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Abstract
Key message Individual stem rust resistance genes could be directly mapped within self-incompatible rye populations.
Abstract Genetic resources of rye (Secale cereale L.) are cross-pollinating populations that can be highly diverse and are 
naturally segregating. In this study, we show that this segregation could be used for mapping stem rust resistance. Populations 
of pre-selected donors from the Russian Federation, the USA and Austria were tested on a single-plant basis for stem rust 
resistance by a leaf-segment test with three rust isolates. Seventy-four plants per population were genotyped with a 10 K-SNP 
chip. Using cumulative logit models, significant associations between the ordinal infection score and the marker alleles could 
be found. Three different loci (Pgs1, Pgs2, Pgs3) in three populations were highly significant, and resistance-linked mark-
ers could be validated with field experiments of an independent seed sample from the original population and were used to 
fix two populations for resistance. We showed that it is possible to map monogenically inherited seedling resistance genes 
directly in genetic resources, thus providing a competitive alternative to linkage mapping approaches that require a tedious 
and time-consuming inbreeding over several generations.

Introduction

Rye (Secale cereale L.) is a cross-pollinating crop typically 
appearing as self-incompatible populations. In theory, gene 
and genotype frequencies remain constant over genera-
tions in large random mating populations without selection 
(Hardy–Weinberg equilibrium, HWE). In breeding popula-
tions, however, crossing and selection, as well as random 
drift due to limitations on population size, will change 
gene frequencies. Gene frequencies will almost never be 
increased to one by phenotypic selection, leaving aside an 
idealized scenario of selection with 100% intensity on a sin-
gle recessive gene with perfect penetrance (p.28f, Falconer 

and Mackay 2008). Consequently, populations are a reser-
voir of rare alleles, and a higher diversity (variation) within 
populations than across populations can be expected and 
has been observed in rye, for example for resistance to ergot 
severity (Mirdita et al. 2008). Here, we want to exploit this 
within-population variation for mapping stem rust resistance 
directly in self-incompatible populations of winter rye.

Stem rust (Puccinia graminis f. sp. secalis) can cause 
yield losses up to 60 percent in continental areas (Solodukh-
ina and Kobylyansky 2001) and is thus considered an impor-
tant disease in rye. In Central Europe, a high infection level 
cannot be observed in every season, but under suitable 
conditions (warm and dry summers) the fungus can spread 
over large areas. Severe stem rust outbreaks in rye were 
reported from North-eastern Europe (the largest growing 
region worldwide), Brazil (Roelfs 1985) and South Africa 
(Boshoff et al. 2019).

We chose five rye donor populations that were found to 
have stem rust resistance in previous field experiments on a 
single-plant basis (Miedaner et al. 2016). An additional cri-
terion for our choice were the different geographical origins 
to increase the chance to find different resistance genes and 
further information that was available. Two populations from 
Russia, ‘HY2407/87′ (HY2407) and ‘HY75/81′ (HY75), 
consisted of pre-breeding material which was previously 
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selected for leaf and stem rust resistances. Two Austrian 
landraces, ‘Oberkärntner’ being a selection from the ‘Lurn-
felder Roggen’ and ‘Tiroler’, were historically associated 
with stem rust resistance and originated in the Austrian stem 
rust hot spots Lurnfeld and Tirol (Hänsel 1958; Schilperoord 
2012). Another population, ‘Wrens Abruzzi’, was a descend-
ant from Italian rye (‘Abruzzi’), which was introduced as 
fodder rye in the USA in 1900 and 1913 (Morey 1970). For 
the cultivar itself no information about stem rust resistance 
could be found, however in another strain of the Abruzzi rye, 
Mains (1926) detected stem rust resistant plants.

To phenotype the resistance, we used a seedling test, 
namely a detached leaf-segment test (LST) where detached 
leaves were inoculated and infection types were later 
assessed. The LST has already been used in other studies 
with rye (Miedaner et al. 2016; Gruner et al. 2020) and 
has the advantage that different rust isolates can be tested 
separately on the same plant. Similar infection types can be 
achieved on the detached leaves compared to whole-plant 
seedling tests (K. Flath, unpublished data) that are com-
monly applied to characterize (stem) rust resistance genes 
in wheat (McIntosh et al. 1995). Further, as the seedling 
plants remain unaffected and healthy, DNA can be extracted 
after performing the test from newly emerging leaves. Repre-
sentative rust isolates were chosen from previous collections 
(Miedaner et al. 2016). They were characterized by a set of 
rye inbred lines (differential lines) showing different resist-
ance patterns for different isolates.

As the LST was based on rye seedlings, we were limited 
to identify seedling resistances. Generally, we can distin-
guish between seedling resistance (= all-stage resistance), 
expressed by single resistance (R)-genes with large effects in 
all plant stages, and adult-plant resistance. Tan et al. (1976) 
also reported genes that were active in the seedling stage 
only. In a previous mapping study (Gruner et al. 2020), 
both all-stage and adult-plant resistances were identified in 
rye. Specifically, a R-gene candidate, Pgs1, firstly identi-
fied in the field was resistant against several isolates in the 
LST, too. More resistance genes from rye landraces were 
reported (Tan et al. 1976, 1977; Solodukhina and Kobylyan-
sky 2000), showing the high potential of genetic resources. 
For example, Tan et al. (1976, 1977) found six and eight 
resistance genes against Puccinia graminis f.sp. graminis 
and f.sp. secalis, respectively, within inbred populations 
developed from four genetic resources from the USA and 
Kenya: Kenya, Wrens, Elbon and Gator. To the best of our 
knowledge, none of the previously identified resistances, 
except Pgs1, could be clearly linked with a chromosomal 
locus or molecular marker.

Based on genotyping by a SNP chip, we considered the 
marker-wise significance testing for association between 
phenotype and genotype as most appropriate. The sta-
tistical model of choice was a cumulative logit model for 

multinomial counts (Agresti 2019), accounting for the 
ordered infection type (IT) categories defined by the LST, 
and providing an asymptotic significance test for marker-
trait associations. However, we also compared results with 
a non-parametric test (Konietschke et al. 2015) because 
sample sizes and counts for certain infection types in some 
populations were very small. So far in rye, only QTL map-
ping studies based on (biparental) populations composed 
of inbred lines were applied for agronomic traits (Mie-
daner et al. 2012; Hackauf et al. 2017) and fungal diseases 
(Wehling et al. 2003; Roux et al. 2004; Gruner et al. 2020). 
Inbreeding is possible due to a self-fertility gene, and today 
more hybrid than population cultivars can be found on the 
German seed market (Bundessortenamt 2019). Still, genetic 
resources (populations) are necessary for breeding of both 
cultivar types. The identification of resistance-linked molec-
ular markers directly from genetic resources could speed up 
and simplify the introgression of new genes into the breed-
ing progress.

