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Abstract
Climate change is rapidly changing how we live, what we eat and produce, the crops we breed and the target traits. Previ-
ously underutilized orphan crops that are climate resilient are receiving much attention from the crops research community, 
as they are often the only crops left in the field after periods of extreme weather conditions. There are several orphan crops 
with incredible resilience to biotic and abiotic stresses. Some are nutritious, while others provide good sources of biofuel, 
medicine and other industrial raw materials. Despite these benefits, orphan crops are still lacking in important genetic and 
genomic resources that could be used to fast track their improvement and make their production profitable. Progress has been 
made in generating draft genomes of at least 28 orphan crops over the last decade, thanks to the reducing cost of sequencing. 
The implementation of a structured breeding program that takes advantage of additional modern crop improvement tools 
such as genomic selection, speed breeding, genome editing, high throughput phenotyping and breeding digitization would 
make rapid improvement of these orphan crops possible, but would require coordinated research investment. Other produc-
tion challenges such as lack of adequate germplasm conservation, poor/non-existent seed systems and agricultural extension 
services, as well as poor marketing channels will also need to be improved if orphan crops were to be profitable. We review 
the importance of breeding orphan crops under the increasing effects of climate change, highlight existing gaps that need to 
be addressed and share some lessons to be learned from major crops.

Introduction

Background

Climate change is predicted to bring about increased tem-
peratures across the world in the range of 1.6–6 °C, and 
an increase in average precipitations above 2% by 2050 
(Jarvis et al. 2009), triggering a host of extreme weather 
events including drought, flooding and heat waves (Feulner 
2017). These predicted changes in climate are expected to 
have worldwide impacts on agriculture, with the most vul-
nerable areas being Africa, Asia and Latin America (Jarvis 
et al. 2009; Ayanlade et al. 2018). There is increasing evi-
dence that climate change is impacting total precipitation 
and its temporal dynamics with significant effects on crop 
yields (Shortridge 2019) and biodiversity (Jarvis et al. 2009; 
Bálint et al. 2011; FAO 2015). One of the options for better 
adaptation to climate change includes the management of 
biodiversity for ecosystem resilience (Dauber and Miyake 
2016; UNCCD 2017). A prerequisite for the use of adapted 
plant genetic resources in increasing the resilience of future 
production systems is improved knowledge of these plant 
resources, their origin and characterization in terms of 
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valuable traits for climate change adaptation (FAO 2015). 
Unfortunately, many locally adapted varieties and plant spe-
cies are orphan crops that are neglected and underutilized 
with a high risk of extinction before their potential roles in 
climate change adaptation are fully exploited (FAO 2015).

Orphan crops, which are also referred to as ‘underuti-
lized’ (Dawson and Jaenicke 2006), ‘minor’ (Umesh et al. 
2019), ‘neglected’ (Hendre et al. 2019; Tadele 2019; Pop-
oola et al. 2019), ‘promising’ (for emerging markets, or 
because of previously unrecognized valuable traits), ‘niche’ 
(of marginal importance in production systems and econo-
mies) and/or ‘traditional’ (used for centuries or even mil-
lennia) crops (Gregory et al. 2019), are crops with impor-
tant attributes, not globally known, have the potential to be 
grown for profit or subsistence, have been under-researched 
in the past and, therefore, have inadequate or total lack of 
genetic and genomic resources. Despite their neglect in 
research and investment, orphan crops have the potential 
to address multiple UN Sustainable Development Goals in 
the low-income nations of Africa (Hendre et al. 2019), Asia 
(Gregory et al. 2019) and Latin America, as well as in the 
growing western consumers’ interests in new healthier foods 
(Dawson et al. 2019).

Most orphan crops are generally more adapted to the 
extreme soil and climatic conditions as they contain the 
relevant alleles and mechanisms for growth in poor envi-
ronments and for resilience under stress (Oibiokpa et al. 
2014; Tátrai et al. 2016) that have potentially been lost from 
major crops (Ellstrand et al. 2010; Cullis and Kunert 2017). 
Orphan crops have been recognized as potential sources of 
resilience traits (Chiurugwi et al. 2019) that can be used to 
improve major crops and also play a role in improving sus-
tainability of food systems (Mabhaudhi et al. 2019; Borelli 
et al. 2020; Dawson et al. 2019). This increasing recogni-
tion of the important role of orphan crops has resulted in 
the launch of advanced research and development initia-
tives (Tadele and Bartels 2019). Other traits of importance 
include nutrition (Dawson et al. 2019), medicinal value (Tlili 
et al. 2011), biofuel (King et al. 2015), cosmetics (Saikia 
and Konwar 2012) and for feed/fodder (Tolera and Sundstøl 
2000). A summary of select orphan crops and their impor-
tance is presented in Supplementary Table 1. We further 
discuss the key contributions of orphan crops globally under 
four sub-topics below.

Resilience to biotic stresses

A recent study estimated significant economic losses in 
major crops as a result of pests and diseases and recom-
mended the prioritization of plant health to improve the 
sustainability of agro-ecosystems (Savary et al. 2019). Part 
of the solution lies in the diversification of agro-ecosystems 
using orphan crops, majority of which have been reported 

to show tolerance to some of the pests and diseases (Hen-
dre et al. 2019). Forage legumes in the genus Desmodium, 
mainly D. uncinatum and D. tortum, have been used to sup-
press one of the most devastating parasitic weeds in Africa, 
Striga hermonthica (Midega et al. 2017). Striga is a para-
sitic weed to most cereals including maize (Zea mays L.), 
sorghum [Sorghum bicolor (L.) Moench] and rice (Oryza 
sativa L.). Desmodium spp., an orphan crop, suppresses 
Striga when intercropped with cereals (Midega et al. 2010) 
through a combination of different mechanisms including 
the production of an allelochemical that inhibits the radicle 
growth of Striga (Hooper et al. 2010). Spider plant (Gynan-
dropsis gynandra (L.) Briq.) has been reported to signifi-
cantly reduce the incidence of thrip species Megalurothrips 
and Frankliniella occidentalis (Waiganjo et al. 2007) when 
used as a companion crop with snap bean (Phaseolus vul-
garis), while finger millet (Eleusine coracana subsp. cora-
cana) is effective in suppressing weed growth (Samarajeewa 
et al. 2006).

Other orphan crops have been used as donors of resist-
ance genes that were successfully introgressed into major 
crops. Within the Solanaceae family, the African eggplant 
(Solanum aethiopicum), which is used as a vegetable in 
Africa, is a source of resistance to Fusarium oxysporium 
f. sp. melongenae (Rizza et al. 2002; Toppino et al. 2008) 
and Ralstonia solanacearum (Collonnier et al. 2001) for 
the improvement of other Solanaceae crops. S. aethiopicum 
rootstocks have been reported to improve disease resistance 
in tomato (Solanum lycopersium L.) (Nkansah et al. 2013), 
while Solanum torvum, also an orphan vegetable, is the pre-
ferred rootstock for improved resistance to diseases in brinjal 
eggplant (Solanum melongena) (Sakata et al. 1989; Ramesh 
et al. 2016). Watermelon (Cucumis melo) grafted onto the 
rootstock of the little known bottle gourd (Lagenaria sicer-
aria), conferred resistance to Fusarium spp. (Davis et al. 
2008).

Resilience to abiotic stresses

Many orphan crops have been identified as climate-smart 
and able to adapt to the ever-changing climate of their 
respective agro-ecological regions. Drought is one of the 
major abiotic constraints limiting agricultural production 
worldwide alongside low temperatures, soil salinity, nutri-
ent deficiencies and toxic metals (Shinozaki et al. 2015). 
There are several orphan crops that have been reported to 
exhibit high levels of tolerance to drought stress, although 
the stability of their yields, in most cases, has not been 
established. Such crops include finger millet (Neshamba 
2010; Krishnamurthy et al. 2016), foxtail millet (Setaria 
italica) (Puranik et al. 2011), fonio (Digitaria spp.) (Viet-
nameyer et al. 1996), grass pea (Lathyrus sativa L.) (Han-
bury et al. 2000) and quinoa (Chenopodium quinoa Willd.) 
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(Hinojosa et al. 2018). The drought mechanisms reported 
in these orphan crops include efficient antioxidant potential 
(Puranik et al. 2011; Bhatt et al. 2012; Jiang et al. 2013), 
association with arbuscular mycorrhiza (Tyagi et al. 2017), 
osmotic adjustment (Jiang et al. 2013; Tyagi et al. 2017), 
reduction in the green leaf area and stomatal conductance 
(Cullis and Kunert 2017). Caper (Capparis spinosa L.), an 
orphan shrub cultivated for its flower buds and fruits in the 
Mediterranean, shows remarkable resilience to heat stress 
(Levizou et al. 2004).

