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Abstract
Key message Hyperspectral data is a promising complement to genomic data to predict biomass under scenarios of 
low genetic relatedness. Sufficient environmental connectivity between data used for model training and validation 
is required.
Abstract The demand for sustainable sources of biomass is increasing worldwide. The early prediction of biomass via indi-
rect selection of dry matter yield (DMY) based on hyperspectral and/or genomic prediction is crucial to affordably untap 
the potential of winter rye (Secale cereale L.) as a dual-purpose crop. However, this estimation involves multiple genetic 
backgrounds and genetic relatedness is a crucial factor in genomic selection (GS). To assess the prospect of prediction using 
reflectance data as a suitable complement to GS for biomass breeding, the influence of trait heritability ( H2 ) and genetic 
relatedness were compared. Models were based on genomic (GBLUP) and hyperspectral reflectance-derived (HBLUP) 
relationship matrices to predict DMY and other biomass-related traits such as dry matter content (DMC) and fresh matter 
yield (FMY). For this, 270 elite rye lines from nine interconnected bi-parental families were genotyped using a 10 k-SNP 
array and phenotyped as testcrosses at four locations in two years (eight environments). From 400 discrete narrow bands 
(410 nm–993 nm) collected by an uncrewed aerial vehicle (UAV) on two dates in each environment, 32 hyperspectral 
bands previously selected by Lasso were incorporated into a prediction model. HBLUP showed higher prediction abilities 
(0.41 – 0.61) than GBLUP (0.14 – 0.28) under a decreased genetic relationship, especially for mid-heritable traits (FMY 
and DMY), suggesting that HBLUP is much less affected by relatedness and H2 . However, the predictive power of both 
models was largely affected by environmental variances. Prediction abilities for DMY were further enhanced (up to 20%) 
by integrating both matrices and plant height into a bivariate model. Thus, data derived from high-throughput phenotyping 
emerges as a suitable strategy to efficiently leverage selection gains in biomass rye breeding; however, sufficient environ-
mental connectivity is needed.

Keywords Biomass · Genetic relatedness · High-throughput phenotyping · Genomic prediction · Prediction ability · Rye

Introduction

Worldwide, the consumption of energy obtained from 
renewable origins, especially bio-based sources, is rising 
(World Bioenergy Association 2019). In the European 
Union (EU), for instance, the share of renewable energy 
is expected to be between 55 and 75% of the total energy 
consumption in 2050, increasing in proportion the needs 
for biomass (European Commission 2011). New policy 
directives have established sustainability guidelines for 
bioenergy production (European Union 2010). For exam-
ple, in Germany, the principal European biogas producer, 
the permitted share of maize (Zea mays L.) as the most 
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common fermentation substrate has been limited to 44% 
by 2021 (Renewable Energy Sources Act “EEG”, EEG 
2017). Thus, suitable alternatives are welcome to diversify 
maize-based biomass production.

Among the small-grain cereals, winter rye (Secale cere-
ale L.) stands out for its vigorous growth and enhanced 
tolerance to abiotic and biotic stress factors. Europe is 
the largest rye grower worldwide covering about 81% of 
the global area with Russia, Poland, and Germany being 
the main producers (FAO 2019). In a previous study, rye 
demonstrated its high dry matter yield (DMY) potential 
even on sandy soils and under drought stress (Galán et al. 
2020a). Under these conditions, rye yielded 8.4 t dry 
matter  ha−1, and under better environmental conditions, 
yields were up to 14.7 t dry matter  ha−1. Rye can, there-
fore, represent a suitable alternative for biomass produc-
tion in a variety of agroecological conditions, including 
areas where the cultivation of other cereal crops would not 
be competitive (Geiger and Miedaner 2009). Considering 
that three quarters of the rye harvest is used for non-food 
purposes, rye appears as a sustainable alternative source 
of biomass (Geiger and Miedaner 2009; Miedaner et al. 
2012).

In Germany, only 4 rye varieties are currently registered 
for whole plant silage (Bundessortenamt 2019). Rye is, how-
ever, mainly bred for grain yield (GY; Haffke et al. 2014) 
which is, in the breeding scheme proposed here, already 
assessed in the first year of general combining ability testing 
(GCA-1), generally sharing only less-related genotypes over 
the years (Suppl. Fig. 1). Then, within each selection cycle, 
a selected fraction of GCA-1 is re-evaluated for GY and 
additionally for DMY by destructive methods in duplicated 
GCA-2 experiments the following year, mainly due to the 
high costs of assessing DMY in a large GCA-1 population. 
At these first selection stages, the enhancement of DMY is, 
therefore, heavily dependent on the adequate exploitation of 
indirect selection (Falconer and Mackay 1996).

Higher selection gains have been reported when plant 
height (PH) was used as a secondary trait instead of GY to 
indirectly estimate DMY in hybrid rye (Haffke et al. 2014; 
Galán et al. 2020a). Recently, multi-kernel models jointly 
using reflectance and genomic data as alternative sources 
of information and bivariate models including also the rou-
tinely assessed PH were suggested as superior strategies to 
leverage rye as a dual-purpose crop in an affordable manner 
for the breeder (Galán et al. 2020b). By this, the available 
genetic variation present in the GCA-1 population may be 
better exploited without the need to duplicate these large-
scale trials and, therefore, the selection gain for DMY could 
be further enhanced. In consequence, fewer and superior 
DMY-genotypes being tested in GCA-1 trials could be iden-
tified, reducing the amount of capital, time, and labor needed 
to conduct the destructive sampling of DMY in GCA-2 

trials. In this context, the non-destructive assessment of 
DMY at earlier stages arises as a crucial prerequisite.