We investigated the suitability of self-incompatible rye 
populations for mapping stem rust resistance genes and 
validated the most closely linked markers by a KASP assay 
and a field test. Our results are presented in the order of the 
workflow (Figure S1): The populations were (1) phenotypi-
cally analyzed by LST, (2) genotyped and (3) genotypic and 
phenotypic data was combined to find significant associa-
tions. To validate the results of (3), new seeds from the same 
populations were (4) genotyped with marker candidates, 
(4A) tested on single-plant basis in inoculated field trials 
and (4B) resistant plants were selected based on markers, 
intercrossed in isolation cabins and the offspring thereof 
again tested in inoculated field trials in the following year.

The milestones of this work were a proper statistical 
analysis of ordered ITs and mapping of gene loci in cross-
pollinating winter rye populations and an independent vali-
dation of resistance in field trials.

Material and methods

Rye populations

Five rye genetic resources were investigated: The landraces 
Oberkärntner (OK) and Tiroler (TI) from Austria, Wrens 
Abruzzi (WA) from the USA, and two populations from 
Russia, HY2407/87 (HY2407) and HY75/81 (HY75), that 
were improved for rust resistances (stem and leaf rust) by 
mass selection and were received from the Research and 
Development Institute of Agriculture of Central Regions of 
the Non-Chernozem Zone of the Russian Federation (A. A. 
Goncharenko) in Nemchinovka near Moscow. Seeds from 
all other populations were originally obtained from gene 
banks. Populations were maintained at the University of 
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Hohenheim over the last decades under cold storage and 
by propagating them every 15 to 20 years in isolation cab-
ins (Geiger and Miedaner 2009). Isolation cabins covered a 
square of about 1.25 m length each side and were planted 
with about 60 to 90 plants in each propagation step. The last 
propagation was done in 2009 (HY2407, HY75, WA) and 
2015 (OK, TI).

Leaf‑segment test

From each population, 100 rye seedlings were grown under 
rust-proof conditions for 10 days at 17 °C and continuous 
(24 h/d) light in a climate chamber. Ten days after sowing, 
the primary leaf of each plant was cut into three 3 cm long 
pieces and placed in different multidishes (squared petri 
dish separated into 15 segments) with water agar (6 g  l−1) 
containing 35 mg  l−1 benzimidazole and 1.5 mg  l−1 silver 
nitrate. Each of the three leaf pieces from a single plant was 
inoculated with a different isolate (separate multidishes). 
In each multidish, three additional leaves from the suscep-
tible cultivar ‘Palazzo’ (KWS LOCHOW GMBH) were 
placed serving as check. The isolates used for inoculation 
were collected in Germany in the past and could be traced 
back to a single pustule (Miedaner et al. 2016). All isolates 
showed a different pattern of resistance/virulence reactions 
on 15 differential lines also developed in a previous study 
(Table S1). The inoculation was carried out by means of 
an infection tower (Figure S2). Specifically, urediniospores 
previously multiplied on rye seedlings (cv. ‘Palazzo’) were 
mixed (each isolate separately) with talcum powder in a ratio 
of 1:3 and evenly blown onto multidish plates with leaf seg-
ments. For comparability, the same isolate-talcum mixture 
was used for all materials analyzed for this study. Thereafter, 
leaf segments were stored for 24 h at 100% humidity, 20 °C 
and darkness followed by continuous light at 20 °C. After 
14 days, the infection type was visually assessed on an ordi-
nal rating scale described next.

Rating scheme

Using the rating scale of Stakman et al. (1962) as a tem-
plate, the infection type (IT) was assigned to the following 
categories:

0 = No uredinia or indications of infection.
1 = No uredinia but hypersensitive reaction.
2 = Small uredinia with necrosis.
2.5 = Small to medium-sized uredinia on green islands 

surrounded by necrosis and chlorosis.
3 = Mid-size uredinia with or without necrosis.
4 = Large uredinia without necrosis.
In contrast to the original scale and scale interpretations 

(Stakman et al. 1962), we considered IT ≤ 2 as resistant and 
IT > 2 as susceptible reaction. This change of the score ‘2.5′ 

into the susceptible category was led by the susceptible 
check variety that was scored as ‘2.5 ‘or ‘3’ in the experi-
ments. For the mapping procedure described later, the cat-
egorization into resistant and susceptible was irrelevant due 
to statistical reasons.

Choice of plants for DNA analysis

From each population, 100 plants were assessed by LST. We 
chose 74 plants from each population for DNA extraction. 
We removed plants where the IT could not be assessed or the 
leaves of the check remained uninfected, and tried to shift 
the ratio of resistant (IT ≤ 2 and susceptible plants (IT > 2) 
toward one aiming for equal group sizes and increase in 
detectability and statistical power of rare alleles.

Marker analysis

The DNA extraction from leaf samples and genotyping was 
done with a rye 10 K Infinium iSelect SNP chip proprietary 
to and at KWS SAAT SE & Co. KGaA. The SNPs of this 
assay were partially overlapping with the 5 k-SNP assay 
of Martis et al. (2013) and the 600 k-SNP assay of Bauer 
et al. (2017) so that 2515 SNP markers could be located on 
a linkage map constructed by the latter. For each popula-
tion, markers were filtered to have a minor allele frequency 
(MAF) > 5% and less than 5% missing values. The genotyp-
ing procedure was not successful for three plants from HY75 
and one from HY2407.

Principal coordinate analysis (PCA)

To perform a principal coordinate analysis, only markers 
were used that had less than 5% missing values after all 
populations were combined. Marker data were coded as 0, 
0.5, 1 (homozygous for one allele, heterozygous, homozy-
gous for the other allele) and stored in a matrix C = {cij} with 
n individuals and q markers. Before calculation of the 
genetic covariance matrix X =

1

n
MM

� and decomposition 
thereof into eigenvectors, the entries of C were corrected by 
the column mean 

−
c∙j for the j-th marker and the estimated 

allele frequency pj =
−
c∙j∕2 resulting in the standardized 

marker matrix M = {mij} with mij =
cij−

−
c∙j

√

pj(1−pj)
  (Patterson 

et al. 2006). The calculation of the covariance matrix and 
decomposition into eigenvectors was done with the R func-
tions cov() and eigen() (R Core Team 2019). The variance 
proportion explained by the first two components was cal-
culated by dividing the eigenvalue of the respective compo-
nent by the sum of all eigenvalues. As shown by PCA, three 
genotypes (= three plants) from population HY2407 were 
located in the cloud of HY75 and vice versa and thus were 
discarded from further analysis.
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Linkage map

No physical reference map for the used markers was avail-
able, and a public linkage map (Bauer et al. 2017) did 
only overlap with 2515 markers. Thus, a consensus map 
was constructed using four linkage maps from previous 
projects (Gruner et al. 2020), five linkage maps from new 
biparental populations (n = 91, data unpublished), and 
the overlap of the linkage map published by Bauer et al. 
(2017). The consensus map was built with the MergeMap 
online tool (Wu et al. 2008). From the filtered markers 
used in this work 6863 markers could be placed on the 
consensus map. The remaining non-overlapping markers 
were still considered for the mapping procedure described 
in the following section and for results display summed up 
in the artificial linkage group “unmapped” with arbitrary 
positions.