Other orphan crops have developed genetic and molecular 
mechanisms to survive in poor soils of low fertility where 
most of the major plants do not grow (Naluwairo 2011; 
Takada et al. 2017; Cullis et al. 2018; Mabhaudhi et al. 
2019). Finger millet grows successfully on marginal lands 
with poor soil fertility (Thilakarathna and Raizada 2015) 
and exhibits a higher degree of salt tolerance in comparison 
to other cereals (Bray et al. 2000; Shailaja and Thirumeni 
2007; Rahman et al. 2014). Common glasswort (Salicor-
nia europaea L.), an orphan annual dicot with diverse uses 
(Loconsole et al. 2019), is one of the most salt-tolerant spe-
cies worldwide (Patel 2016). Other orphan crops have been 
used in phytoremediation (Mkumbo et al. 2012), the most 
sustainable way of rehabilitating polluted lands through the 
use of plants to extract heavy metals from soil (Raskin et al. 
1997). Plants of the Amaranthaceae family, including Sali-
cornia brachiata (Sharma et al. 2010), Amaranthus spino-
sus (Chinmayee et al. 2012), Amaranthus retroflexus L. var. 
retroflexus and Amaranthus hybridus L., have been reported 
to be tolerant to various heavy metals (Mohsenzade et al. 
2009; Zhang et al. 2010). African yam bean (AYB) (Sphe-
nostylis stenocarpa Harms) and Jatropha curcas have been 
reported as excellent phytoremediators for heavy metal (i.e., 
Al, Fe, Cr, Mn, Ar, Zn, Cd and Pb) contaminated soil (Jamil 
et al. 2009; Ochekwu and Eneh 2012; Chandra et al. 2016a). 
These examples present opportunities for the promotion of 
these crops to a higher level of production.

Medicinal/pharmaceutical/cosmetic value

Many people in the developing countries have depended on 
orphan crops for medicine, pharmaceuticals and cosmet-
ics for centuries. The African eggplant has been used tra-
ditionally in the management of a range of ailments from 
weight reduction and hypertension (Miller et al. 1999; Ode-
tola et al. 2004; Ogunka-Nnoka et al. 2018) to treatment of 
several conditions such as diabetes (Ezugwu et al. 2005), 
anticonvulsant (Gbile and Adesina 1988), skin infections 
(Oliver-Bever 1986), rheumatic disease, swollen joint pains 
(Anosike et al. 2012), colic, ulcers, gastro-esophageal reflux 
disease and constipation (Gbile and Adesina 1988; Ezugwu 
et al. 2005). In addition to the high levels of vitamin C and 

β-carotene, the African eggplant has significant levels of 
alkaloids, saponins, flavonoids, tannins, ascorbic acid and 
steroids (Chinedu et  al. 2011a, b; Neugart et  al. 2017; 
Sekulya et al. 2018) making it a potential source of precur-
sors for pharmaceutical drugs. There are several reports on 
the medicinal properties of Solanum anguivi (Ripperger and 
Himmelreich 1994; Elekofehinti et al. 2012, 2013, 2015), 
confirming its traditional use as medicine in certain parts 
of Africa. Breadfruit {Artocarpus altilis (Parkinson) Fos-
berg} contains fatty acids and extracts that are used in pest 
management (Jones et al. 2012; Eccles et al. 2019) and has 
traditionally been used in Asia for the treatment of malaria, 
yellow fever, dengue fever (Jacob et al. 2015), liver cirrho-
sis, hypertension and diabetes (Wang and Wang 2010; Jones 
et al. 2012).

Finger millet grain, which is gluten free, has been used in 
the management of physiological disorders such as diabe-
tes, hypertension, vascular fragility, hypercholesterolemia, 
prevention of oxidation of low-density lipoproteins (LDLs) 
and also to improve gastrointestinal health (Chandra et al. 
2016a, b; Kumar et al. 2016; Chethan and Malleshi 2007). 
Tef (Eragrostis tef) has similarly received attention as a life-
style crop due to its gluten-free nature (Spaenij-Dekking 
et al. 2005; Tadele 2019). Regular consumption of the spi-
der plant (Cleome gynandra L.) by expectant mothers has 
been reported to relieve childbirth complications as well as 
reduce the length of the labor period (Onyango et al. 2013). 
Different parts of the spider plant have been used as a relief 
for epileptic fits, ear, eye and nostril aches, for the treatment 
of inflammations, headaches, scurvy, marasmus (Opole et al. 
1995; Narendhirakannan et al. 2005), neuralgia, rheuma-
tism (Chweya and Mnzava 1997) and diabetes (Shaik et al. 
2013). Shea butter extracted from the shea tree (Vitellaria 
paradoxa or V. nilotica) is often used as a base in medicinal 
ointments due to its anti-inflammatory properties (Maanikuu 
and Peker 2017).

The cosmetic industry has benefited from the shea tree 
products as one of the best anti-ageing and moisturizing 
agents for the skin with sun-screening and collagen boost-
ing  properties (Suter et al. 2016; Montenegro and Santagati 
2019). The African melon (Acanthosicyos horridus and Cit-
rullus lanatus) has been reported to have great potential in 
both the food and cosmetic industry (Houdegbe et al. 2016; 
Cheikhyoussef et al. 2017), while the emulsifying capac-
ity of biosurfactants from quinoa has been reported as suit-
able for incorporation into cosmetic emulsion formulations 
(Bezerraa et al. 2020). The seeds of marama bean (Tylosema 
esculentum) have traditionally been consumed and used as a 
cosmetic by the natives of the Kalahari (Cullis et al. 2019), 
while tiger nut (Cyperus esculentus) oil is commonly used 
as a cooking ingredient and in skin care (Ezeh et al. 2014).
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Sources of other novel traits (nutrition, feed/fodder, 
biofuel)

Orphan crops play an important role in the economies of 
many countries, particularly in the developing world, as 
sources of nutrition (Jamnadass et al. 2020). It is believed 
that breeding for increased production of orphan crops can 
reduce malnutrition and stunting (Bekkering and Tian 2019; 
Tadele 2019). Amaranthus hypochondriacus leaves, for 
example, contain far more vitamin A as compared to other 
green leafy vegetables like spinach and cabbage (Hunter 
et al. 2019). Varieties of finger millet are way more nutri-
tious than white rice in their calcium, iron, potassium, mag-
nesium and zinc content (Tripathi and Platel 2010). The high 
levels of minerals, vitamins and fats in yams (Dioscorea 
spp.) outperform the commonly consumed potatoes (Padhan 
and Panda 2018, 2020). These exceptional nutritive qualities 
have been a major target for improving resource availability 
of orphan crops through whole genome sequencing (Jam-
nadass et al. 2020).

Several legume orphan crops species are cultivated for 
food, feed and fodder including winged bean (Psophocar-
pus tetragonolobus L.) (Hyland 1968; Hymowitz and 
Boyd 1977), hyacinth bean (Lablab purpureus L.) (Morris 
2009a, b), lima bean (Phaseolus lunatus L.) (Andueza-noh 
et al. 2015), jack and sword bean (Canavalia sp.) (Akpa-
punam and Sefa-Dedeh 1997), mung bean (Vigna radiata 
L.) (Tang et al. 2014), bambara groundnut (Vigna subter-
ranea L.) (Mayes et al. 2019), marama bean (Tylosema 
esculentum L.) (Cullis et al. 2019), kersting’s groundnut 
(Kerstingiella geocarpa Harms) (Ayenan and Ezin 2016), 
African yam bean (AYB) (Asare et al. 1984) and rice bean 
(Vigna angularis L.) (Joshi et al. 2008). All parts of the 
enset plant (Ensete ventricosum) are used for animal forage 
(Borrell et al. 2019).

The rising demand for biofuels has led to the identifica-
tion of orphan crops as sources of ‘second-generation’ bio-
fuels. The seeds of an orphan crop, Jatropha curcas (Physic 
nut or Jatropha), that contain 27–40% oil can be processed 
to produce a high-quality biodiesel fuel, usable in a stand-
ard diesel engine or further processed into jet fuel (Duraes 
et al. 2011; Odeh and Tan 2015). The residue (press cake) 
is used as feed in digesters and gasifiers to produce biogas, 
or as biomass feedstock to power electricity plants, or as 
a fertilizer due to its nitrogen, phosphorus and potassium 
content (Achten et al. 2007). The seeds of the African melon 
(Cucumeropsis mannii) have also been shown to have appli-
cations in biodiesel production (Dansi et al. 2012; Houdegbe 
et al. 2016).

Genetics and breeding of select climate 
smart orphan crops

Despite their demonstrated economic importance and their 
beneficial contributions to agro-ecosystems, there has been 
a lag in the overall genetic improvement of orphan crops. 
The breeding methods are conventional, slow and lacking 
in innovation, while the breeding objectives are not well 
defined beyond the enhancement of domestication syndrome 
traits. In this section, we discuss the genetics and breed-
ing of six climate-resilient orphan crops (Fig. 1), randomly 
selected from the main categories of food crops, cereals, 
pseudo-cereals, legumes, root and tuber crops, vegetables 
and fruits. These crops are seen as most promising climate 
resilient crops for the future and are already receiving global 
attention, including being incorporated as mandate crops of 
some of the Consultative Group of International Agricul-
tural Research (CGIAR) centers, in some cases. For each 
of the crops, we briefly discuss their origin, domestication, 
distribution, genetic resources, economic importance and 
breeding status.