Imaging-based phenotyping quantitatively measures the 
interaction (e.g., absorbance, reflectance, or transmittance of 
photons) between the incident light and plant tissues, which 
at specific regions of the electromagnetic spectrum is linked 
to a wide range of morphological and physio-chemical can-
opy properties (Li et al. 2014). As observed by Rincent et al. 
(2018), this interaction is mainly mediated by the chemical 
composition of the tissues, which is itself determined by 
endophenotypes, intermediate molecular phenotypes asso-
ciated with a quantitative trait (Mackay et al. 2009), and 
genetics. Thus, based on reflectance data, high-throughput 
phenotyping (HTP) can acquire a considerable amount of 
detailed phenotypic information of key traits from a large 
number of genotypes, emerging as a valuable breeding tool 
(Montes et al. 2007; Cabrera-Bosquet et al. 2012; Würschum 
2019).

Examples of the application of HTP in plant breeding 
are among others, the estimation of above-ground biomass 
(Babar et al. 2006; Montes et al. 2011; Busemeyer et al. 
2013; Fu et al. 2014; Barmeier and Schmidhalter 2017; Yue 
et al. 2017, 2018) as well as GY, plant responses to biotic 
and abiotic stress, nitrogen use efficiency, nutrient status, 
early plant vigor, seeds quality traits, leaf physiology and 
biochesmistry, vegetation cover fraction, and leaf area index 
(reviewed by Fahlgren et al. 2015; Yang et al. 2017; Wür-
schum 2019). Therefore, it has been proposed to remotely 
phenotype large breeding populations in a reliable and cost-
effective manner (Furbank and Tester 2011; White et al. 
2012). HTP platforms, including uncrewed aerial vehicles 
(UAVs) such as drones mounted with hyperspectral cam-
eras, can simultaneously collect hundreds of high-resolution 
images, screening the electromagnetic spectrum (from 400 
up to 2500 nm) in a continuous mode (Araus and Cairns 
2014). Consequently, this noninvasive technology represents 
a valuable tool for the improvement of complex traits (Finkel 
2009; Fiorani and Schurr 2013).

Genome-wide molecular markers integrated into genomic 
selection (Meuwissen et al. 2001) have been successfully 
applied in several study cases in hybrid rye breeding for rel-
evant traits, e.g., GY and GY components (Auinger et al. 2016; 
Bernal-Vasquez et al. 2017; Miedaner et al. 2019). Moreover, 
in previous studies, reflectance fingerprints recorded by HTP 
platforms represented a valuable tool to improve the prediction 
ability of DMY in hybrid rye of models based on agronomic 
(Galán et al. 2020a) and genomic information (Galán et al. 
2020b). These studies have shown the benefits of integrating 
hyperspectral and molecular information for predicting DMY 
of unphenotyped candidates within single or closely related 
populations. The proposed models were cross-validated, where 
rye lines derived from the same cross were randomly allocated 
to the training (TRN) or validation (VAL) sets. Considering 
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the breeding scheme at hand, where DMY is tested at later 
stages, predictions of candidates of subsequent selection 
cycles, where TRN and VAL correspond to different, largely 
independent genetic backgrounds, would be of utmost inter-
est. This “across-cycles” prediction would allow, for instance, 
estimating the DMY performance of GCA-1 candidates (being 
tested only for GY at this stage) by training the model with 
GCA-2 phenotypic data from one or several previous selection 
cycles (Suppl. Fig. 1). It is under these scenarios where the 
largest contribution of predictive breeding towards an afforda-
ble dual-purpose rye breeding program is expected. If the data 
available consist of multiple connected cycles, breeders could 
consider to combine them to improve the predictive power of 
models (Auinger et al. 2016).

However, the predictive power of GS critically depends 
on a close relationship between TRN and VAL (Habier et al. 
2007; Miedaner et al. 2019). Reduced or even negative pre-
diction accuracies were reported for GS among less related 
bi- and multiparental families in several crops, including 
wheat (Herter et al. 2019), maize (Riedelsheimer et al. 2013; 
Lehermeier et al. 2014), sugar beet (Würschum et al. 2013), 
and barley (Thorwarth et al. 2017). Similarly, genomic pre-
diction models showed modest prediction ability for complex 
traits in rye (e.g., GY) when applied between bi-parental fami-
lies even though they were connected by a common parental 
line (Wang et al. 2014). Here, the question of whether alterna-
tive or complementary approaches to GS for leveraging pre-
diction accuracies across less connected datasets emerges as 
highly relevant for biomass breeding in rye.

The aim of our study was, therefore, to answer this ques-
tion by evaluating and comparing genomic- and hyperspectral-
enabled predictions for three biomass-related traits (DMY, 
FMY, and DMC) in rye under a varying degree of related-
ness between TRN and VAL. Additionally, the advantages of 
combining different sources of information in multi-kernel 
and bivariate models to leverage the prediction of DMY were 
evaluated. We employed 270 winter rye lines from nine inter-
connected bi-parental families, including their parental com-
ponents tested as testcrosses in 8 environments (= location-
year combination). While keeping the TRN size constant, our 
specific objectives were to perform (1) prediction of progenies 
from half-sib and unrelated parents, (2) prediction using only 
progenies from unrelated parents, and (3) prediction of new 
progenies in a new environment.