Statistical analysis

Phenotypic model

To test whether within a single population the isolates 
show significantly different reactions and to assess the 
genetic variance in the populations, a cumulative logit 
mixed model (clmm) was fitted. Following the notation of 
Agresti (2019, pp. 284), it can be written as:

In words, the log odds (logit) of the response Yik to fall 
in category j (j = 1, …, 6) or below were modeled by the 
random effect gi for the i th genotype (= grouping factor 
or cluster = plant) and the fixed effect �k of the isolate k . 
Whereas for each isolate k a separate effect was estimated, 
the fixed intercept �j , also known as threshold, depended 
on the different ordinal infection categories j of the 
response variable. The response variable was transformed 
into an ordered factor with factor levels from one to six.

The clmm was fitted with the clmm() function of the R 
package ordinal (Christensen 2019; R Core Team 2019) 
using full maximum likelihood estimation by setting the 
nAGQ option (the number of quadrature points to use in 
the adaptive Gauss-Hermite quadrature approximation to 
the likelihood function) to 20. By defining the isolate as 
factor (in R language), no effect for the first level of the 
variable isolate was estimated and the estimated effects 
of the remaining isolates (factor levels) correspond to 
pairwise differences compared to the first factor level. 
All pairwise differences were thus estimated by succes-
sively recoding isolates so that each isolate in turn was the 
first factor level and the analysis provided all differences 

(1)logit
[

P
(

Yik ≤ j
)]

= gi + �j + �k

compared to that isolate. The variance estimated for the 
random effect gi was considered as genetic variance.

Mapping procedure

To test for significance, the phenotypic cumulative logit 
model (1) was extended by fixed codominant and dominant 
marker effects �a and �d . For regressing the response on each 
marker m, the marker alleles for the codominant effect �a 
were coded as ma = 0, 1, 2 (homozygous for the one allele, 
heterozygous, homozygous for the other allele) and for the 
additional dominant effect �d the coding was md = 0, 1, 0. 
The fitted model was:

The p-values for the marker effects �a and �d were 
extracted from the coefficient table in function call. Addi-
tionally, p-values for both marker effects simultaneously 
could be derived by comparison of model (2) with model 
(1) by anova()-function (R Core Team 2019). For calculation 
of test statistics, this function is based on the assumption 
that log-likelihoods of two nested models are asymptoti-
cally Chi-squared-distributed. Please note that the mapping 
procedure across isolates did not require genotypic means, 
instead we used the isolate-specific records as response and 
modeled the genotype (= plant) as random adjusting for the 
correlation of the isolate-specific records due to sampling 
from the same plant.

For markers being significant in clmm, the effect sizes �a 
and �d , the odds of the sum of effects � (odds = exp(�) ) and 
the ordinal superiority measure (OSM, Agresti and Kateri 
2017) were reported. The OSM was calculated as 
OSM ≈

exp(�∕
√

2)

1+exp(�∕
√

2)
  and gives the probability [0,1] that the 

values of the ordinal infection type (IT) are smaller for plants 
having marker allele zero compared to plants having marker 
allele one (or two). As this measure only gives a probability 
to reach smaller IT in general we additionally calculated 
OSM1 that defined the probability of being below a certain 
(predefined) IT. The most reasonable definition for resistant 
plant reactions was the absence of uredinia with chlorosis 
and necrosis (IT ≤ 2) as well as the IT of the susceptible 
check (2.5 and 3) and thus the OSM measure was extended 
by the intercept �3 (IT ≤ 2), so that OSM1 ≈

exp((�3+�)∕
√

2)

1+exp((�3+�)∕
√

2)
 . 

To measure the proportion of genetic variance  pG that was 
explained by a marker fit, the difference between estimated 
genetic variance of model (2) and model (1) was divided by 
the genetic variance estimated from model (1). As an arbi-
trarily one of the two homozygous marker states was coded 
as 0 and the other as 2, the coding was switched when cal-
culated effects of �a and �d had opposite signs. The sign of 

(2)logit
[

P
(

Yikm ≤ j
)]

= gi + �j + �k + �ama + �dmd
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the effects did not affect the significance testing of the 
markers.

We aimed to fit additional effects for marker–isolate inter-
actions, but for most of the markers the small sample sizes 
and low counts for certain IT categories impeded model con-
vergence and thus the implementation of a standard routine 
over all markers. To not neglect the isolate-specific resist-
ances, we fitted an isolate-specific model by sub-setting the 
data frame and applying model (2) without isolate effect �k . 
Here, also the random genotype effect was dropped (one 
genotype = one isolate) and thus the cumulative logit model 
(clm) was fitted with the vglm () function from the VGAM 
package (Yee 2010). In the function call, the family option 
was set to “cumulative(parallel = TRUE)”. The p-values 
for the effects as well as the comparison of the full model 
with an intercept model could be calculated by applying the 
anova() function. Please note that in the following the abbre-
viation for models with random effect is clmm (cumulative 
logit mixed model) and for models without it is clm (cumu-
lative logit model).

We additionally compared the isolate-specific testing 
based on clm with results from a non-parametric rank-based 
test similar to a “Dunnett” test but with user defined contrast 
matrices modeling the codominant and dominant marker 
effects from model (2). When markers were coded as factor 
levels 0, 1 and 2, the contrast matrix was defined as:

with the codominant contrast in the first and dominant 
contrast in the second row. The test was applied with the 
R package nparcomp and the mtcp() function (Konietschke 
et al. 2015).

K =

(

−1 0 1

1 −2 1

)

Significance threshold

To adjust the significance threshold for multiple testing, we 
used the simpleM method proposed by Gao et al. (2008). 
The method was based on the principle of the Bonferroni 
correction, where the defined genome-wide significance 
threshold α is divided by the number of tests (markers) q in 
order to obtain the SNP-wise significance level. But instead 
of considering all markers, the number of q is reduced by 
PCA to qeff, the effective number of markers. As proposed 
by Gao et al. (2008), it was defined by the number of eigen-
values that explain 99.5% of the variation for SNP data. To 
run the PCA, the marker data were coded as 0, 1, 2, split 
into linkage groups and the correlation matrix was produced 
using the cor() function in R (R Core Team 2019) with the 
option use = "pairwise.complete.obs". The chromosome-
wise calculated qeff’s were summed up to qeff_G which was 
then used as divisor for α.

