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Abstract
Key message  Genome-wide association revealed that resistance to Striga hermonthica is influenced by multiple 
genomic regions with moderate effects. It is possible to increase genetic gains from selection for Striga resistance 
using genomic prediction.
Abstract  Striga hermonthica (Del.) Benth., commonly known as the purple witchweed or giant witchweed, is a serious prob-
lem for maize-dependent smallholder farmers in sub-Saharan Africa. Breeding for Striga resistance in maize is complicated 
due to limited genetic variation, complexity of resistance and challenges with phenotyping. This study was conducted to (i) 
evaluate a set of diverse tropical maize lines for their responses to Striga under artificial infestation in three environments in 
Kenya; (ii) detect quantitative trait loci associated with Striga resistance through genome-wide association study (GWAS); 
and (iii) evaluate the effectiveness of genomic prediction (GP) of Striga-related traits. An association mapping panel of 380 
inbred lines was evaluated in three environments under artificial Striga infestation in replicated trials and genotyped with 
278,810 single-nucleotide polymorphism (SNP) markers. Genotypic and genotype x environment variations were significant 
for measured traits associated with Striga resistance. Heritability estimates were moderate (0.42) to high (0.92) for measured 
traits. GWAS revealed 57 SNPs significantly associated with Striga resistance indicator traits and grain yield (GY) under 
artificial Striga infestation with low to moderate effect. A set of 32 candidate genes physically near the significant SNPs with 
roles in plant defense against biotic stresses were identified. GP with different cross-validations revealed that prediction of 
performance of lines in new environments is better than prediction of performance of new lines for all traits. Predictions 
across environments revealed high accuracy for all the traits, while inclusion of GWAS-detected SNPs led to slight increase 
in the accuracy. The item-based collaborative filtering approach that incorporates related traits evaluated in different environ-
ments to predict GY and Striga-related traits outperformed GP for Striga resistance indicator traits. The results demonstrated 
the polygenic nature of resistance to S. hermonthica, and that implementation of GP in Striga resistance breeding could 
potentially aid in increasing genetic gain for this important trait.

Introduction

The purple witchweed or giant witchweed, Striga hermon-
thica (Del.) Benth., is the most widespread parasitic weed 
posing a serious threat to maize production in sub-Saharan 
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Africa (SSA) (Berner et al. 1995; De Groote et al. 2008; 
Spallek et al. 2013). Striga hermonthica (hereafter referred 
to as Striga) lacks its own root system and survives by draw-
ing water and nutrients from host plants like maize for its 
own growth and has a potent phytotoxic effect (Bebawi and 
Mutwali 1991). Maize plants infested with Striga become 
chlorotic, produce thin stalks with severe reduction in plant 
height, biomass and eventually grain yield (Menkir et al. 
2012, 2020). Striga infestation is severe in areas with poor 
soil fertility and poorly managed but intensively cultivated 
farming systems (Ransom 2000). Many farmers experience 
total maize crop failure due to Striga infestation. Farmers 
who faced 100% yield loss usually move from one affected 
field to another, and abandoned fields become Striga seed 
banks. It is estimated that Striga infestation causes up to 
US$ 7 billion in crop losses (Berner et al. 1995), affecting 
the livelihoods of over 100 million people (Badu-Apraku 
and Akinwale 2011).

Striga infestation is extremely difficult to control since 
the parasite inflicts most of its damage when it is below the 
ground and emerges after most weeding operations are com-
pleted (Odhiambo and Ransom 1995). The emerged parasitic 
plants act as strong sink for host resources to support their 
own growth, flowering and seed production (Gurney et al. 
1995, 1999). Several Striga plants attach to a single maize 
plant as parasites; thus, their impact on maize biomass and 
grain yield is often devastating and may lead to 100% yield 
loss (Ransom et al. 1990; Haussmann et al. 2000; Kim et al. 
2002). Several methods have been proposed for Striga man-
agement, including host plant resistance, cultural, chemical 
and manual control options (Odhiambo and Ransom 1995; 
Kim et al. 2002). Integrated Striga management is a strategy 
involving a combination of two control methods, where the 
methods are used simultaneously to control Striga (Kan-
ampiu et al. 2018). However, the use of host plant resistance 
is considered the most economical, environmentally viable 
and affordable for smallholder or resource-constrained farm-
ers in SSA. Progress in breeding for native genetic resistance 
to Striga in maize has been reported in several studies (Men-
kir et al. 2005, 2012; Badu-Apraku and Lum 2007; Badu-
Apraku et al. 2016; Menkir and Meseka 2019). Efforts to 
incorporate herbicide resistance in maize for Striga control 
have also been reported (Kanampiu et al. 2001; Makumbi 
et al. 2015).