Materials and methods

Plant materials, field experiments, hyperspectral 
and molecular data

The plant materials, field experiments, molecular and 
hyperspectral data analyzed in the present study have been 

described before in detail by Galán et al. (2020b). In short, 
ten diverse parental lines of the Petkus (seed parent) gene 
pool were crossed following a single-round robin design 
(Verhoeven et al. 2006). F1 progenies were derived from 
each of the chain crosses, i.e., line 1 × line 2, line 2 × line 3, 
…, line 10 × line 1. After self-fertilization of single F1 plants 
for four consecutive years  (S4 generation), 264 recombinant 
inbred lines (RILs) were obtained. The ten bi-parental fami-
lies ranged from 4 up to 32 RILs (Supp. Fig. S2) and were 
clearly distinct in a principal component analysis (PCA) 
based on molecular data with little overlap between unre-
lated crosses in the first two dimensions (Supp. Fig. S3). A 
total of 274 three-way hybrids [(A • B) × C] were produced 
from the cross of these 264 RILs and their ten parental com-
ponents with a single-cross tester from the opposite (pollina-
tor) gene pool. They were evaluated in two adjacent trials 
laid out as a resolvable incomplete block design (α-lattice 
design) with two replicates in 2017 and 2018 at each of four 
ecologically different locations (Bernburg, Petkus, Wohlde 
and Prislich) in Northern Germany (i.e., eight location-year 
combinations hereafter referred as “environments”). All 274 
testcrosses were used for estimating means, variance compo-
nents, and heritabilities (Table 2), whereas 4 genotypes were 
not considered for prediction modeling as described in later 
sections. Plots were harvested at the late milk stage (Meier 
1997) to get the respective fresh biomass yield (FMY, dt 
 ha−1) per plot. During harvest, representative samples of 
about 1000 g were weighed from each plot and oven-dried 
to a constant weight at 110 °C. Dry matter content (DMC, 
%) was determined by weight differences. Then, DMY (dt 
 ha−1) per plot was estimated as DMY = FMY × DMC/100. 
Also, PH (cm) was recorded at each plot.

During the grain-filling stage, an UAV (Camflight 
FX8HL, Sandnes, Norway) fitted with a hyperspectral cam-
era (HySpex Mjolnir V-1240, Skedsmokorset, Norway) 
collected reflectance fingerprints consisting of 400 bands 
(410 nm – 993 nm) for all genotypes in all environments. 
The UAV flew at about 25 m above plots, around solar noon-
time two times per environment (except in Bernburg 2017 
where only one flight took place). Then each plot was iden-
tified on the obtained images by a polygon. Raw data were 
radiometrically calibrated (HySpex PostProcessor Version 
1.2) and normalized based on the incident sunlight as well 
as orthorectified and georeferenced via the PARGE Software 
(ReSe Applications LLC, Wil, Switzerland). Lastly, all data 
points within each wavelength and polygon were averaged, 
resulting in one spectrum per plot. Then, these data were 
transferred to a tabular data frame, including the computed 
reflectance values of all bands for all genotypes for further 
analysis.

The 264 RILs and their ten parental components were also 
genotyped with an Illumina INFINIUM chip with 9,963 sin-
gle nucleotide polymorphisms (SNPs) assays (KWS SAAT 
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SE & Co. KG, Einbeck, Germany). Data quality analysis 
consisted of the exclusion of SNPs showing more than 10% 
missing values or a minor allele frequency (MAF) < 0.05. 
Missing values in the remaining data were then imputed by 
the software Linkimpute (Money et al. 2015). Then, data 
were again screened for MAF < 0.05. After this procedure, 
6,420 markers remained for further analyses.

Phenotypic data analysis

The analyses were based on adjusted entry means (best lin-
ear unbiased estimators, BLUEs) for all agronomic traits 
estimated within and across environments for subsequent 
incorporation into prediction models. The combined analysis 
across environments as well as the data adjustment within 
single environments were conducted following model (1) 
and model (2) from Galán et al. (2020b), respectively. The 
full model can also be found in the Supplementary File 1. 
For the analysis across environments within the same year, 
the year main effect and corresponding interactions with 
genotypes were dropped from the mixed model. Phenotypic 
data were filtered for outliers at the trial level using the Bon-
ferroni-Holm test (Bernal-Vasquez et al. 2016). Bands were 
deleted from plots identified as an outlier for DMY.

Stage‑wise procedure for biomass traits prediction

The incorporation of genomic and hyperspectral data for 
predicting DMY, FMY, and DMC was conducted by a three-
stage procedure (Piepho et al. 2012). This analysis, together 
with the corresponding linear mixed and prediction models 
employed at each stage, was previously described in detail in 
Galán et al. (2020b). All statistical analyses were performed 
within the R-environment v. 3.4.4 (R Core Team 2018).

In the first stage of this analysis, bands were adjusted 
across flight dates per environment. Then, the obtained 
adjusted entry means (BLUEs) were used in the second stage 
for the estimation of BLUEs per genotypes across environ-
ments. At this second stage, heritability ( H2 ) was estimated 
for all agronomic traits and each band across environments 
as

where v is the mean variance of a difference of two adjusted 
genotype means (BLUEs) estimated for phenotypic and 
hyperspectral data (Piepho and Möhring 2007). BLUEs 
of genotypes were calculated with the software package 
ASReml-R v. 3.0 (Gilmour et al. 2009).

In the third stage, the phenotypic and hyperspectral 
BLUEs were used for fitting prediction models to estimate 

H2 =
σ2
g

σ2
g
+

v

2

best linear unbiased predictions (BLUP) of genotypic effects 
for each agronomic trait based on genetic and hyperspectral 
data. Two single-kernel prediction models were fitted with 
genetic (genomic BLUP, GBLUP) or hyperspectral (hyper-
spectral BLUP, HBLUP) data with n = 270 individuals, 
based on the m = 6,420 conserved SNP markers or b = 32 
bands, respectively.