Finger millet

Finger millet (Eleusine coracana subsp. coracana) 
(2n = 4x = 36) (AABB) is an annual orphan cereal crop 
belonging to Poaceae family and Chloridoideae sub-family 
(Srinivasachary et al. 2007). There are seven other species of 
annual grasses in the genus Eleusine, including E. kigezien-
sis, E. indica, E. intermedia, E. floccifolia, E. tristachya, E. 
jaegeri and E. multiflora. Finger millet is believed to have 
been domesticated from its wild progenitor, E. coracana 
subsp. africana, about 5000 years ago (Dida et al. 2007). 
It is the only cultivated crop of the genus Eleusine and has 
four cultivated races, namely, elongata, plana, compacta 
and vulgaris (Upadhyaya et al. 2010). E. indica (AA) is the 
AA genome donor, while the BB genome donor remains 
unknown. More than 37,000 wild and cultivated finger millet 
germplasm has been conserved globally (Vetriventhan et al. 
2016) in various gene banks, with the National Bureau of 
Plant Genetic Resources in India having the highest num-
ber of collections (> 10,000) followed by the International 
Crops research Institute for the Semi-Arid Tropics (ICRI-
SAT) (7519) (Odeny et al. 2020). East Africa and India are 
considered the primary and secondary centers of diversity, 
respectively (Bisht and Mukai 2002) for finger millet, and 
accessions from the two regions appear to be genetically 
and morphologically distinct (Arya et al. 2013; Babu et al. 
2014a; Ramakrishnan et al. 2015; Puranik et al. 2020).

Finger millet is largely cultivated for its nutritious gluten-
free healthy grain and resilience to several biotic and abi-
otic stresses (Rodriguez et al. 2020). Traditionally, genetic 
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improvement in finger millet was limited to pedigree-based 
selection for larger seed size, higher yield and less shat-
tering, with a focus on enhancing its domestication. The 
inclusion of finger millet as a mandate crop of ICRISAT 
led to a relatively more structured breeding with the main 
objectives as enhancing resistance to blast disease (Magna-
porthe grisea teleomorph: Pyricularia grisea), S. hermon-
thica (parasitic witchweed), lodging, tolerance to stressful 
soil and moisture conditions, and grain that can be more eas-
ily dehulled and ground (National Research Council 1996). 
Hybridization in finger millet has been undertaken manually, 
or using the plastic bag technique, hot water treatment, or 
the use of chemicals (Kunguni et al. 2015) due to the lack 
of cytoplasmic male sterile (CMS) lines. Its self-pollinating 
nature (Hilu and de Wet 1980) and the tiny floral architec-
ture have hindered bulk hybridizations, especially in Africa, 
where most improved varieties released are from selections. 
Most of the hybridization-based breeding has been done 
in Asia and, in some cases, included African germplasm 
leading to the release of ‘Indaf’ varieties (Deba et al. 2008) 
with improved yields. There are now a few programs in E. 
Africa employing hybridization-based breeding through 
hand emasculation and pollination.

Genomics-assisted breeding has been limited in finger 
millet due to lack of a robust set of molecular markers until 
recently. The first partial finger millet genetic map was 

constructed by Dida et al. (2007) using Restriction Fragment 
Length polymorphism (RFLP), Amplified Fragment Length 
Polymorphism (AFLP) and Single Strand Conformation Pol-
ymorphic (SSCP) expressed sequenced tags. The map was 
constructed using an interspecific F2 mapping population 
between Eleusine coracana subsp. coracana (Okhale 1) and 
Eleusine coracana subsp. africana (MD-20), and contained 
327 loci that were mapped to either A or B genomes. More 
recently, a more robust single nucleotide polymorphism 
(SNP) linkage map was developed using F2:3 families of the 
same interspecific cross between Okhale 1 and MD-20 (Qi 
et al. 2018). This recent map used 4453 SNP markers in 18 
linkage groups that were designated the same as in Dida 
et al. (2007) and incorporated a subset of markers that had 
been mapped in the first linkage map. There is currently 
no linkage map generated exclusively from a cross involv-
ing the cultivated subspecies only. Trait mapping has been 
limited in finger millet, and the few studies undertaken so 
far used association mapping, albeit with less than optimal 
numbers of genotypes. Most of the traits mapped are agro-
nomic (Babu et al. 2014a; Lule et al. 2018; Sharma et al. 
2018), although there are also reports of association map-
ping for blast disease resistance (Babu et al. 2014b) as well 
as for nutrition-related traits (Babu et al. 2014c; Puranik 
et al. 2020).

Fig. 1   Pictures of orphan crops 
finger millet (A), grain ama-
ranth (B), grass pea (C), water 
yam (D), African eggplant (E) 
and breadfruit (F)
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Amaranthus hypochondriacus

Amaranthus hypochondriacus (2n = 2x = 32) is one of the 
more than 70 species of the genus Amaranthus, mostly 
annuals, distributed across the world’s tropical and temper-
ate regions. It is also one out of the three Amaranth grain 
species considered to have desirable agronomic character-
istics besides A. cruentus L. and A. caudatum L (Grubben 
and Denton 2004) that form part of the hybridus complex 
together with the two potential wild ancestors, A. hybridus 
and A. quitensis. A. hypochondriacus crosses easily with the 
four species within the hybridus complex making it difficult 
to fully understand the taxonomic relationships within the 
complex. There are several hypotheses on the origin of the 
three-grain amaranths (Sauer 1967,1976; Kirkpatrick 1995; 
Xu and Sun 2001; Mallory et al. 2008) although more recent 
molecular evidence supports a monophyletic origin (Kiet-
linski et al. 2014; Viljoen et al. 2018), perhaps from two 
or three different, geographically separated lineages of A. 
hybridus (Stetter and Schmid 2017; Stetter et al. 2020). The 
first record of A. hypochondriacus domestication was by the 
Aztec civilization in central Mexico (Brenner et al. 2010) 
but most of its cultivation today occurs in India. Approxi-
mately 61 diverse collections of amaranth genetic resources 
are being maintained in at least 11 countries of the world 
(Das 2016; Joshi et al. 2018), majority of which reside in the 
USDA germplasm collection with a total of 3338 accessions 
from 40 countries (Trucco and Tranel 2011; Brenner 2015).

Amaranthus hypochondriacus is cultivated mainly as a 
pseudo-cereal but also for fodder (Abbasi et al. 2012) and 
as an ornamental (Pandey and Singh 2011). The grains are 
highly nutritious (Ssepuuya et al. 2018) with medicinal prop-
erties (Aditya and Bhattacharjee 2018), and the plants have 
incredible agronomic versatility (Rodriguez et al. 2020). 
The plants are considered autogamous but there are vary-
ing amounts of interspecific and inter-varietal hybridization 
(Suresh et al. 2014) that have further resulted in significant 
morphological and genetic diversity (Stetter et al. 2017) and 
a wider adaptability to different eco-geographical environ-
ments (Lee et al. 2008). Domestication syndrome remains 
indistinct in amaranth with strong photoperiod sensitivity 
and very small shattering seeds (Sauer 1967; Brenner et al. 
2010). The frequent outcrossing with the wild-weedy rela-
tives has not only complicated further the proper analysis 
of amaranth domestication (Stetter et al. 2016), but also 
led to a constraint for pure seed production (Brenner et al. 
2013). The tiny intricate flowers make hand emasculation 
and pollination in amaranth difficult (Stetter et al. 2016) on 
a large scale. Alternative methods of hybridization include 
hot water treatment (Stetter et al. 2016) and the use of male 
sterility (Peters and Jain 1987; Brenner 2019). Although the 
application of hybrid breeding in amaranth is very promis-
ing (Lehmann et al. 1991), genetic improvement in the past 

has been achieved mainly through pedigree-based selection 
of suitable genotypes from landraces (Stetter et al. 2016). 
The major breeding objectives in amaranth include reduced 
seed shattering, reduced plant height (1.0–1.5 m), resistance 
to lodging, flowering above the leaf canopy for mechanical 
harvest, high grain yield, synchronized maturity, high grain 
quality, reduced leafiness in the green head area, and resist-
ance to diseases and pests (Joshi et al. 2018).

The genetics of most of the agronomic traits have been 
determined (Joshi et al. 2018) including flowering time 
(Kulakow and Jain 1985), plant height, leaf length and 
width, panicle length and width (Kulakow and Jain 1987), 
harvest index, 1000 seed weight, grain yield (Pandey 1984), 
grain protein percentage (Pandey and Pal 1985), starch con-
tent of grain (Okuno and Sakoguchi 1982), seed coat color, 
inflorescence color and purple leaf mark (Gupta and Gudu 
1990). Despite the availability of a 16-group SNP linkage 
map that has been constructed using an interspecific F2 map-
ping population between A. hypochondriacus x A. caudatus 
(Maughan et al. 2011), trait mapping has been limited due to 
the lack of robust mapping populations. The map comprises 
411 SNP markers spanning 1288 cM with an average marker 
density of 3.1 cM per marker. The availability of a refer-
ence genome (Lightfoot et al. 2017) has made it possible to 
use SNP markers generated from genotyping-by-sequencing 
(GBS) for diversity analysis (Wu and Blair 2017) but is yet 
to be used for bi-parental or association mapping of traits.

