA4-like gibberellin responsive gene 
and a gene with homology to miR172. Among the genes 
near the Mrg01 associated marker, one showed similarity 
with a phosphatidylinositol N-acetylglucosaminyltrans-
ferase subunit P, a protein in biosynthesis that is required 
for pollen germination and pollen tube growth (Kouidri 
et al. 2018; Lalanne et al. 2004). At this point, the influence 
of these genes on the time of heading is speculative, requir-
ing further validation. Perfect GBS matches for all three of 
the high-confidence associations were also located in the 
recently released hexaploid oat genome. Unfortunately, a 
fully annotated version of this genome is not yet available 
so gene matches are tentative, and the reported genome 
positions may be interpreted at a later date. It is interesting 
to note, however, that the matches in the diploid genomes 
may not be located on the corresponding hexaploid chro-
mosomes. For example, avgbs_cluster_1918.1 is located 
on a C genome chromosome in A. eriantha, while it is on 
a D genome chromosome in the hexaploid. Oat is known 
to have undergone extensive genome rearrangement, and 
forthcoming studies will elucidate the locations of some of 
these rearrangements.

In conclusion, this work has provided a wealth of genetic 
and agro-climatic information in Mediterranean landraces 
and cultivars of oat. These accessions, genetic data and phe-
notypes will be a vital resource for further discovery-based 
research as well as for global oat genetic improvement.
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