For GBLUP, the random genetic values (effects) were 
estimated based on genetic data incorporated into G, a 
genomic additive relationship matrix (Habier et al. 2013). G 
was calculated with the synbreed package (Wimmer et al. 
2012) in R according to the “method I” of VanRaden (Van-
Raden 2008) as G =

ZZ�

2
∑

pi(1−pi)
 , where Z = M - P , M is the 

n × m marker matrix reflecting the SNP genotype of nth indi-
vidual at the mth SNP position the of alleles coded as 0, 1, 
and 2 for  A1A1,  A1A2, and  A2A2, respectively, P contains a 
n × m matrix of allele frequencies multiplied by 2, pi is the 
allele frequency of the ith allele. For the prediction scenario 
S2 (described below), the GBLUP model was adapted from 
the model (7) in Bernal-Vasquez et al. (2017) as

where y is the vector of BLUEs of genotype trait values 
obtained from within-environments, X is the design matrix 
of the environments,� is the vector of environments effects, 
Zg is the marker matrix for genotypes, and ug the vector of 
marker effects. The genotype-by-environment effects is mod-
elled by w = Zgeuge , with Zge standing for the marker matrix 
for genotypes-by-environment effects and uge the vector of 
marker-by-environment  ef fects  wi th  var iance 
var

(
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 , thus var(w) = ZgeZ
T
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 . Zge is a block-
diagonal matrix with blocks given by the marker coefficient 
matrices of genotypes in a given environment 

(
Zger

)
 and for 

the eight environments considered in the present study, it can 

be defined as 
⎛⎜⎜⎝

Zge1 0 0

0 ⋱ 0

0 0 Zge8

⎞⎟⎟⎠
 . The variance of w stands for 

the linear structure of the genotype-by-environment vari-
ance–covariance matrix with the covariance of two geno-
types within the same environment depending on the simi-
larity in their marker profiles (Piepho 2009). Since the 
covariance among different environments is zero, any covar-
iance between environments is captured by Zg.

As a measure of the genetic similarity among all n can-
didates, the Pearson’s coefficients of correlation among 
rows of M were calculated. Based on their SNP alleles, this 
genomic correlation ( rGC ) reflects the correlation pattern 
among individuals (Riedelsheimer et al. 2013). In contrast, 
for HBLUP the estimation of the random genetic values was 
based on reflectance data integrated into the hyperspectral 
reflectance-based relationship matrix H defined as H = DD′ , 
where D is a n × b hyperspectral matrix of the standardized 

(1)y = Xb + Zgug + Zgeuge + e
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BLUEs of the bands, with b = 32. These 32 bands belong to 
the visible spectrum (VS) and the infrared radiation (IR), 
and they were selected in a previous study (Galán et al. 
2020b) using the least absolute shrinkage and selection 
operator (Lasso; Tibshirani 1996) for reducing the multicol-
linearity observed among continuos bands and increasing, 
therefore, the predictive power of reflectance-based mod-
els. Following the same procedure as described before for 
rGC , a second correlation ( rHC ) among tested genotypes was 
developed based on hyperspectral data incorporated into H´, 
which was derived from b = 400 available bands. By this, the 
correlation pattern among lines was estimated based on their 
unique reflectance fingerprints along the whole spectrum.

For the prediction scenario S1B (described below), the 
advantages of integrating different information sources to 
improve the predictive ability of DMY were assessed fol-
lowing the procedures described in Galán et al. (2020b). 
For this, genetic and hyperspectral data were combined in 
a multi-kernel prediction model (G + H), which was further 
extended to a bivariate model (Bivariate_G + H) by incor-
porating PH a as predictor.

All third-stage prediction models were fitted using the 
sommer package in R (Covarrubias-Pazaran 2016), except 
model (1), which was fitted within the R package ASReml-R 
v. 3.0 (Gilmour et al. 2009).

Prediction schemes

To address the objectives of the present study, nine bi-paren-
tal families with a size of 24 to 32 individuals (Suppl. Fig. 
S2) and their parental components were divided into TRN 
and VAL following different schemes. The family 4 × 5 was 
not considered due to its reduced size (n = 4). The TRN com-
position varied in a controlled manner for testing the effect 
of the relatedness between this set and VAL on a genotypic 
level (S1) and both genotypic and environmental levels 
simultaneously (S2). An overview of the different predic-
tion schemes is given in Table 1.

In S1, three different scenarios were analyzed, namely 
S1CV, S1A, and S1B, which have a decreasing genotypic 
relationship between TRN and VAL. Scenario S1CV 

consisted in ninefold cross-validation (CV) of the whole 
data set (the nine bi-parental families and their parental 
components), with eight folds were used for model train-
ing and the remaining fold for validation purposes. In con-
trast, in S1A and S1B, a leave-one-out (LOO) family vali-
dation scheme was followed. Here, TRN ranged from six 
to eight bi-parental families, and VAL consisted of single 
families with variable size. Whereas in S1A half-sibs (HS) 
and unrelated lines (UR) were sampled in TRN, in S1B, it 
included only UR. Parental lines of VAL were available for 
model training only in S1CV. In contrast, under S1A and 
S1B, the parents of the validation family were excluded 
from TRN. The remaining eight parents were considered 
as UR and could be incorporated accordingly. Genotypes 
were classified as “unrelated” to distinguish this cross type 
from FS and HS and, therefore, this term does not have the 
same meaning as in a population genetics.

To avoid the influence of the TRN size on the prediction 
ability, for all three scenarios, the TRN size was fixed to 
174, which was the largest possible common size among 
scenarios. If TRN was initially larger than 174, a random 
sampling without replacement was conducted among 
possible candidates in order to achieve the targeted size 
of 174. This procedure was repeated 9,000 times, each 
repetition consisting of a random composition of TRN to 
assess model error. The phenotypic and hyperspectral data 
included in S1 validation scenarios were adjusted across 
the same four (within-year analysis) or eight (combined 
years analysis) environments.