Grass pea

Grass pea (Lathyrus sativus L.) (2n = 2x = 14) is a member 
of the Fabaceae family. The genus consists of more than 150 
species, which are further divided into 13 sections based on 
morphological traits (Kupicha 1983). Grass pea belongs to 
the section Lathyrus along with 33 other species and is the 
only cultivated pulse crop (Allkin 1986) in the genus. The 
primary gene pool consists of the highly variable L. sativus 
accessions (Yunus and Jackson 1991), while the secondary 
gene pool includes L. amphicarpos, L. cicero, L. chrysan-
thus, L. gorgoni, L. marmoratus and L. pseudocicera, L. 
blepharicarpus, L. hierosolymitanus and L. hirsutus. Grass 
pea cultivation originated around 6000 BC in the Balkan 
peninsula (Kislev 1989) and is believed to have been the first 
crop to be domesticated in Europe (Kislev 1989). Its produc-
tion has now spread to other parts of the world, both temper-
ate and tropical, including North and South America, the 
Canary Islands, the Mediterranean region, East Africa and 
Asia. Almost 20,000 accessions of Lathyrus spp. are main-
tained in different gene banks across 27 countries (Shehadeh 
2011; Vaz Patto and Rubiales 2014), with a safe duplication 
of 3239 accessions in the global collection at the Interna-
tional Centre for Agricultural Research in Dryland Areas 
(ICARDA). The CROP TRUST (https​://www.cropt​rust.org/

https://www.croptrust.org/crop/grass-pea/
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crop/grass​-pea/) is currently supporting 4,451 unique grass 
pea germplasm, of which 3595 are backed up at the Svalbard 
Global Seed Vault. France, India, Bangladesh and Chile hold 
the largest collections of L. sativus (Hillocks and Maruthi 
2012) globally, while Ethiopia has the largest collection of 
grass pea in Africa (Girma and Korbu 2012).

Grass pea is cultivated for its seeds as a healthy food 
(Lambein et al. 2019) and feed (Smulikowska et al. 2008), 
as well as for fodder (Singh and Roy 2013). It is a hardy and 
resilient crop (Campbell 1997) that is rarely affected by pests 
and diseases (Rahman et al. 1995) and is one of the most 
climate and environmental change tolerant legumes (Kislev 
1989; Yunus and Jackson 1991; Chowdhury and Slinkard 
2000; Vaz Patto et al. 2006).

Grass pea is predominantly autogamous, although some 
level of cross-pollination has been reported (Rahman et al. 
1995; Hanson and Street 2008; Ghorbel et al. 2014). Crop 
improvement has been achieved through conventional selec-
tion from landraces (Yunus and Jackson 1991; Vaz Patto 
et al. 2006), with the initial objective of improving domes-
tication syndrome traits. Grass pea has also been included as 
a mandate crop of ICARDA, thereby enhancing its breeding 
structure. Finding high yielding cultivars with low ODAP 
content (< 0.2%) has been the main breeding objective 
(Campbell 1997; Girma and Korbu 2012) due to the high 
risk of lathyrism (Barone and Tulumello 2020) that would 
result from the consumption of high ODAP genotypes. High 
genetic variation for ODAP content, ranging from 0.02 to 
2.59%, has been reported within and among populations of 
grass pea (Campbell 1997; Tay et al. 2000; Granati et al. 
2003; Tadesse and Bekele 2003; Vaz Patto et  al. 2006; 
Girma and Korbu 2012) that have led to the release of a 
number of cultivars with low ODAP (Campbell 1997; Gra-
nati et al. 2003; Tadesse and Bekele 2003; Vaz Patto et al. 
2006; Girma and Korbu 2012; Hillocks and Maruthi 2012; 
Vaz Patto and Rubiales 2014) through conventional breed-
ing. Hybridity is largely achieved through hand emasculation 
and pollination.

The first linkage map in grass pea was constructed using 
molecular and isozyme markers on an F2 population of 100 
individuals derived from a cross between a blue-flowered 
and a white-flowered parent (Chowdhury and Slinkard 
1999). The map comprised 71 RAPD, three isozymes and 
one morphological marker spread across 14 linkage groups 
and spanning 898 cM with an average distance between 
markers of 17.2 cM. About 12% of the markers used showed 
distorted segregation. The second linkage map was con-
structed using a backcross population of 92 individuals seg-
regating for resistance to ascochyta blight (Mycosphaerella 
pinodes) (Skiba et al. 2004). The same study mapped two 
QTLs responsible for 12 and 9% of trait variation in linkage 
groups 1 and 2 using 47 RAPDs, 7 STMS and 13 STS/CAPS 
markers that spanned 803.1 cM across nine linkage groups. 

There are no records of any additional trait mapping studies 
either using bi-parental or diverse populations. Both simple 
sequence repeat (SSR) and SNP markers have been devel-
oped in grass pea (Yang et al. 2014; Hao et al. 2017), and 
a draft genome sequence is now available (Emmrich et al. 
2020) to enable routine molecular analysis for trait mapping 
and characterization. More robust populations will also need 
to be developed to enable precise analysis of complex traits.

Water yam

Water yam (Dioscorea alata L.) (2n = 2x = 40), also known 
as the greater yam, is one of the oldest cultivated yam spe-
cies (Lebot 2009) and the most widely cultivated yam spe-
cies worldwide (Abraham and Nair 1990; Obidiegwu et al. 
2009). It belongs to the genus Dioscorea which comprises 
over 600 species distributed primarily in the tropics and sub-
tropics (Rao et al. 1973). The genus Dioscorea was histori-
cally assembled into 32–59 sections (Knuth 1924; Ayensu 
1972). The section Enantiophyllum Uline is the most impor-
tant section as it contains the three economically important 
species, D. alata, D. cayenensis and D. rotundata, all of 
which are cultivated worldwide. The other important species 
in the genus include D. bulbifera, D. esculenta, D. opposita, 
D. japonica, D. nummularia, D. pentaphylla, D. transversa, 
D. trifida and D. dumetorum (Dahiya et al. 2015; Efraín 
González Ramírez and García 2019). The species belong-
ing to the Enantiophyllum section that includes water yam 
are considered unique to Southeast Asia (Malapa et  al. 
2005) suggesting they likely originated from this part of the 
world. D. alata is believed to have been domesticated about 
6000 years ago (Lebot 2009) in Melanesia, where the great-
est phenotypic variability has been observed (Lebot et al. 
1998). Although previous studies reported that D. alata 
was close to D. nummularia and D. transversa (Malapa 
et al. 2005; Wilkin et al. 2005), this school of thought has 
been recently challenged (Caetano et al. 2016) and the true 
ancestry of D. alata remains unknown. Ex site germplasm 
collections have been assembled at the Central Tuber Crops 
Research Institute, Kerala, India (431 accessions), Centre de 
Ressources Biologiques Plantes Tropicales INRA-CIRAD, 
Guadeloupe, France (181) and at the International Insti-
tute of Tropical Agriculture (IITA) in Ibadan, Nigeria (772 
accessions) (Arnau et al. 2017).

Water yam has a wide geographical distribution and is 
especially desirable for production due to high yield poten-
tial, ease of propagation, early growth vigor for weed sup-
pression, long storability of tubers (Sartie and Asiedu 2014) 
and high nutritional content of tubers (Fauziah et al. 2020). 
It is dioecious (produces separate male and female plants) 
(Egesi et al. 2002; Obidiegwu et al. 2009; Ajayi and Oyetayo 
2009; Baboli and Safe Kordi 2010) with ploidy levels rang-
ing from diploids (2n = 2x = 40), triploids (2n = 3x = 60) and 

https://www.croptrust.org/crop/grass-pea/
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tetraploids (2n = 4x = 80) (Abraham and Gopinathan Nair 
1991; Egesi et al. 2002; Obidiegwu et al. 2009; Arnau et al. 
2009; Baboli and Safe Kordi 2010). Water yam is almost 
exclusively clonally propagated using small tubers or small 
pieces of tubers (Arnau et al. 2017), which provides agro-
nomical advantages but has the disadvantage of enhancing 
the spread of diseases (Arnau et al. 2017). The major breed-
ing objectives in water yam include resistance to anthracnose 
disease [Colletotrichum gloeosporioides (Penz.)] (Bhartiya 
et al. 2017), high tuber quality and yield potential (Arnau 
et al. 2016). Conventional hybridization through ploidy 
induction and manipulation (Arnau et al. 2010; Baboli and 
Safe Kordi 2010) has been successfully used to improve 
resistance to biotic and abiotic stresses (Darkwa et al. 2020), 
while higher vigor and tuber yield advantage were reported 
with tetraploid (2n = 4x = 80) and triploid (2n = 3x = 60) 
water yam compared to its diploid (2n = 2x = 40) counterpart 
(Arnau et al. 2007; Lebot 2009; Lebot et al. 2019). Artifi-
cially induced polyploidy has positive effects on chlorophyll 
content, leaf shape, stomata density, plant width, vine size 
and length and fruit (Kenji et al. 2005; Ajayi et al. 2010; 
Baboli and Safe Kordi 2010; Abraham et al. 2013). Suc-
cessful interspecific hybridization that has been reported 
between D. alata and D. nummularia under artificial hand 
pollination (Lebot et al. 2017) provides further opportuni-
ties to introgress superior traits from D. nummularia such 
as resistance to anthracnose disease, high dry matter con-
tent of the tubers, high vigor and robustness, resistance to 
cyclones and tolerance to acid rain (Lebot et al. 2017). There 
are no reports of successful hybridization between D. alata 
and either D. rotundata and D. cayenensis (Rao et al. 1973; 
Arnau et al. 2007; Lopez-Montes et al. 2012).