KASP analysis and field validation

In autumn 2018, an independent seed sample (Table 1) 
was taken from every population and grown in multi-pot 
trays until the plants had enough tillers to be divided in 
two or three parts (vegetative clones). Leaf samples were 
taken for DNA extraction and analyzed with KASP mark-
ers that were developed from the respective markers of 
the SNP chip. From the plants divided in two parts, one 
clone served for validation in an artificially inoculated field 
trial (experiment A) and the other for crossing in an isola-
tion cabin (experiment B). About 20 percent of the plants 
from each population (Table 1) were divided in and used 
as replicates in experiment A to assess the accuracy (cor-
relation of scores) of single-plant ratings. The stem rust 
infection was visually assessed as percent affected stem 
surface between the leaf below the flag leaf and the node 

Table 1  Sample sizes for leaf-segment test, genotyping, field validation and isolation cabins

Number of plants (N) tested by the leaf-segment test and thereof (successfully) genotyped with the SNP chip (N LST and Geno, after outlier 
removal), used for validation in experiment A (exp. A) in the field (N Field Geno) and of plants that were replicated by dividing them into two 
pieces (N Field Rep) and the markers that were used to select N plants (vegetative clones) to mate in the isolation cabin (N Isolation cabin). For 
WA, no KASP was developed
a No result in KASP analysis

Pop N LST and geno N field (exp. A) geno N field (exp. A) rep Marker N 
isolation 
cabin

HY2407 71 (68) 108 21 isotig12934 + isotig12866 13
HY75 73 (70) 120 24 isotig12934 45
OK 74 120 24 C9750_251 –a

TI 74 66 16 isotig14536 12
WA 74 144 29 – –
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above that was covered with uredinio- or teleutospores. The 
trial was inoculated with an isolate mixture including the 
three isolates used in the LST plus two additional isolates 
(Table S1, for detailed experimental methods see Gruner 
et al. 2020). For experiment B, the remaining second (or 
third) clone was planted in an isolation cabin. This was a 
squared field plot that was covered by a polyethylene-foil 
cabin during flowering. It allowed vernalization and a vital 
plant growth in the field (compared to artificial greenhouse 
conditions) and isolated the clone from foreign pollen. 
After KASP analysis (before flowering) all clones not hav-
ing the marker allele for resistance were removed, so that 
only single plants with homozygous resistance (marker) 
alleles mated with each other in the following summer. The 
number of plants investigated and the respective markers 
used can be found in Table 1. Flanking sequences for SNPs 
of KASP marker development can be found in Table S2. 
The marker isotig12934 was identified in a previous study 
(Gruner et al. 2020). From WA, no KASP marker was 
developed, but it was included in field experiments as the 
high frequency of susceptible plants (in LST) was consid-
ered useful as susceptible check. The seeds produced in 
isolation cabins were harvested in summer 2019, and about 
120 kernels were sown in two rows in autumn 2019 in the 
field and again assessed in artificial inoculated field trials 
in 2020 using the same isolates as before.

Results

Leaf‑segment test

The observed virulence or resistance symptoms were 
assigned to all defined ITs. The susceptible check ‘Palazzo’ 
had ITs of 2.5 or 3. The distribution of the respective ITs 
differed between populations (Fig. 1). In WA, no IT of 0 or 
4 was observed as well as no IT of 0 and only a single IT 
of 4 in OK. The populations HY75 and HY2407 showed a 
high amount of resistant plants (IT ≤ 2) and WA had mainly 
susceptible plants (IT > 2). For TI, two almost equally sized 
groups of resistant and susceptible plants could be found. 
The ratios displayed in Fig. 1 were based on the plants that 
were chosen for genotyping (n = 74). In the first step, 100 
plants per population were analyzed by LST. The ratios of 
those plants were more unbalanced in terms of resistance 
(IT ≤ 2) and susceptibility (IT > 2, data not shown) and could 
not be equalized by choosing mainly plants having the minor 
IT (for WA: plants with IT ≤ 2, for HY2407, HY75, OK: 
plants with IT > 2). Within the populations, differences 
between the isolates could be observed (Fig. 1) and were sig-
nificant for all populations except OK (Table 2). For TI and 
WA, only single comparisons between the isolates differed 
significantly. By the chosen model, we could also estimate 
the genetic variance for each population and it was highest 
in TI (Table 2). Differences between the populations could 
also be seen in the range of infection types.

Fig. 1  Frequency of different infection types for the three different isolates Iso3c.3, Iso3h.3 and Iso43.1 in the five populations HY2407, HY75, 
OK, TI, WA. Numbers on top of the bars are the exact counts for the respective categories
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Marker and population structure

A high amount of polymorphic markers (7641) remained 
from the 10 k chip after filtering (Table S3), and within the 
single populations 5708–6286 markers were polymorphic. 
However, the effective number of markers (qeff), used later 
to calculate the critical threshold in the mapping procedure, 
was estimated to be between 387 and 448 markers only. 
Heterozygosity ranged between 37 and 40 percent within 
the single populations, and the minor allele frequency was 
about 30 percent (Table S3). By using a correlation matrix 
and PCA, all populations could be clearly separated (Fig. 2) 

except three genotypes (= plants) from HY75 and HY2407 
that were erroneously grouped. Because the same number 
of genotypes was outlying in both populations, they were 
considered as outliers and removed from further analysis. 
The overlap between HY75 and HY2407 could had been 
also been due to their similar origin.

Mapping

When testing markers for significant association, the p-value 
accounting for codominant and dominant marker effects 
simultaneously (comparison of model 2 with model 1) was 
most informative. We could find non-isolate-specific and 
isolate-specific associations between phenotype and marker 
(Fig. 3, Figure S3–Figure S6). Most markers being signifi-
cant across isolates were also significant for some isolates, 
but not for all and not vice versa. In the following, popula-
tion-specific results are reported. A summary can be found 
in Table 3 and contingency tables for the respective marker-
IT combinations in Table S4–Table S19.