In S2, the predictive power of models was assessed by 
a LOO family validation scheme, as described above for 
S1. An important difference between S1 and S2 scenarios, 
is that for S2, data not connected to TRN, either by envi-
ronments nor by genotypes, was used as VAL. For this, 
data for model training was collected on UR from six to 
seven bi-parental families at three or seven environments, 
while validation data came from single families of variable 
size evaluated at a fourth or eighth disconnected environ-
ment, for the within-year or combined years predictions, 
respectively.

Table 1  Overview over the 
validation scenarios (TRN, 
training set; VAL, validation 
set; UR, Unrelated; HS, Half 
sibs; FS, Full sibs; P: Parental 
lines)

a The TRN size remained constant across all S1-scenarios (n = 174)
b Corresponds to combined years predictions

Name TRNa VAL Relationship No. environments 
 sampledb

TRN VAL

S1CV 8 random folds 1 Random fold UR + HS + FS + P 8 8
S1A 8 families 1 Family UR + HS 8 8
S1B 6 or 7 families 1 Family UR 8 8
S2 6 or 7 families 1 Family UR 7 1
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For all prediction schemes, prediction ability was 
assessed as the Pearson’s coefficients of correlation r 
between predicted breeding values and observed BLUEs 
derived from the combined analysis across environments 

for S1 and data adjustment within single environments 
for S2.

Results

Population structure, phenotypic and hyperspectral 
data analysis

The population showed a genomic correlation pattern 
(Fig. 1), which clearly reproduces the SRR mating design 
used in the present study (Suppl. Fig. S2). Thus, the mean 
genomic relationship among full sibs (FS), half sibs (HS), 
and unrelated lines (UR) followed the expected decay based 
on prior pedigree information (Fig. 2a). Nevertheless, a 
substantial overlap between the rGC values from HS with 
FS and UR was observed. The mean rGC among the nine 
FS families was 0.55, with a range from 0.61 to 0.46. For 
HS, the average rGC was 0.27, almost the mean between FS 
and UR (0.01). The highest rGC among HS was 0.38, while 
the smallest correlation coefficient was 0.06. Among UR, 
rGC ranged from 0.04 to − 0.04. Interestingly, no clear dis-
tinction among lines could be drawn based on reflectance 
data (Fig. 2b). The rHC for FS, HS, and UR was close to 
zero, with mean estimates equal to 0.07, zero, and − 0.09, 
respectively.

In 2017, FMY and DMY had higher mean estimates than 
in 2018 (Table 2). In the first year, these values were 355.96 
dt  ha−1 and 124.18 dt  ha−1, respectively, whereas in the 
second year, they dropped correspondingly to 304.82 dt 
 ha−1 and 114.68 dt  ha−1. The contrary was observed for 
DMC, which showed a higher mean in 2018 (38.84%) than 
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Fig. 1  Heatmap showing the relatedness based on prior pedigree 
information (below diagonal) and the genomic correlation (above 
diagonal) among 264 rye lines distributed among ten bi-parental 
families. The numbers in the blocks refer to average genomic correla-
tions between all pairs of individuals. FS, full sibs; HS, half sibs; UR, 
unrelated (color figure online)

Fig. 2  Histograms of (A) 
genetic similarity and (B) 
hyperspectral similarity for full 
sibs (FS), half sibs (HS), and 
unrelated (color figure online)
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in 2017 (35.24%). The estimated genotypic variance ( �2
g
 ) 

was significantly greater than zero (p < 0.001) for all traits. 
With one minor exception, the same holds for the genotype-
by-location interaction ( �2

gl
 ) and genotype-by-location-by-

year interaction ( �2
gly

 ) variances. The estimates of H2 were 
in general higher in 2017 than in 2018. DMC displayed the 
higher H2 estimates, which ranged from 0.70 to 0.81, 
whereas H2 for FMY and DMY varied from 0.46 to 0.56. 
Across the analyzed hyperspectral spectrum, H2 was highly 
heterogeneous. The mean value across the 32 selected 
hyperspectral bands (Suppl. F4) was higher when both years 
were analyzed together ( H2 = 0.63 ), followed by 2018 
( H2 = 0.54 ) and 2017 ( H2 = 0.43 ). Mean correlations with 
agronomic traits (considering absolute values) were rather 
low for all traits ( r ≤ |0.16|) with relatively broad ranges (up 
to r ≤ |0.41|, Suppl. Fig. S4). FMY mostly displayed the 
highest correlation estimates, followed by DMY and DMC.

Prediction abilities under declining genotypic 
relationships (S1)

Overall, HBLUP was significantly more accurate than 
GBLUP for FMY and DMY, while the opposite was 
observed for DMC (Fig. 3). Combining the data across 
years was beneficial for HBLUP for all traits, and in the 
case of GBLUP only for DMC, while for FMY and DMY, 
GBLUP was mostly more accurate within single-year analy-
sis. The highest prediction abilities for all models and traits 
were observed under validation scenario S1CV, which has 
the closest relationship between genotypes used for model 
training and validation, followed by scenarios S1A and S1B 
(Fig. 3). However, the impact of a reduced degree of genetic 