Wide morphological and genetic variation has been 
reported in water yam (Arnau et al. 2017; Agre et al. 2019), 
which has been exploited in a few cases using molecular 
tools to identify genomic regions responsible for traits of 
interest. The first intraspecific genetic linkage map of D. 
alata was constructed using 523 polymorphic AFLP markers 
that were mapped onto 20 linkage groups spanning 1233 cM 
with a mean marker spacing of 2.31 cM (Mignouna et al. 
2002). This linkage map also led to the identification of an 
AFLP marker linked to anthracnose resistance although 
only 10% of phenotypic variance was explained (Mignouna 
et al. 2002). Petro et al. (2011) later developed a more satu-
rated AFLP linkage map and identified nine QTLs linked to 
anthracnose resistance that explained a range of 7–32.9% of 
phenotypic variance. More recently, Bhartiya et al. (2017) 
used EST-SSRs to map resistance to anthracnose and iden-
tified a consistent QTL on LG14 that explained 68.5% of 
the total phenotypic variation. The most recent linkage map 
of water yam was developed using SNP markers gener-
ated from genotyping-by-sequencing (GBS) and led to the 
identification of a major sex determination QTL on LG6 

(Carrillo-Perdomo et al. 2019). Besides their use for linkage 
mapping, molecular markers have also been used in water 
yam for hybridity testing (Sartie and Asiedu 2011).

African eggplant

The African eggplant (Solanum aethiopicum) (2n = 2x = 24) 
belongs to the Solanaceae family and genus Solanum. It is 
one of the only three cultivated eggplants together with 
the Gboma eggplant (S. macrocarpon) and brinjal egg-
plant (S. melongena), all of which belong to the Leptoste-
monum clade, and to a species-rich sub-clade native to the 
Old World; Africa, Australia, and Asia (Lester and Daunay 
2003; Acquadro et al. 2017). Studies based on seed pro-
tein and amplified fragment length polymorphism (AFLP) 
markers confirmed that S. aethiopicum is more related to 
S. macrocarpon than to S. melongena (Daunay et al. 2001; 
Sękara et al. 2007). The African eggplant is believed to have 
been domesticated in Africa from its wild progenitor Sola-
num anguivi (Sakata and Lester 1997; Lester 1998), which 
forms part of its primary genepool, and hybrids between 
S. aethiopicum and S. anguivi are fully fertile (Lester and 
Niakan 1986; Plazas et al. 2014; Taher et al. 2017). Suc-
cessful crosses are possible between the African eggplant 
and both Gboma eggplant and brinjal eggplant, as well as 
with their respective ancestors S. dasyphyllum and S. insa-
num with intermediate fertility (Daunay et al. 1991; Prohens 
et al. 2012; Plazas et al. 2014). The three eggplants are also 
related to a large number of wild species (Syfert et al. 2016), 
which are well adapted to a wide range of conditions, from 
desert to swampy areas and environments with wide ranges 
of temperatures. GENESYS (2017) records 798 accessions 
of S. aethiopicum with possible additional collections in 
India and the Institute of Vegetables and Flowers, China 
(Taher et al. 2017). Although other unreported collections of 
S. aethiopicum may exist in different countries, more global 
collections need to be urgently done to avoid genetic ero-
sion in this nutritious climate resilient vegetable crop. The 
African eggplant cultivation is mostly restricted to Africa, 
but is also cultivated in the Caribbean and Brazil (Schippers 
2000) as well as in some areas of the southern part of Italy 
(Bukenya 1994; Sunseri et al. 2010).

The African eggplant is a hypervariate species (Lester et al. 
1986; Plazas et al. 2014) with four recognized cultivar groups; 
Shum, Gilo, Kumba and Aculeatum (Lester 1986; Lester 
et al. 1986; Lester and Daunay 2003) that are completely 
inter-fertile (Lester and Niakan 1986). The Shum is used for 
its leaves; Kumba for both fruits and leaves; and Gilo for its 
fruits, and Aculeatum is used as an ornamental (Lester 1986; 
Schippers 2000; Lester and Daunay 2003). The crop is pre-
dominantly self-pollinating with up to 30% cross-pollination 
(Adeniji et al. 2012). It has been used as a source of resist-
ance genes that have been introduced into other Solanaceae 
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crops (Collonnier et al. 2001; Toppino et al. 2008; Rizza 
et al. 2002). Crop improvement has been achieved through 
the selection of landraces to enhance the domestication syn-
drome traits (non-shattering, reduced dormancy, increased 
seed size etc.), as well as improve resilience to biotic and 
abiotic stresses (Sseremba et al. 2018a, 2018b). There is now 
an established drought screening protocol (Nakanwagi et al. 
2020) that can be used to identify drought resilient genotypes 
for use in generating relevant populations for future genetic 
studies. Its wild progenitor, S. anguivi, is a good source of 
novel alleles for disease resistance (Schippers 2000) and high 
number of fruits per inflorescence (Bukenya-Ziraba 2004; 
Osei et al. 2010; Afful et al. 2018).

The use of molecular markers within the African eggplant 
has been mainly for germplasm or genome characterization 
(Sakata et al. 1991; Sakata and Lester 1994; Gramazio et al. 
2016; Song et al. 2019). There is currently no association or 
linkage mapping studies reported in the literature despite the 
recent availability of a reference genome (Song et al. 2019).

Breadfruit

Breadfruit belongs to the genus Artocarpus (Moraceae), 
which consists of approximately 60 species native to the 
Oceania region (Kochummen 2000; Zerega et al. 2004). It 
is believed to have been domesticated from its wild ances-
tor, Artilis camansi Blanco (breadnut), in western Pacific 
about 3000 years ago (Ragone 2006; Zerega et al. 2006) 
from where it was spread by humans throughout the trop-
ics (Roberts-Nkrumah 2007; Omubuwajo 2007; Ragone 
1997). The cultivated breadfruit (Artocarpus altilis, (Par-
kinson) Fosberg, Moraceae), together with its wild relatives, 
A. camansi, A. mariannensis Trécul and natural hybrids (A. 
altilis x A. mariannensis) make up the breadfruit complex 
(Ragone 2007; Zerega et al. 2015). The National Tropical 
Botanical Garden (NTBG) in Hawaii is the main breadfruit 
conservation center and manages a field genebank of 220 
accessions from 18 Pacific Island groups, the Philippines, 
the Seychelles, Indonesia and Honduras (Ragone 2007; 
Breadfruit Conservation Strategy 2007). Additional 33 
accessions, including 24 duplicates from the NTBG col-
lection, are maintained in the USDA/ARS National Plant 
Germplasm System at the Pacific Basin Tropical Plant 
Genetic Resources Management Unit in Hawaii and the 
National Germplasm Repository in Puerto Rico (Breadfruit 
Conservation Strategy 2007). There are other collections 
in Vanuatu (36 accessions), Samoa (200 collections from 
14 countries), the University of the West Indies (33 acces-
sions) (Ragone 2007) and several minor collections spread 
across the Pacific, Caribbean and West Africa (Breadfruit 
Conservation Strategy 2007). Morphological and molecular 
characterization of breadfruit collections and cultivars reveal 
a complex origin (Zerega et al. 2004) and high diversity 

(Sreekumar et al. 2007; Jones et al. 2012; Zerega et al. 
2015).