Associations in HY75 were not considered because 
almost all p-values were below the defined significance 
threshold (Figure S3) and the only four markers that could 
pass the threshold were almost completely heterozygous 
with only 3 to 6 homozygous alleles and could considered as 
genotyping errors that remained after marker filtering based 
on MAF and missing values. The results from WA (Figure 
S4) were not considered either, because the infection type 
was generally on a high level (Fig. 1) and not enough resist-
ant plants could be included in the analysis. For TI the results 
were most conclusive. There, a single highly significant peak 
(several markers) could be observed on chromosome 1R 
(Fig. 3). The marker isotig14536 was the most significant for 
all isolates combined and for Iso3h.3 and Iso43.1 and also 
passed the threshold for Iso3c.3, where marker isotig19397 
was most significant. If considered separately, both the 
codominant and dominant effects were highly significant 
and the similar effect sizes indicated that this gene was 
fully dominant (Table 3). Compared to other populations, 
this marker had generally the biggest effect size (Table 3) 
and other parameters that were estimated from the model 
further indicated a high association between marker alleles 
and LST. The presence of the resistance-linked marker allele 
(codominant + dominant) reduced the IT measured by LST 
in 98% of the cases compared to the non-resistance allele 
(OSM). If we consider only the reduction of the IT to “2” 
or smaller (expressed by OSM1) and thus account for the 
IT-specific intercepts of our model, 100% of plants carrying 
the resistance-linked marker allele were assigned to this cat-
egory (Table 3). However, this single marker only explained 
48% of the genetic variance. The remaining variance could 
have been explained by other (isolate-specific) genes or by 
(unknown) non-genetic effects. In addition to the peak on 

Table 2  Comparison of virulence reactions of three isolates (Iso3c.3, 
Iso3h.3, Iso43.1) on the plants of five populations. 

The significance was tested by a cumulative logit model with ran-
dom genotype (= cluster) and taking the leaf-segment test-scores (0, 
1, 2, 2.5, 3, 4) as ordered factor levels from one to six. Isolates were 
compared within populations (rows), and all isolates not sharing any 
letter are significantly different based on the Wald-test statistic at the 
5% level of significance. Additionally the estimated genetic variance 
 (VarG) with the standard error (StErr  (VarG)) are reported

Population Iso3h.3 Iso3c.3 Iso43.1 VarG StErr(VarG)

HY2407 a b c 1.5 1.2
HY75 a b c 1.5 1.2
OK a a a 3.1 1.7
TI ab a b 15.8 4.0
WA a b b 2.8 1.7

Fig. 2  Principal coordinate analysis based on Eigen decomposition 
of a genetic covariance matrix calculated from marker-mean and -fre-
quency adjusted SNP marker data. Genotypes from different popula-
tions are indicated by different color and symbol. The variance pro-
portion (%) explained by the first component (PC1), and the second 
component (PC2) is given in brackets
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chromosome 1R, a single unmapped marker (Contig1811) 
was significant, but this again had the highest correlations 
with the significant markers from chromosome 1R, i.e., the 
correlation with isotig19397 was 0.66. Another peak with 
several significant markers could be found in population 
HY2407. It was located at the distal end of chromosome 7R 
(Figure S5). The marker isotig10644 was significant across 
isolates, and for Iso3c.3 and Iso43.1. No significant marker 
for Iso3h.3 could be found at this locus. The OSM of this 
marker was 79% and OSM1 of 86% (Table 3). Another sig-
nificant marker (isotig12866) at this locus (across isolates 
and for Iso3c.3) yielded a higher dominance effect and could 
also reach a higher OSM of 82% and OSM1 of 92%. This 
marker was used as KASP marker for field validation. Here, 
the codominant and dominant marker effects were both 
highly significant and the dominant effect size was almost 
as high as estimated for the codominant (Table 3). Despite 
the smaller dominant effect of isotig10644, it explained 
more (56%) genetic variance than isotig12866 (39%). Fur-
ther isolate-specific markers on chromosome 4R (Iso3h.3, 

Iso3c.3) and 6R (Iso3c.3) passed the significance threshold 
(Figure S5). In OK, only a single marker (C9750_251) was 
significant across isolates (Figure S6). It was also significant 
for Iso43.1 where additional significant markers could be 
found on chromosome 3R and 4R. Some located on chro-
mosome 3R were also significant for Iso3c.3, however just 
below the threshold when isolates were combined. Special 
for this marker was that the codominant effect was smaller 
than the dominant effect that indicated overdominance; how-
ever, high standard errors of the effects did not prove this 
difference to be significant. Comparable with the markers 
reported before also here the OSM and OSM1 were high 
(84%, 97%), and the explained genetic variance was medium 
(42%, Table 3).

On the isolate-specific level, the p-values calculated by 
clm were compared with p-value derived from the non-
parametric test (mtcp, Figure S7—Figure S11). Rather than 
having the exact same p-values, it was important that the 
same markers were significant for both methods. Nearly all 
markers that passed the threshold with the clm method also 

Fig. 3  Manhattan plot for marker-wise significance testing of asso-
ciation between infection type and SNP marker score of popula-
tion Tiroler (TI). A codominant (coded 0,1,2) and dominant (coded 
0,1,0) marker effect was fitted simultaneously. p-values were based 

on ANOVA of the full model compared with a model without marker 
effects. The association was tested for all isolates combined (with 
fixed isolate effect and random genotype effect) and for all isolates 
(Iso3h.3, Iso3c.3, Iso43.1) separately
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passed the threshold with the mtcp method and were even 
slightly smaller. Hence, we concluded that the assumption of 
a multinomial distribution that was made for clm and clmm 
test statistics was appropriate for our data and the sample 
sizes were sufficient to make similar conclusions compared 
to the exact non-parametric test. However, on average about 
eight times more markers at one to six additional loci per 
population and isolate were passing the threshold by mtcp 
method compared to clm so that it might be that some loci 
remained undetected with clm. However, listing and dis-
cussing all additional isolate-specific mapping signals was 
beyond the scope of this work.

KASP analysis and field validation

The first prerequisite for validation of the markers was the 
successful conversion into KASP assays. Whereas the mark-
ers isotig12866 (HY2407) and isotig14536 (TI) were segre-
gating in a newly taken plant sample, the marker C9750_251 
(OK) did not produce any results when converted into a 
KASP assay. We further included marker isotig12934 for 
the analysis of HY2407 and HY75, because it was already 
converted into a KASP assay and shown to be linked to 
Pgs1, a gene at distal end of chromosome 7R and originally 
derived from HY75 (Gruner et al. 2020). In HY2407, two 
other markers were significant in the exact same chromo-
somal region according to the linkage map from Bauer et al. 
(2017).