relatedness between TRN and VAL on the prediction abil-
ity was unequal between models. Interestingly, the reduc-
tion of the predictive power of GBLUP was considerably 
higher than for HBLUP when validated on less related sets. 
For instance, under S1CV for DMY adjusted across years 
(Fig. 3), GBLUP showed a prediction ability of 0.56, while 
it dropped to 0.37 and 0.20 under scenarios S1A and S1B, 
respectively. This represents a decay of about one third and 
two thirds, respectively. In contrast, the prediction abilities 
of HBLUP were more stable since they ranged between 0.58 
(S1CV) and 0.51 (S1B). Thus, HBLUP retained about 90% 
of the predicted power shown under S1CV when predicting 
UR genotypes (S1B). A similar trend was observed for all 
other traits within as well as across years. The prediction of 
DMY in validation scenario S1B could be further enhanced 
by a bivariate model combining hyperspectral and genomic 
data as well as PH (up to 0.58, Fig. 4). In contrast, the pre-
dictive power of the multi-kernel model was very similar 
to the achieved by HBLUP, although a slight reduction in 
the variability of the predictions was observed in 2017 and 
combined-years analysis.

Predicting environmentally and genetically 
unconnected candidates (S2)

In the present study, the prediction models were additionally 
trained on unrelated data, either at a genotypic or environ-
mental level, with the data used for model validation (sce-
nario S2). Under S2, the prediction abilities of all models 
for all traits was significantly lower and displayed broader 
ranges when compared to their performance under S1 
(Fig. 3). Under S2, HBLUP was also mostly more accurate 
than GBLUP for FMY and DMY, while the opposite was 

Table 2  Means, ranges, 
estimates of variance 
components (genotypic, 
�
2
g
 ; genotype-by-location 

interaction, �2
gl

 ; genotype-by-
year-by-location interaction, 
�
2
gyl

 ; and residual error �2
�
 ), 

heritabilities H2 determined 
from 274 winter rye hybrids 
assessed in two years, which 
were individually or combined 
analyzed

a Traits are fresh matter yield (FMY), dry matter yield (DMY), and dry matter content (DMC)
*** Significant at the 0.001 probability level

Traita Means and ranges Variance components H2

Mean Min Max �
2

g
�
2

gl
�
2

gly
�
2

�

2017
 FMY (dt  ha−−1) 355.96 332.85 386.17 41.61*** 43.76*** – 190.02 0.56
 DMY (dt  ha−1) 124.18 116.63 131.74 4.97*** 6.04*** – 16.62 0.53
 DMC (%) 35.24 34.02 37.06 0.23*** 0,04*** – 0.36 0.80

2018
 FMY (dt  ha−1) 304.82 284.92 323.87 25.80*** 27.15*** – 213.14 0.46
 DMY (dt  ha−1) 114.68 105.85 122.31 5.85*** 6.79*** – 26.22 0.54
 DMC (%) 38.84 37.21 40.62 0.27*** 0.13*** – 1.51 0.70

Combined
 FMY (dt  ha−1) 330.68 312.29 351.91 21.31*** 15.15*** 19.04*** 203.13 0.47
 DMY (dt  ha−1) 119.48 113.31 126.33 3.41*** 2.54*** 3.64*** 21.49 0.50
 DMC (%) 37.02 35.74 38.45 0.23*** 0.02 0.07*** 0.94 0.81
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observed for DMC. Ranges of mean prediction ability of 
HBLUP for FMY, DMY, and DMC were from 0.11 to 0.36, 
from 0.14 to 0.25, and from -0.06 to 0.18, respectively, while 
for GBLUP ranges lay between − 0.02 to 0.15, 0.02 to 0.10, 
and 0.15 to 0.16, respectively. In contrast to S1, no clear 
benefits of combining the data collected across years were 
observed under the S2 validation scheme.

Discussion

The accurate prediction of biomass at early stages via indi-
rect selection for DMY based on GY trials is a fundamen-
tal requirement for the implementation of a resource-effi-
cient dual-purpose breeding program in rye. In this way, 
the entire genetic variance could be exploited, leveraging 

Fig. 3  Prediction abilities for 
fresh matter yield (FMY), 
dry matter yield (DMY), and 
dry matter content (DMC) 
of genomic (GBLUP) and 
hyperspectral (HBLUP) best 
linear unbiased predictions 
under four different validation 
schemes assessed across two 
years (2017 and 2018), which 
were individually and com-
bined analyzed. Mean values 
are shown above each box plot 
and by black triangles and are 
significantly different, within 
each subplot, when no letter 
in common is shared (Tukey’s 
honestly significant difference 
test; α = 0.01) (color figure 
online)
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above each box plot and by black triangles and are significantly dif-
ferent, within each subplot, when no letter in common is shared 
(Tukey’s honestly significant difference test; α = 0.01) (color figure 
online)
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the expected selection gain. In our breeding program, each 
year represents a new selection cycle, where genotypes 
with different genetic backgrounds are evaluated in new 
GCA trials. The prediction of subsequent selection cycles 
implies an additional challenge since the data used for 
model training and validation are highly unconnected. 
Nevertheless, it is mainly under this scenario that breed-
ing programs can benefit the most because the biomass 
improvement can be conducted at the first stage of test-
cross evaluation without an increase of the number of field 
plots. The objective of this study was, therefore, to assess 
and compare the prediction ability of genetic and hyper-
spectral data under varying genetic relationships between 
the training and validation sets.