Seedless cultivars of breadfruit, which are either triploids 
(2n = 3x =  ~ 84) or sterile diploids (2n = 2x = 56), are an impor-
tant source of starch (Zerega et al. 2004) throughout Oceania, 
the Caribbean islands, and some parts of Africa and Asia. 
Breadfruit is grown mainly for its starchy fruit, which is a rich 
source of carbohydrates, fiber, vitamins, minerals flavonoids 
and complete protein (Rincon and Padilla 2004; Ijarotimi and 
Aroge 2005; Ragone and Cavaletto 2006; Jones et al. 2011, 
2013; Liu et al. 2015). Different parts of the plant have phar-
macological (Nwokocha et al. 2012; Jalal et al. 2015; Weng 
et al. 2018) and insect-repelling properties (Jones et al. 2012). 
Although seeded breadfruit cultivars can be propagated using 
seeds, vegetative propagation is the preferred method. Plants 
raised from seeds are not always true to type and lack uni-
formity (Ragone 2006; Deivanai and Bhore 2010). Vegetative 
propagation is done using rooted shootlets or root cuttings, air 
layering, budding and grafting onto seedling rootstocks (Dei-
vanai and Bhore 2010). In vitro propagation using tissue cul-
ture has been optimized and is the preferred method of germ-
plasm exchange besides its use for mass propagation (Murch 
et al. 2008). Breadfruit breeding objectives include improved 
resistance to lodging through wind damage during typhoons 
and cyclones (Daley et al. 2012; Zhou and Underhill 2019), 
resistance/tolerance to prolonged drought stress, resistance to 
mealybugs and breadfruit flies (Bactrocera frauenfeldi and 
B. umbrosa), fruit and root rots (Phellinus noxius and Phy-
tophthora palmivora) (Ragone 2006; Zhou et al. 2014). Crop 
improvement has been achieved through traditional selection 
from landraces resulting in unique high yielding cultivars that 
can be distinguished morphologically (Lincoln and Ladefoged 
2014). Yields of up to 50 tons/ha have been recorded (Roberts-
Nkrumah 1998) despite the lack of agronomic and breeding 
research (Lincoln et al. 2018, 2019; Zhou et al. 2014).

Molecular studies in breadfruit have focused on under-
standing its evolution, domestication and overall genetic 
characterization using AFLPs (Sreekumar et  al. 2007), 
RAPDs (Ifah et al. 2018), SSRs (De Bellis et al. 2016) and 
SNPs (Laricchia et al. 2018). Although a draft genome 
sequence (Sahu et al. 2019) was recently published, we 
found no record of association or linkage mapping studies. 
The availability of the draft genome provides a great oppor-
tunity for gene discovery, trait mapping and comparative 
genomics.

Development of genetic and genomic 
resources in climate resilient orphan crops

Advances made in biotechnology and genomics, especially 
in next-generation sequencing (NGS), have significantly 
improved our understanding of orphan crops over the last 
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two decades. Funded initiatives and web resources related 
to orphan crop genetics and genomics have become avail-
able (Padulosi 2017; Chiurugwi et al. 2019; Gregory et al. 
2019; Jamnadass et al. 2020) leading to rapid genome char-
acterization and candidate gene identification. There are 
now publicly available genome analysis tools enabling the 
utilization of resources from major crops for the exploitation 
of minor/orphan crops. There are also great opportunities 
to transfer the benefits of advanced breeding resources such 
as whole genome and transcriptome sequencing, genomic 
selection, genome editing and speed breeding from major 
crops to closely related climate resilient orphan crops. We 
discuss the processes and lessons to be learnt during the 
development of such resources in orphan crops under the 
following five main topics.

Genomes and transcriptomes

Over the last five years alone, 30 orphan crops representing 
13 families have had their genomes sequenced (Table 1). The 
selection criteria for genome sequencing included impor-
tance to local food security and nutritional value (Chang 
et al. 2019; Hendre et al. 2019; Jamnadass et al. 2020), 
and tolerance to environmental stresses (Song et al. 2019; 
Emmrich et al. 2020). The sizes of genomes sequenced 
ranged from 0.217 Gb (Moringa oleifera) to about 1.5 Gb 
(Eleusine coracana) (Table 1), which is relatively small 
compared to the full range of plant genome size (Liu et al. 
2019). Only 8 out of the 30 genomes sequenced were 
polyploids (Table 1) highlighting a possible bias towards 
simple genomes, especially because the sequencing was 
mostly done using second-generation platforms, resulting 

Table 1   Whole genome sequences of orphan crops generated since 2015

Family Species Ploidy Estimated 
Genome size 
(Mbp)

N50 (kbp) Reference

Amaranthaceae Amaranthus hypochondriacus 2X 403 24,364 Lightfoot et al. (2017)
Anacardiaceae Sclerocarya birrea 2X 331 335 Chang et al. (2018)
Dioscoreaceae Dioscorea alata 2X 480 24,000 JGI (2020)
Dioscoreaceae Dioscorea dumetorum 2X 322 3190 Siadjeu et al. (2020)
Dioscoreaceae Dioscorea rotundata 2X 570 2120 Tamiru et al. (2017)
Fabaceae Vigna subterranean 2X 535 641 Chang et al. (2018)
Fabaceae Lablab purpureus 2X 395 621 Chang et al. (2018)
Fabaceae Faidherbia albida 2X 654 692 Chang et al. (2018)
Fabaceae Lupinus angustifolius 2X 609 13.8 Habiyaremye et al. (2017)
Fabaceae Vigna umbellata 2X 415 207 Kaul et al. (2019)
Fabaceae Lupins albus 2X 924 18,660 Xu et al. (2020), Hufnagel et al. (2020)
Fabaceae Vigna angularis 2X 538 1290 Yang et al. (2014)
Fabaceae Vigna reflexo-pilosa 4X 968 63 Yang et al. (2015)
Moraceae Artocarpus heterophyllus 2X 982 548 Sahu et al. (2020)
Moraceae Artocarpus altilis 2X 833 1536 Sahu et al. (2020)
Moringaceae Moringa oleifera 2X 217 957 Chang et al. (2018)
Poaceae Digitaria exilis 2X 716 10,741 Abrouk et al. (2020)
Poaceae Eragrostis tef 4X 700 15,500 VanBuren et al. (2020)
Poaceae Eleusine coracana 4X 1500 61,300 https​://phyto​zome-next.jgi.doe.gov/info/

Ecora​cana_v1_1
Solanaceae Solanum aethiopicum 2X 1020 516 Song et al. (2019)
Convolvulaceae Ipomoea batatas 6X 873 6.5 Yan et al. (2015), Yang et al. (2017)
Poaceae Panicum miliaceum 4X 923 369 Zou et al. (2019)
Polygonaceae Fagopyrum esculentum 2X 1177 25.12 Yasui et al. (2016)
Amaranthaceae Chenopodium quinoa 4X 1325 3846 Joseph et al. (2017)
Brassicaceae Brassica juncea 4X 784 61 Yang et al. (2016), Pati et al. (2019)
Euphorbiaceae Jatropha curcas 2X 339 145 Ha et al. (2019)
Cucurbitaceae Cucurbita maxima 4X 271.4 3717 Sun et al. (2017)
Cucurbitaceae Momordica charantia 2X 285.5 1100 Mayes et al. (2020), Urasaki et al. (2017)
Moraceae Morus alba 2X 346.4 22,871 Luo et al. (2019), Jiao et al. (2020)
Cucurbitaceae Luffa cylindrica 2X 416.3 53,000 Zhang et al. (2020)

https://phytozome-next.jgi.doe.gov/info/Ecoracana_v1_1
https://phytozome-next.jgi.doe.gov/info/Ecoracana_v1_1
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in the assembly of draft genomes. Although some of these 
draft genomes will be more than adequate for utilization in 
molecular breeding, a third-generation (PacBio; Hi-C reads) 
sequencing tool will be needed to improve complex genomes 
as has been done for tef (VanBuren et al. 2020).

Most whole genome sequencing projects are often cou-
pled with the generation of the respective transcriptomes, 
which enable the full annotation of the genome generated. 
While the preferred transcriptome for annotation would be 
from the same species as was done for wild mustard (Bras-
sica juncea) (Yang et al. 2016; Pati et al. 2019), the Afri-
can eggplant (Song et al. 2019) and tef (VanBuren et al. 
2020), there are also cases where the existing transcriptome 
of a close relative or a well-annotated transcriptome of a 
model crop has been used due to resource limitations. An 
earlier reference genome of finger millet, for example, was 
annotated using data from maize (Hittalmani et al. 2017). 
Other transcriptomes of orphan crops have been generated in 
response to specific biological questions, and the method of 
choice has been RNA sequencing (RNA-seq) (Ozsolak and 
Milos 2011). For example, Ranasinghe et al. (2019) identi-
fied 2416 differentially expressed genes while profiling for 
response to salt stress in quinoa (Chenopodium quinoa). In 
Jute-mallow, a transcription analysis was done to identify 
drought stress-related genes (Yang et al. 2017). Microar-
rays were the methods of choice for transcriptome analysis 
before the advent of NGS and were also applied in several 
orphan crops such as white lupin (Zhu et al. 2010), tef (Degu 
2019), African nightshade (Solanum nigrum) (Schmidt and 
Baldwin 2009), wild mustard (Srivastava et al. 2015) and 
buckwheat (Fagopyrum esculentum) (Golisz et al. 2008) to 
detect expression profiles relevant to abiotic stress resilience.