In experiment A, the KASP-analyzed plants (Table 1) 
were scored for stem rust infection in artificially inoculated 
field trials. The infection of the single plants ranged between 
0 and 98% stem rust severity (Fig. 4a), but the amount of 
resistant and susceptible plants differed highly between 
the populations (Fig. 4b-f). The comparison between the 
results from LST and the field scoring was difficult, not only 
because the field experiments were based on a new seed 
sample from the same population, but also because addi-
tional APR genes/QTLs could be active, seedling resistance 
could be inactive and we used two additional rust isolates 
for field inoculation. Thus, the comparison here focuses only 
on all-stage resistance genes that caused full resistance in 
the field (< 5% infection) as observed in other experiments 
with Pgs1-resistant material in the same location with the 
same rust isolates (data not shown). In HY75, only three per-
cent of the plants (n = 4) showed a stem rust severity > 5%, 
whereas in WA 63% (n = 90) were infected > 5%. The popu-
lations HY2407, OK and TI also showed much more resist-
ant than susceptible plants. When the marker allele was com-
pared to the infection level, Chi-squared test statistic with 
grouping by an infection level ≤ 5% or > 5% for resistant and 
susceptible plants resulted in p-values < 0.05 for the mark-
ers in HY75 and TI and a p-value of 0.056 for the markers 
in HY75 (Fig. 4b, c, e). Plants classified as resistant by the Ta
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marker allele and being susceptible in the field indicated an 
insufficient linkage between marker and resistance, a resist-
ance gene being active in seedling stage only, or must be 
considered as an inaccuracy of the experiments. However, 
by replicating some self-incompatible genotypes (plants, 
Table 1) through vegetative cloning, assessments made on 
both clonal parts showed a very high correlation (r = 0.97, 
Fig. 4a). The observed resistance of plants that were clas-
sified as susceptible by the marker on the other hand could 
also been explained by additional resistance genes, espe-
cially by adult-plant resistance that could not be detected in 
the seedling stage. For example, WA showed a much higher 
number of resistant plants in the field than when testing at 
the seedling stage (Figs. 1, 4f).

To further validate the markers and to demonstrate the 
applicability in breeding processes, plants with a homozy-
gous resistance marker allele were intercrossed in isolation 
cabins (each population separately) and the harvested seeds 
were tested in the following year again in artificial inocu-
lated field trials. There were no plants with disease symp-
toms for TI (Fig. 5) and HY75, and only a single susceptible 

plant in HY2407 (data not shown) could be found. Hence, 
the resistance was (almost) fixed in these populations.

Discussion

Experimental setup

One challenge of the LST was to score the most-relevant and 
identifiable categories with a proper scaling. We adapted 
the IT developed for stem rust resistance scoring in wheat 
(Stakman et al. 1962) because it combined the degree and 
type of infection into one scale. Previous studies have shown 
(Gousseau et al. 1985; Roelfs 1988) that the IT was influ-
enced by environmental factors like temperature or light, so 
that our results are only valid for the reported conditions that 
we kept as constant as possible when testing the material. 
The infections were high enough to observe all different ITs. 
Including the same susceptible check variety in all analyses 
(hybrid cultivar ‘Palazzo’) allowed us to keep track of the 
infection level and as already been addressed in the methods 

a b c

d e f

Fig. 4  a. Stem rust infection of plants in the adult-plant stage from 
the populations HY2407, HY75, OK, TI and WA (colors and sym-
bols) that were vegetatively cloned (divided in two pieces) and ran-
domly placed on the field. Each piece was assessed (Rep1 and Rep2), 
and Pearson correlation (cor) was calculated. b–f. Histograms of 
the infection level of the different genotypes in the five populations 
HY2407, HY75, OK, TI and WA. For cloned plants with two repli-
cates (one genotype = two clones), the mean was calculated. For the 

populations that were analyzed with a KASP marker, the respective 
marker is reported in the graph title and the bars are colored by the 
respective marker alleles. Thereby the green color stands for the 
resistance allele identified in the seedling stage. Genotypes were clus-
tered in resistant (stem rust infection ≤ 5%) and susceptible (stem rust 
infection > 5%) and based on that clustering p-values were calculated 
by Pearson’s Chi-squared test
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section, we used the lowest IT of the susceptible check (2.5) 
as basis for classification into resistant and susceptible. The 
field experiments were scored as percentage of stem sur-
face covered with urediniospores. Likewise to the LST, all 
results must be based on the environmental factors given in 
that location. Field inoculum was composed of five isolates, 
including the three isolates also used in the LST. Those addi-
tional isolates could have resulted in a difference between 
the field and the LST; however, they differed only in the 
pattern and not by new virulence on other differential lines 
compared with the combination of all isolates used in LST 
(Figure S1) and other breeding material did barely reveal 
any differences between those isolates (data not shown). For 
the resistance gene Pgs1, it was observed that the resistance 
in the field can reduce the infection almost to zero infection 
when no virulent isolate occurs (Gruner et al. 2020). How-
ever, full resistance of a plant in the field could also be the 
result of APR gene(s). In rye genetic resources consisting 
of cross-pollinating populations, we could expect all the dif-
ferent resistance types and combinations thereof (discussed 
later in more detail). As compromise of limited genotyping 
capacities but still aiming for mapping as much genes as 
possible in the genetic resources, we focused in this study 
on single R-genes that were detectable in the LST and have 
large effects in the field, i.e., classical all-stage resistances. 
This justifies our small population sizes of n = 73. With more 

populations tested (instead of larger populations) we could 
ignore the ones that had very rare alleles (WA) and those 
where probably several R-genes were segregating (HY75). 
In previous field tests (Miedaner et al. 2016), segregation 
into resistant and susceptible plants could be observed. In 
the field, we could not score ITs, because we used a mixed 
inoculum.

Statistics

The cumulative logit mixed model was considered suitable 
for the LST data analyzed. The ordinal nature of the LST 
infection type could be used and codominant and dominant 
marker effects could be estimated by regression. Further, it 
allowed testing of several effects simultaneously (includ-
ing a random term) and the results could be transformed in 
interpretable results. Given by the nature of isolate-specific 
resistances, it would had been ideal to extend our model 
by marker–isolate interactions, but the unbalanced distribu-
tion of ITs in combination with the marker scores and the 
small sample size in general resulted in convergence failure 
for many markers, so that additional isolate-specific models 
were fitted to not neglect this issue. The results from those 
models were compared with a results from a nonparametric 
test, and we showed that the same markers passed the sig-
nificance threshold.

The threshold calculation proposed by Gao et al. (2008) 
was considered reasonable and easy to implement. Gao 
(2011) showed that the method produced almost equivalent 
results to a permutation test. However, a single step in the 
permutation procedure was based on the same test statistics 
as the final analysis. Thus, if the test statistics was biased in 
one direction, the final permutation threshold would shift in 
this direction and thus correct for the bias. The simpleM cor-
rection was only based on marker density and thus a correct 
test statistic was even more important.