Influence of the genetic composition 
of the TRN and traits characteristics

The degree of relatedness between individuals used for 
model training (TRN) and validation (VAL) directly influ-
enced the prediction ability of all models; however, this 
impact was remarkably lower for HBLUP than for GBLUP 
(Fig. 3). The prediction abilities observed under scenario 
S1CV can be considered as an upper limit, where model 
training is performed across FS, HS, UR, and parental 
lines of genotypes used for model validation. Then, a 
systematic reduction in the predictive performance of all 
models accompanied the exclusion of genotypes geneti-
cally closest to VAL. The exclusion of FS and parental 
lines from TRN (S1A) represented, averaged across sin-
gle and combined years analyzes and traits, a reduction 
of about 40% on the performance of GBLUP, while the 
further removal of HS signified an additional penalization 
of around 20%. The larger drop in the prediction abili-
ties observed for S1A compared to those of S1B can be 
explained by the asymmetrical relevance of using closest 
relatives for genomic model training (Albrecht et al. 2011; 
Technow et al. 2014; Juliana et al. 2019). In contrast to 
GBLUP, the penalization observed for HBLUP in S1A 
was, on average, only nearly 15% and an additional 6% in 
S1B, allowing this model to show the highest prediction 
abilities between the single-kernel models in these scenar-
ios. Model performance was also dissimilar across traits. 
GBLUP showed mostly the higher abilities for DMC, 
whereas HBLUP performed better for FMY and DMY. 
The differences in predictive abilities are most likely a 
consequence of both trait H2 and the different information 
sources used by GS and reflectance-based models.

To adequately predict the performance of untested can-
didates, genomic models exploit the genetic relationships 
between them and individuals whose genotypic and phe-
notypic information is available, as previously shown in 

many empirical and simulation-based studies in animal 
and plant breeding (Habier et al. 2007 2010; Roos et al. 
2009; Pszczola et al. 2012; Riedelsheimer et al. 2013; 
Würschum et al. 2013; Crossa et al. 2014; Lehermeier 
et al. 2014; Technow et al. 2014; Wang et al. 2014; Thor-
warth et al. 2017; Herter et al. 2019). In line with these 
observations, our results also showed that the predictive 
power of GS dropped substantially when predictions are 
made among lowly related populations. For predictions 
across subsequent cycles in rye, GS could represent a 
suitable strategy when TRN is represented by aggregated 
multi-year data from several cycles (Auinger et al. 2016; 
Bernal-Vasquez et al. 2017). Nevertheless, the authors of 
these papers concluded that GS still relies heavily on a 
sufficient relationship between predicted candidates and 
those used for model training. Selection cycles need, for 
instance, to be connected by a sufficient number of com-
mon ancestors. This prerequisite may not be easily ful-
filled in practical rye breeding since subsequent breeding 
cycles usually are largely unconnected. In addition, the 
success of GS depends, among others, on trait related fac-
tors, such as heritability (Jia and Jannink 2012; Marulanda 
et al. 2015). Thus, the better and less variable GBLUP 
performance observed for DMC (Fig. 3) is likely explained 
by the larger H2 estimated for this trait in comparison to 
FMY and DMY (Table 2).

The reflectance fingerprints of the genotypes were more 
similar than their allelic status across relationship groups 
(Fig. 2), suggesting that the information imprinted among 
the spectrum is less sensitive to genetic distinctiveness 
among individuals than molecular data. These observations 
can explain why reflectance data allowed higher prediction 
abilities than marker data under decreased genetic relation-
ships between TRN and VAL. In contrast to GBLUP, more 
highly heritable traits were not better predicted by HBLUP. 
In turn, for HBLUP to perform well, plant canopies should 
display specific absorption patterns related to some extent 
to the trait of interest as shown, for instance, by the cor-
relations between the analyzed traits and bands. The most 
effectively predicted traits (FMY and DMY) showed higher 
correlations than the lowest predicted trait (DMC, Suppl. 
Fig. S4). Thus, the higher performance of HBLUP for FMY 
and DMY might be explained by the higher informative-
ness of the collected reflectance data for those traits than 
for DMC. Since the absorption of water and DMC is almost 
constant across the visible spectrum and the absorbance of 
these two features starts around 950 nm (Jacquemoud et al. 
2000), where our spectrum was from 410 nm to 993 nm, 
further research could investigate the prospects of HBLUP 
based on reflectance data beyond 1000 nm to better predict 
DMC.

Several strategies have been investigated for tak-
ing advantage of reflectance data in predictive breeding. 
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Summarizing the reflectance characteristics of plants into 
simple vegetation indices (VIs) has been proposed to assess 
vegetation characteristics of interest like grain and biomass 
yields under different environmental conditions (Xue and 
Su 2017). However, prediction models benefited the most by 
the exploitation of whole-spectrum data (Aguate et al. 2017; 
Montesinos-López et al. 2017b; Krause et al. 2019; Galán 
et al. 2020b). Recently, highly heritable VIs genetically cor-
related with the trait of interest such as the Normalized Dif-
ference Vegetation Index (NDVI; Rouse et al. 1974; Tucker 
1979) and the green NDVI (GNDVI; Gitelson et al. 1996), 
have been incorporated as secondary traits into multivariate 
pedigree and genomic prediction models to increase accu-
racy within the same wheat population and selection cycle 
(Rutkoski et al. 2016; Sun et al. 2017) as well as across 
selection cycles composed by closely related populations 
(Sun et al. 2019). Juliana et al. (2019) found that similar 
multivariate equations were superior to univariate genomic 
prediction models when predicting across populations and 
years. Still, the relationship between TRN and VAL was 
found crucial also for multivariate models, although the pop-
ulations used for model training and validation were geneti-
cally related to some extent, and predictions were made 
within the same stressed environments. The results of the 
present study also showed that combining hyperspectral and 
genomic data in a multi-kernel model yielded only limited 
advantages over HBLUP for DMY prediction of less related 
progenies (Fig. 4). In this context, the prediction ability for 
DMY could be further increased up to 20% by a bivariate 
model including also PH. Nevertheless, the performance of 
G + H and the bivariate model in the present study were 
lower than when used for DMY prediction of highly related 
rye progenies, as reported in a previous research (Galán et al. 
2020b). These findings reveal, on the one hand, the advan-
tages of incorporating HTP data into prediction routines, 
and, on the other hand, the limits of GS in the context of 
across cycle predictions.