Molecular markers and genomic selection

A robust set of molecular markers is an important breeding 
resource in all crops but is often lacking in many orphan 
crops. Diversity Arrays Technology (DArT) (Jaccoud et al. 
2001) has been one of the most relevant methods for molec-
ular marker development in orphan crops as it is hybridi-
zation-based and therefore does not require prior sequence 
information. This technology transformed the genetic char-
acterization and linkage mapping of a number of crops that 
were considered orphan two decades ago including pigeon-
pea (Yang et al. 2006; Yang et al. 2011) and cassava (Mani-
hot esculenta Crantz) (Hurtado et al. 2008). More recently, 
DArT has been combined with NGS in a procedure called 
DArT-sequencing (DArT-seq) (Sansaloni et al. 2011) that 
enables high throughput genotyping for rapid SNP dis-
covery in many orphan crops. DArT sequencing is now 
being used in the characterization of many climate-resilient 
orphan crops including Bambara groundnut (Redjeki et al. 
2020), finger millet (Dida et al. 2020), Kersting’s groundnut 

(Kerstingiella geocarpa) (Kafoutchoni et al. 2020), lupin 
(Lupinus albus) (Raman et al. 2014) and grass pea (Almeida 
et al. 2016).

Aside from DArT-sequencing, other restriction-associ-
ated DNA sequencing (RADseq) (Davey et al. 2011) geno-
typing methods including genotyping-by-sequencing (GBS) 
(Elshire et al. 2011) have also been exploited in the charac-
terization and linkage mapping of orphan crops, especially 
where a reference genome is available as was done in white 
Guinea yam (Dioscorea rotundata) (Tamiru et al. 2017). 
These sequence-based genotyping platforms are the future 
of genotyping in all crops including orphan crops with no 
reference genomes. With the dropping costs of NGS, most 
of the climate resilient orphan crops will most likely have 
their genomes sequenced in the next decade. Where whole 
genome sequences will not be available, comparative 
genomics (Feltus et al. 2006) could be exploited alongside 
other tools that would enable more precise SNP calling from 
NGS data in the absence of reference genomes (Lu et al. 
2013; Russell et al. 2014; Melo et al. 2016).

Availability of a robust set of molecular markers would 
pave the way for genomic selection (GS), a form of marker-
assisted selection that uses dense markers covering the 
whole genome to estimate the breeding value of selection 
candidates for a quantitative trait (Goddard 2009). Genomic 
selection promises to increase genetic gain in crops (Voss-
Fels et al. 2019) and would therefore provide an opportunity 
for the much-needed progress in the crop improvement of 
orphan crops. A lot of successes have been reported in the 
implementation of GS in several crops including relatively 
underutilized crop species such as sorghum (Fernandes et al. 
2018), cassava (Ozimati et al. 2018; Torres et al. 2019) and 
Kersting’s groundnut (Akohoue et al. 2020). For GS to work 
optimally in most of the climate resilient orphan crops, there 
will be need to develop data analysis tools that would ena-
ble the parallel analysis of NGS genotyping data alongside 
high-quality phenotypic data. Luckily, several digital tools 
and programs exist that support orphan crops including the 
Breeding Management System (BMS) (Shrestha et al. 2012), 
which is a product of the Integrated Breeding Platform (IBP; 
https​://www.integ​rated​breed​ing.net). There are also train-
ing programs such as the African Plant Breeding Academy 
(http://pba.ucdav​is.edu/PBA_in_Afric​a/) with the goal of 
training orphan crop breeders in the most advanced theory 
and technologies for plant breeding in support of critical 
decisions for crop improvement.

Identification of climate smart genes in orphan 
crops for use in major crops

Several genes involved in the response to extreme stress 
conditions have been identified in orphan crops, and in 
some cases, used to improve major crops, or functionally 

https://www.integratedbreeding.net
http://pba.ucdavis.edu/PBA_in_Africa/
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validated in model crops such as Arabidopsis thaliana or 
Nicotiana tabacum (Table 2). Majority of the genes reported 
for drought and/or salt stress are transcription factors, which 
are known to play important roles in regulating response 
of plants to abiotic stresses (Joshi et al. 2016; van Zelm 
et al. 2020). BjDREB1B, a DREB gene cloned from Bras-
sica juncea, led to the accumulation of higher levels of free 
proline in tobacco confirming its role in response to drought 
and salinity (Cong et al. 2008). Another DREB transcription 
factor, VrDREB2A, cloned from mung bean (Vigna radiata), 
significantly increased the tolerance of transgenic Arabidop-
sis plants to drought and salt stresses (Chen et al. 2016).

Management of pests and diseases has also benefitted 
from genes and other resources identified from orphan 
crops. Within the Solanaceae family, resistance to Fusarium 
oxysporium f. sp. melongenae (Rizza et al. 2002; Toppino 
et al. 2008) in brinjal eggplant was introduced from the Afri-
can eggplant, while resistance to late blight (Phytophthora 
infestans) in potato (Solanum tuberosum) has been tradition-
ally managed through the introgression of major genes from 
underutilized relatives (Ross 1986; Gebhardt and Valkonen 
2001; Van Der Vossen et al. 2003; Ghislain et al. 2019). A 
recent whole genome analysis confirmed the abundance of 
disease resistance genes in the African eggplant (Song et al. 
2019), making it a great resource for future introgression 
and R gene cloning. The African rice (Oryza glaberrima 
Steud.), an underutilized rice species cultivated in West 
Africa, is a major source of resistance to Rice yellow mottle 
virus (RYMV) (Pidon et al. 2017), bacterial blight (Xan-
thomonas oryzae pv. Oryzae) (Neelam et al. 2020), blast 
disease (Magnaporthe oryzae) (Dong et al. 2020), green rice 
leafhopper (Nephotettix nigropictus) (Fujita et al. 2010), as 
well as rice gall midge (Orseolia oryzae) (Ukwungwu et al. 
1998) to the Asian rice.

An Ascorbate peroxidase (APX) gene cloned from yam 
(Dioscorea alata) was shown to enhance tolerance to flood 
and chilling stresses in transgenic Arabidopsis (Rosa et al. 
2010; Bonifacio et al. 2011; Chen et al. 2019). A high-qual-
ity reference genome of mung bean enabled fast identifi-
cation of synteny blocks associated with seed weight and 
nematode resistance through comparative analysis with soy-
bean (Glycine max) and led to the development of functional 
markers for mung bean (Kang et al. 2014).

Genome editing

Genome editing is a conventional method that is applied 
to alter the genotype and phenotype of organisms (Zhang 
et al. 2017) and involves the exploitation of both natural and 
induced mutations in crop improvement. Several genome 
editing tools are now available (Please see Hassanin et al. 
2019) although the clustered regularly interspaced short pal-
indromic repeats (CRISPR)–CRISPR-associated protein-9 

nuclease (Cas9) (CRISPR–Cas9) (Doudna and Charpentier 
2014) is the most common. Genome editing might be used 
to rapidly modify undesirable traits in orphan plants and 
accelerate the process of domestication. This can be through 
the reduction of the plant content of secondary metabolites, 
which are often toxic (Jørgensen et al. 2005; Østerberg et al. 
2017). While genome editing using CRISPR-Cas9 has been 
suggested as a promising method for improving domestica-
tion syndrome traits in both diploids (Lemmon et al. 2018) 
and polyploids (Tripathi et al. 2019; Zaman et al. 2019), 
there are some limiting factors in orphan crops, including 
lack of a well-annotated genome, sub-optimal tissue culture 
regeneration protocols and lack of genetic transformation 
methods. For closely related crops, some of these techniques 
could be transferred from model and/or well-studied crops 
and replicated to achieve similar results in promising orphan 
crops in a fraction of the time that it took for the major crops 
(Chiurugwi et al. 2019; Pareek et al. 2020). Lemmon et al. 
(2009) successfully applied genome editing using CRISPR-
Cas9 in a tomato wild relative, groundcherry (Physalis prui-
nosa) and improved domestication and productivity traits. 
An efficient CRISPR/Cas9‐based genome editing has also 
been established for banana (Kaur et al. 2017), a polyploid 
that is relatively under-researched, making it a good example 
for other orphan crops with complex genomes.

Speed breeding

A recent review highlights speed breeding as one of the key 
technologies that would revolutionize the breeding of orphan 
crops (Chiurugwi et al. 2019). Proven methods of shortening 
the growth cycle of crops include the combination of at least 
two of the following; extending the duration of exposure to 
light (Ghosh et al. 2018), improved hand pollination and 
emasculation techniques (Stetter et al. 2016), growing the 
crops in a growth chamber (Ghosh et al. 2018), doubled 
haploidy (Chaudhary et al. 2019), optimal temperatures and 
humidity (Connor et al. 2013) and early seed harvest (Ghosh 
et al. 2018). Speed breeding protocols have been optimized 
for cereals such as wheat (Triticum aestivum L.) (Alahmad 
et al. 2018) and rice (Oryza sativa L.) (Ohnishi et al. 2011), 
and legumes including groundnut (Arachis hypogaea L.) 
(O’Connor et al. 2013) and chickpea (Cicer arietinum L.) 
(Samineni et al. 2020). These existing protocols could be 
tested in closely related orphan crops, perhaps with minor 
modifications. There is already a rapid production proto-
col for grain amaranths, which was developed through a 
combination of controlled growth conditions and efficient 
crossing methods (Stetter et al. 2016). Other protocols have 
been developed for grass pea and quinoa, which could soon 
lead to new varieties (Ghosh et al. 2018). Speed breeding, 
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therefore, looks very promising and could be implemented 
right away to enhance orphan crops.