The combination of isolates increased the number of 
data points and thus the power of the statistical testing. 
With single exceptions, all markers being significant across 
isolates were also detected for at least one isolate, but not 
every isolate-specific significance could be found across 
isolates. Because the sample sizes for a single isolate were 
one-third of the combined analysis and the measurements 
were not replicated on a single genotype, we considered the 
isolate-specific resistance signals with caution. This, how-
ever, impeded the clarification whether resistance detected 
across isolates was really active for all isolates separately 
or if there were isolates that had overcome the resistance 
already. Assuming that the seedling resistances could also 
be detected in the adult-plant stage, artificial inoculation 
with the same isolates in mixture as done in the validation 
experiment should have caused at least partially susceptible 
reactions on those plants. However, as we observed a high 

Fig. 5  Offspring of the population TI where parents were selected for 
resistance with a KASP marker (isotig14536, right) compared to a 
susceptible single-cross hybrid (left). The picture was taken in an arti-
ficial inoculated field trial where genotypes (field entries) were grown 
in rows. The stems of the susceptible single-cross hybrid were highly 
covered with black teleutospores, whereas the TI selection remained 
completely disease-free
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number of fully resistant plants, we concluded again that the 
missing isolate-specific resistances were a matter of small 
sample size and not of overcome resistances.

In addition, the estimation of the genetic variance was 
limited by the experimental design. Because only a single 
observation was made for each genotype-isolate (plant-iso-
late) combination in the LST, it was not possible to clearly 
separate between true genetic variance, isolate-specific reac-
tions and experimental errors. Hence, also the estimated 
explained genetic variance was influenced by all different 
factors simultaneously.

Analyzing self‑incompatible populations

Our self-incompatible populations were based on improved 
landraces and pre-breeding material so that even several 
resistance genes could be segregating in a population. This, 
however, would even more hamper the detection of the sin-
gle resistance genes. The difficulty compared to linkage 
mapping with additive and quantitatively inherited traits 
was that our IT scale was limited at both ends, and the allele 
frequencies of potential genes could range from zero to 
one. A single (dominant) gene that would be represented 
with high gene frequency in a population, could fully mask 
the resistance of another gene with low frequency, or spu-
rious associations would be found that are caused by the 
joint distribution of two resistances. Models with marker 
combinations could (partially) address this problem, but it 
would involve more computational effort and the number of 
false positive associations would rise. The best would be to 
investigate populations with single (non-additive) genes or 
with quantitative traits and additively inherited genes, but 
especially in genetic resources every mode of inheritance 
must be expected.

The preselection step after the phenotypic analysis aimed 
to achieve higher significance and similar methods were 
also recommended for linkage mapping (p. 399f, Lynch 
and Walsh 1998). However, in cases with several segregat-
ing resistance genes this may be more important when the 
resistance gene is the rare allele. If we assume that several 
resistance genes are segregating in a population and the joint 
distribution would result in only a few susceptible plants, 
the selection toward susceptibility could also reduce the 
frequency of rare alleles masked by joint distribution, what 
would be counterproductive. As already addressed before, 
this is a major drawback of qualitative traits and we decided 
to adjust our mapping strategy on the assumption of single 
segregating genes and, consequently, also smaller population 
sizes but more populations to be tested. Further, selection 
in cross-pollinating populations leads to departures from 
HWE and thus restricts any marker filtering based on it. 
For non-quantitative inheritance and especially in the case 
of a dominant resistance gene, phenotypic selection from 

a larger population may require a larger number of pheno-
typically resistant genotypes to reach the same number of 
homozygous resistant alleles compared to unselected mate-
rial in HWE (Figure S12). For this reason, we excluded the 
results from WA. The markers that could pass the signifi-
cance threshold all segregated with three (two homozygous, 
one heterozygous) alleles, but this must (theoretically) result 
in a high number of resistant plants (Figure S12) and this 
was not observed in LST at least if resistance was defined 
as IT ≤ 2 (Fig. 1). In comparison, the selection in the other 
direction (phenotypically on the recessive allele), like done 
in HY2407, will directly increase the recessive allele.

Marker linkage

Another factor that influenced the sample size required for 
mapping was the marker density and the linkage between 
markers (pp. 469ff Lynch and Walsh 1998). The marker 
density was considered high enough in our populations, 
because we found peaks with several significant markers 
(HY2407, TI) and the effective marker number that was 
required for calculating the critical threshold (p-value) was 
estimated to be only seven percent of the total number of 
polymorphic markers (Table S3). Further, the amount of 
linkage depends on the effective population size. Weir and 
Hill (1980) showed that linkage between two loci is inversely 
proportional to the effective population size. The maximum 
effective population size in our experiments was about 90 
because of the previous use of isolation cabins for propaga-
tion with a maximum of 90 random mating plants. Further 
(unknown) multiplication or even breeding steps in the past 
could have reduced the effective population size even more 
and thus increased the linkage.

The disadvantage of the high linkage was that the sig-
nificant markers were only significantly associated in the 
respective populations. For example, all markers listed in 
Table 3 were also segregating in all other populations, but 
without significant resistance association. This also shows 
that a mapping approach across all populations would be 
more challenging and would require much higher marker 
densities. Further, when we tried to validate the markers 
with single-plant testing in the field, some susceptible plants 
with resistant marker alleles were detected (Fig. 4). Under 
the assumption that the detected seedling resistance was also 
effective in the field, the linkage of marker and resistance 
was broken for those plants. The field-resistant plants with 
susceptible marker allele on the other hand could also be 
explained by incomplete linkage and additionally by adult-
plant resistance that could, of course, not be tested in the 
LST.
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Field validation

When we tried to validate the KASP markers in field experi-
ments, we were confronted with a highly unbalanced number 
of resistant and susceptible plants within the individual pop-
ulations (Fig. 4b-f). The high frequency of resistant plants in 
the unselected material may have increased the probability 
of crossing resistance donors in isolation cabins so that the 
fixation of the three populations for resistance may have only 
partially been based on the marker selection and we must 
expect a high number of false positives. Ideally, we could 
define the IT in the seedling test that would correspond to 
the all-stage resistance observed in the field. With this infor-
mation, the OSM1 measure, which gives the percentage of 
plants that fall into a certain IT category or below (we used 
IT ≤ 2), would be an appropriate predictor. Additional to the 
unbalanced number of resistant and susceptible plants, the 
presence of potential adult-plant resistance masked the count 
of false negatives. The separate analysis in seedling stage in 
the first place prevented us from observing more segregating 
resistances in a single population and thus reduced the risk 
of masking genes in the mapping analysis. From the accu-
racy point of view, we could show that also scoring of single 
adult plants could result in very high repeatability. This high 
repeatability was also confirmed by other field experiments 
located nearby (in the same year). However, instead of single 
plants, rows of inbred lines were scored (data not shown).