Prediction of new genotypes in untested 
environments

In validation scenario S1B, UR genotypes were assessed 
across the same environments (Table 1). In contrast, in S2, 
unrelated individuals were tested under new environmental 
conditions, allowing the simultaneous assessment of the gen-
otypic and environmental sampling on the predictive power 
of marker- and hyperspectral-based models. Predictive abili-
ties in S2 were significantly lower than in S1B, suggesting 
that predicting the performance of genetically and environ-
mentally highly unconnected individuals is challenging. This 
is consistent with studies showing that the prediction of new 

candidates is less accurate when model training is performed 
without borrowing information of environments correlated 
to the one used for validation (Crossa et al. 2014; Krause 
et al. 2019). These poor predictions obtained in S2 might be 
explained by the substantial genotype-by-environment inter-
actions (G × E) estimated for the predicted traits (Table 2) 
as well as by the high variability observed for hyperspec-
tral bands among environments, resulting mainly from the 
extremely different conditions observed between growing 
seasons as reported in a previous study (Galán et al. 2020b). 
It seems, therefore, plausible that heterogeneous marker-to-
trait and band-to-trait (Montesinos-López et al. 2017a) sig-
nals among environments adversely affected the prediction 
abilities from GBLUP and HBLUP. Therefore, to adequately 
predict untested genotypes under new environmental condi-
tions, prediction equations need to be extended by environ-
mental and genetic covariates for proper G × E modeling 
(Piepho 2009; Burgueño et al. 2012; Resende et al. 2020).

A forward-validation approach aims to predict the per-
formance of new genotypes by exploiting the data from 
previous years (Bernal-Vasquez et al. 2017). Considering 
our breeding scheme (Suppl. Fig.1), data for model training 
could be obtained from split GCA-2 trials with biomass and 
grain yield plots, whereas model validation could be per-
formed on GCA-1 data from a subsequent selection cycle. 
It should be kept in mind that we need large-drilled plots for 
biomass model training because this trait cannot be reliably 
measured on smaller observation plots. As different selec-
tion cycles involve new individuals from multiple genetic 
backgrounds, and usually hardly any common progeny is 
shared across cycles, the genetic relationship between the 
data used for model training and validation across cycles 
is expected to be substantially lower than in within-cycle 
predictions.

However, data used in across-cycles predictions is envi-
ronmentally connected because GCA-2 genotypes are tested 
more intensively in a larger number of locations, within 
which the same environments as in GCA-1 are typically 
found. In practical plant breeding, large testing locations 
within the targeted environment are common, since they 
are more efficient in terms of logistics, trained personnel 
requirements, as well as field evaluation and management. 
In these testing sites, yield trials from different stages are 
planted next to each other, being reliable, large- scaled train-
ing data readily available for model calibration. Thus, sce-
nario S1B mimics this practical situation much better than 
S2. Our results showed that, in this context, models incorpo-
rating hyperspectral data emerge as a promising strategy to 
achieve superior improvements in DMY in hybrid rye. Still, 
the relevance of S2 outcomes lies in a consistently unbi-
ased estimation of the prediction abilities of the models (Utz 
et al. 2000), revealing the high impact of G × E not only on 
GBLUP but also on HBLUP.
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Conclusions for biomass breeding in hybrid 
rye

Traditionally, biomass is estimated destructively at an earlier 
growth stage, preventing grain yield from being evaluated 
in those same plots. The effective indirect assessment of 
biomass at the early stages of the breeding program is cru-
cial to entirely untap the potential of rye as a dual-purpose 
crop affordably. In this sense, prediction models accurately 
estimating the biomass yield of genotypes of diverse genetic 
backgrounds across selection cycles represent a valuable 
tool. In the present study, GBLUP achieved acceptable pre-
diction abilities only for highly heritable traits across closely 
related individuals. In contrast, HBLUP was substantially 
less affected by genetic relatedness and trait heritability 
emerging as a suitable approach for predicting complex traits 
across highly distinct populations.

Considering that in modern plant breeding genomic 
information is usually already available before the can-
didate lines are evaluated as testcrosses in the expensive 
GCA trials, breeders usually perceive marker and HTP 
data as a complement, rather than an alternative. Here, 
HTP offers the possibility of screening large-scale field tri-
als with reduced capital and time expenditures, than con-
ventional methods (e.g. destructive sampling and visual 
scores). Moreover, combining hyperspectral, genomic, 
and PH in bivariate models allows more effective DMY 
predictions of genotypes showing low genetic connectivity 
to ones used for model training. The bivariate model here 
presented is flexible and allows the incorporation of GY 
and other correlated traits to DMY aimig superior predic-
tive power. Nonetheless, by including several predictors, 
the complexity of the models increases in proportion.

Our results also show that not only GBLUP but also 
HBLUP was largely affected by G × E interactions, result-
ing in poor to negligible predictive power when the environ-
ments used for model training and validation were differ-
ent. To fully exploit the advantages of hyperspectral-based 
models, it is, therefore, highly recommended to incorporate 
reflectance fingerprints of genotypes collected in the respec-
tive environment. Our study demonstrates the capability 
of hyperspectral-enabled predictions to leverage selection 
gains to meet the increasing demand for sustainable bio-
mass sources worldwide. Lastly, the prospects of HTP as an 
economical alternative to traditional biomass sampling are 
expected to increase in proportion to future improvements in 
terms of image data acquisition and management.
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