Challenges in breeding climate smart 
orphan crops

Lack of research investments

Despite the demonstrated importance of breeding orphan 
crops for climate change resilience and the progress that 
is being made, orphan crops still face several investment 
challenges. Most national, private sector and international 
agricultural research funding is skewed toward major crops 
(Naluwairo 2011). Rice, maize and wheat remain the high-
est priority crops in most countries (Shiferaw et al. 2013; 
Shrestha et al. 2019). The methodologies that are currently 
being used for priority setting for agricultural research 
investment rely on areas of production and numbers of 
beneficiaries, which often leave out climate smart orphan 
crops that may be the only source of livelihoods for some 
of the most vulnerable populations. A different framework 
for prioritizing agricultural research investment needs to 
be considered. There is increasing evidence of reduc-
tions in future productivity of major crops due to climate 
change (Lizumi and Ramankutty 2016; Zhao et al. 2017) 
that should be used to justify more investments in climate 
resilient orphan crops.

A better investment plan would enhance the develop-
ment of genetic and genomic resources, improve crop 
breeding and enable the exploitation of the demonstrated 
benefits under different climate change scenarios. The first 
priority would be to train breeders in the use of advanced 
breeding tools, as is currently being done by the African 
Plant Breeding Academy. Functional networks of breeders 
working on same crops or addressing the same challenges 
would need to be formed to provide learning platforms that 
would reduce duplication of activities and enhance utili-
zation of funds invested. The implementation of digital 
tools that would enhance the proper utilization and inter-
pretation of both genotypic and phenotypic data will also 
need to be done before advanced breeding methods such 
as GS and speed breeding are implemented. The use of 
additional modern tools such as bioinformatics (Armstead 
et al. 2009), GS, mutational R gene enrichment sequenc-
ing (MutRenSeq; Steuernagel et al. 2016); genome editing 
(Lemmon et al. 2018), high throughput phenotyping (Mir 
et al. 2019) and nanotechnology (Jan et al. 2020) would 
make rapid improvement of orphan crops possible.

Ta
bl

e 
2  

(c
on

tin
ue

d)

C
ro

p
G

en
es

Ro
le

s
M

od
el

/m
aj

or
 c

ro
p

Re
fe

re
nc

es

Fr
ui

ts

 B
re

ad
 fr

ui
t (

Ar
to

ca
rp

us
 a

lti
lis

)
D

EL
LA

 p
ro

te
in

s g
en

es
 A

aD
EL

LA
1 

an
d 

Aa
D

EL
LA

2
Sa

lin
ity

 to
le

ra
nc

e
Zh

ou
 a

nd
 U

nd
er

hi
ll 

(2
01

7)

 P
hy

si
c 

nu
t (

Ja
tro

ph
a 

cu
rc

as
)

D
R

EB
 tr

an
sc

rip
tio

n 
fa

ct
or

 g
en

e 
Jc

D
RE

B
Sa

lt 
an

d 
fr

ee
zi

ng
 st

re
ss

es
A

ra
bi

do
ps

is
Ta

ng
 e

t a
l. 

(2
01

1)
B

et
ai

ne
 a

ld
eh

yd
e 

de
hy

dr
og

en
as

e 
ge

ne
 

Jc
BD

1
Sa

lt,
 d

ro
ug

ht
 a

nd
 h

ea
t s

tre
ss

es
Zh

an
g 

et
 a

l. 
(2

00
8)



1802	 Theoretical and Applied Genetics (2021) 134:1787–1815

1 3

Collection, documentation and characterization 
of germplasm

The rich diversity that exists in the majority of these 
orphan crops is threatened with extinction unless the germ-
plasm is conserved and fully characterized (Bhattacharjee 
2009). There have been some national and international 
efforts (Sogbohossou et al. 2018; Daley et al. 2020; http://
www.ntbg.org/bread​fruit​/) to conserve a few orphan crops, 
but in most cases, the germplasm collections are not opti-
mum and lacking full genetic characterization. An evalua-
tion of the world’s largest breadfruit germplasm collection 
found that approximately 50% of the typical East Polyne-
sian seedless triploid cultivars were represented by a sin-
gle genotype (Zerega et al. 2015). The genetic gains made 
from the Green Revolution (Evenson and Gollin 2003) 
have been attributed to the conservation, characterization 
and exchange of germplasm (Pingali 2012). Both in situ 
and ex situ germplasm collections will be required fol-
lowed by full characterization to enable successful crop 
improvement.

Underdeveloped extension services and seed 
systems

Agricultural extension services in most countries have 
been built around a few major crops and may be minimal or 
non-existent for orphan crops. Yet these services have been 
described as the main conduit for disseminating information 
on farm technologies, support rural adult learning and assist 
farmers in developing their farm technical and managerial 
skills (Danso-Abbeam et al. 2018). Extension agents also 
serve as feedback channels between farmers and the global 
research community with respect to proven best practices 
(Kabunga et al. 2011). In some cases, these services have 
been digitized and therefore capable of reaching farmers 
using mobile phones in some of the remotest of villages 
(Fu and Akter 2016), as long as the verified information 
on the target crop is available. There is need to structure 
extension services by region and target crops in order to 
provide the relevant information for orphan crops as well, 
especially those that are climate resilient and form a major 
part of livelihoods in specific regions. For example, teff 
is the most important cereal crop in Ethiopia (VanBuren 
et al. 2020), but still lacking adequate extension services 
(Teshome and Tegegne 2020) beyond the delivery of a pack-
age with improved variety and fertilizer (Abraham 2015).

Related to extension services are the seed systems. 
Orphan crops generally have underdeveloped seed systems 
(Mabhaudhi et al. 2019) that result in the recycling of poor 
quality seeds and subsequently, extremely low yields. For 
vegetatively propagated orphan crops, development of rapid 
regeneration protocols under sterile laboratory conditions 

may be necessary as has been done for breadfruit (Murch 
et al. 2008) to ensure the distribution of disease-free qual-
ity seedlings to farmers. This takes time and resources and 
would need the establishment of special laboratories and 
trained personnel. But even for sexually propagated orphan 
crops, different forms of quality seed supply should be tested 
and regulated to suit the needs of the crop and the targeted 
agro-ecologies (Ahmed et al. 2009).

Marketing

The value chains for orphan crops are not well developed 
resulting in poor quality products that may be unattractive to 
the end-user and fetching way below the true value. Finger 
millet in East Africa, for example, can be processed and 
marketed as a high value malt drink or in the baking and 
breakfast cereals industry but is instead mainly marketed 
for household porridge preparation. Teff value chain is often 
described as untraceable (Amentae et al. 2016) and lacking 
in value addition (Lee 2018). The increasing demand for 
healthy products in the west and among the growing middle 
and upper class in developing nations has the potential to 
drive the demand for healthy orphan crops. However, value 
addition, better presentation and packaging (Opole 2019) 
will be needed for these products to appeal to consumers.

Future perspectives

In order to reduce the impact of climate change, there is 
a need to shift away from global dependence on a limited 
number of crop species (Mayes et al. 2012). Several orphan 
crops continue to make a difference in the livelihoods of 
many households, especially with the increasing effects of 
climate change. Some crops such as cassava (ICGMC 2015), 
a perennial with extensive root systems, and chickpea (Garg 
et al. 2011; Jain et al. 2013), that were considered orphan 
crops two decades ago, are poised to become the new major 
crops under the future low inputs climate smart agriculture 
(CSA) regime. The next-generation crop plants need to be 
water and nutrient use efficient and have sustainable yields 
over a wider range of environmental conditions (Pareek et al. 
2020). The potential that has been observed in several of 
these orphan crops will need to be translated for regular 
profitable production by an average farmer by improving 
their genetics and agronomy to meet the global demands. 
The wide range of tools and techniques to enhance sustain-
able crop production and resilience to climate change that 
have been developed for major crops will need to be tested 
and validated for use in orphan crops to fast track their per-
formance. Conventional breeding alongside advanced tools 
such as GS, speed breeding and genome editing will play a 
big role in accelerating the process of domestication, through 

http://www.ntbg.org/breadfruit/
http://www.ntbg.org/breadfruit/
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the reduction of toxic plant content (Jørgensen et al. 2005; 
Østerberg et al. 2017) and enhancing of phenotypes for bet-
ter yields under climate smart agriculture (Chandrasekaran 
et al. 2016; Li et al. 2017; Lu and Jian-Kang 2017; Pareek 
et al. 2020). Value addition, better presentation and pack-
aging of these crops and their products will go a long way 
in enhancing their adoption, especially with the increasing 
interest in healthy foods and the need to protect environ-
ments through the production of climate-smart crops. The 
success of future climate resilient crops will require a mul-
tidisciplinary research effort and multi-stakeholder funding 
prioritization.
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