In our analysis, we included population HY75 that was 
used as resistance donor for Pgs1 in a segregating inbred 
generation (Gruner et al. 2020). Unfortunately, we could not 
detect this gene in HY75 directly. However, we could fix the 
population for resistance with a Pgs1-linked marker from 
the other study. As discussed before, a potential presence of 
several resistance genes in a population and the small sample 
size may have impeded the identification of significant mark-
ers. Nevertheless, in HY2407 we could find a significant 
marker located at a similar position like Pgs1, so we used the 
combination of two markers for fixation of that population. 
The similar origin of both populations from the same breed-
ing station in the Russian Federation could explain why we 
have detected the same locus.

Resistances

In sum, we could identify three resistance loci. By using 
the markers from a previous study (Gruner et al. 2020), we 
referred one loci found in HY2407 to Pgs1. To the best of 
our knowledge, this has been the only stem rust resistance 
locus that has been characterized by markers and conse-
quently we denominate the resistance gene found in popu-
lation TI at the distal end of chromosome 1R as Pgs2 and 
the one found in population OK at the distal end of chromo-
some 2R as Pgs3. There are several wheat varieties carrying 

translocations from rye with resistance against wheat stem 
rust. Noteworthy in regards to the location of Pgs2 on the 
short arm of chromosome 1R and of Pgs3 on the long arm 
of chromosome 2R are rye translocations in wheat with the 
same chromosomal segments and carrying stem rust resist-
ance genes. Examples are Sr31, Sr50 and SrRAmigo located on 
1RS and Sr59 located on 2RL (McIntosh et al. 1995; Mago 
et al. 2015; Rahmatov et al. 2016). Without knowledge of a 
gene sequence, direct gene comparisons are difficult, but as 
those chromosomes have already been successfully used as 
resistance resources, the rye material studied here may also 
be an interesting resource for wheat breeding as the genes 
may also be active against P. graminis f. sp. tritici. Only 
few rye translocations are known in wheat that involved the 
chromosome 7R (Zeller and Koller 1981).

By using a LST in the first place, we were restricted 
to resistances expressed in the seedling stage. This type 
of resistance is mediated by single R-genes, mostly from 
the NBS-LRR (nucleotide binding site leucine rich repeat) 
class (Ellis et al. 2000). In rye, a reference sequence was 
published, but so far only a preprint publication is avail-
able (Rabanus-Wallace et al. 2019). Thus, we could not 
BLAST our sequences and check for linkage with potential 
candidate genes. But as shown by Rabanus-Wallace et al. 
(2019), several NBS-LRR-like pseudomolecules could be 
assigned to the distal ends of the chromosomes so that a 
BLAST would probably lead to several candidates. R-genes 
are often discussed in relation to concerns about durabil-
ity because several genes of the R-gene class are known to 
be defeated by the pathogen (Ellis et al. 2014). This, how-
ever, needs also to be related to the crop. In contrast to self-
pollinating crops, for rye it may also be possible to create 
cultivars (three- or four-way hybrids) with several segre-
gating SR resistance genes and, in consequence, different 
sets of genes in the individual plant (Wilde et al. 2006). 
Practically, this could be handled either by using another 
gene for each component of three-way or four-way hybrid 
cultivars or by mixing the resistance alleles in population 
or synthetic cultivars. Theoretically, this should lead to a 
dilution and retarded emergence of virulent races, as the 
non-virulent race can still propagate on less-resistant plants 
of a cultivar. If a sexual cycle of the pathogen takes place 
this further dilutes the virulence of a pathogen on a genetic 
level. This idea is quite old and known under the term mul-
tilines in self-pollinating crops (p. 115ff in Miedaner 2011; 
p. 172ff Vanderplank 1984). However, it is not proven that 
this increase in resistance complexity of a cultivar will really 
be rewarded by long lasting effectiveness of resistances, and 
the effectiveness must be compared with pyramided resist-
ances where every single plant of a cultivar has all resist-
ance genes simultaneously (Vanderplank 1984). Addition-
ally, the discussion on the durability of stem rust resistance 
in rye is highly speculative. To our knowledge, almost all 
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German cultivars were susceptible to stem rust and only 
four newly released cultivars (KWS Gatano, KWS Eterno, 
KWS Binnto, KWS Edmondo) showed some or complete 
resistance. These were tested in a single location trial only 
(field test 2019, data not shown), so that almost no selection 
pressure was exercised on the pathogen until now. Given 
the low selection pressure in the recent past, it would also 
be interesting to directly release a cultivar with a high resist-
ance gene complexity, or even complete pyramiding in all 
hybrid components, before the rust has already overcome the 
first single resistance gene. Practical examples of pyramid-
ing or combining approaches of resistance genes in leaf rust 
showed that if lines with defeated resistances are combined, 
the disease level could be reduced but it did not lead to full 
resistance (Wilde et al. 2006). In case of hybrid breeding 
with three- and four-way hybrids, the inclusion of several 
resistance genes would demand a high breeding effort, but 
when using dominant genes the different resistance genes 
could be used in the different hybrid components.

Application

As mentioned before, the markers linked with resistance in 
one population were also segregating in the other popula-
tions without the respective linkage so that marker-assisted 
breeding would also require a proper choice of crossing 
partners with the opposite marker allele to track the resist-
ance. Marker-assisted resistance breeding may especially be 
interesting where two stem rust resistance genes are stacked 
in a breeding line and double stacks cannot be phenotypi-
cally separated from single genes in case both genes provide 
a full resistance.

The great advantage of the mapping approach used here 
is its simplicity and the low workload required. The random 
mating within the populations reduces unwanted population 
structure, like often observed in genome-wide association 
studies of self-pollinating crops. Even more important, no 
development of inbred lines is necessary that would take 
several years because a double-haploid approach does not 
routinely work in rye. We could show that it is possible to 
map single resistance genes directly in self-incompatible 
genetic resources. This gives valuable information before 
the introgression process has started. We presented statistical 
models suitable for ordered categorical data that are often 
generated in phenotyping seedling resistance. In particu-
lar, the isolate-specific modeling was mainly limited by the 
small population-wise sample size. If more complex traits 
are analyzed, the sample size must be increased, but the 
mapping must still be done within populations. Small effec-
tive population sizes positively influence the required marker 
density and thereby increase the chances to successfully 
detect highly linked markers. In sum, the proposed method 
can be used in a pre-breeding analysis prior to inbred line 

development in hybrid breeding or for direct selection in 
breeding populations or synthetic cultivars.
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