Genome-wide association study (GWAS) enables genetic 
dissection of complex traits. GWAS offers high mapping 
resolution and could effectively identify favorable genomic 
regions associated with the trait of interest (Yu and Buckler 
2006). Linkage disequilibrium (LD) decay is rapid in maize 
due to its extensive genetic diversity (Kump et al. 2011; Guo 
et al. 2013). Therefore, GWAS needs to be implemented 
with a large number of high-quality markers to ensure com-
plete coverage of the genome. To date, GWAS has been 

successfully applied to identify the quantitative trait nucle-
otide (QTN) or haplotypes conferring resistance to several 
important diseases of maize, such as gray leaf spot (Shi 
et al. 2014), Southern corn leaf blight (Kump et al. 2011), 
Fusarium ear rot (Zila et al. 2013), maize lethal necrosis 
(Gowda et al. 2015; Nyaga et al. 2019; Sitonik et al. 2019) 
and sugarcane mosaic virus (Tao et al. 2013; Gustafson et al. 
2018). Recently, Adewale et al. (2020) reported first GWAS 
on Striga resistance traits with small set of 132 early matur-
ing inbred lines. On the other hand, in this study, we used 
GWAS panel with 380 lines for identifying genomic regions 
controlling resistance to Striga hermonthica.

Crop breeders need innovative methods that aid in selec-
tion for improvement of complex traits such as Striga resist-
ance. Genomic prediction (GP) facilitates prediction of best-
performing lines and can potentially accelerate the breeding 
cycle with optimal resources (Crossa et al. 2017). In a maize 
breeding program, GP-based selection is comparable to a 
traditional selection scheme; however, GP produces con-
siderable savings in both time and resources (Combs and 
Bernardo 2013; Beyene et al. 2015, 2019). In general, results 
of random cross-validation with genomic best linear unbi-
ased predictor (GBLUP) indicate that GP can significantly 
increase prediction accuracy for complex traits (Crossa et al. 
2017). Further, GBLUP models could be extended to multi-
environment settings where G × E effects are modeled to 
improve the prediction accuracy. Earlier studies on complex 
traits like grain yield (Burgueño et al. 2012; Jarquín et al. 
2014; Juliana et al. 2018) clearly showed that by modeling 
G × E using both pedigree and markers, prediction accuracy 
could be increased substantially. Therefore, in this study, we 
ascertained the potential of GP for a complex trait like Striga 
resistance with and without modeling the G × E effects.

The trait of interest to be predicted could be affected by 
variability in the correlated traits; for instance, grain yield 
under artificial Striga infestation could be affected by other 
Striga resistance-related traits, disease and other agronomic 
traits. Therefore, these traits could be considered for inclu-
sion in prediction models. Several statistical models which 
incorporate multiple traits in GP are available (Montesinos-
López et al. 2016) but to fit these factors into models is 
complex and time-consuming. Recently, a new algorithm 
called ‘item-based collaborative filtering’ (IBCF) was 
reported to be competitive with respect to computing time 
and prediction accuracy (Montesinos-López et al. 2018a). 
IBCF is popularly used for recommending items/products in 
electronic commerce websites, where a list of recommended 
items/products is generated based on customer’s interests. 
The IBCF uses inputs about a customer’s interests to gener-
ate predictions. This algorithm has been implemented in GP 
and proved to be comparable and sometimes even superior 
to conventional whole-genome prediction models when the 
correlation between traits and environments was moderate 
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or high (Montesinos-López et al. 2018b). Recently, the IBCF 
recommender system was applied for multivariate predic-
tions of traits in maize and wheat breeding (Juliana et al. 
2018, 2019; Montesinos-López et al. 2018b).

While several studies have reported the use of GWAS to 
understand the genetic architecture of some biotic stresses, 
e.g., (Zila et al. 2013; Ding et al. 2015; Gowda et al. 2015; 
Mammadov et al. 2015; Kuki et al. 2018; Nyaga et al. 2019; 
Sitonik et al. 2019) and abiotic stresses in maize, e.g., (Yuan 
et al. 2019; Ertiro et al. 2020), its application for identifica-
tion of genomic regions associated with resistance to Striga 
has not been reported. Also, GP has been applied to several 
traits in maize (Burgueño et al. 2012; Gowda et al. 2015; 
Gustafson et al. 2018; Sitonik et al. 2019; Yuan et al. 2019) 
but not for Striga resistance. The overall aim of this study 
was to dissect the genetic basis underlying Striga resistance 
in maize under artificial infestation and to identify targets 
for knowledge-based improvement of Striga resistance in 
tropical maize germplasm. The specific objectives of the 
study were to: (i) evaluate the diverse array of 380 tropi-
cal maize inbred lines for response to Striga under artificial 
infestation; (ii) detect main-effect QTL and putative candi-
date genes associated with Striga resistance; (iii) assess the 
utility of GP for Striga resistance with different cross-vali-
dation methods in the tropical maize panel; and (iv) evaluate 
multivariate predictions of Striga resistance indicator traits 
using other correlated agronomic traits based on the IBCF 
approach. We evaluated the IBCF approach for predicting 
a given target trait (for example, GY and Striga resistance 
indicator traits) by incorporating information from other 
traits that can affect the target trait(s). In this study, users 
represent the target trait while items represent other related 
traits evaluated in different environments, that are expected 
to have some correlation with the target trait.

Materials and methods

Plant materials and field trials

This study used the Improved Maize for African Soils 
(IMAS) association mapping panel (Gowda et al. 2015) of 
380 CIMMYT maize inbred lines. All the inbred lines were 
developed by International Maize and Wheat Improvement 
Center (CIMMYT) and International Institute for Tropical 
Agriculture (IITA) breeding programs for drought, low N, 
soil acidity (SA) and pest and disease resistance, through 
conventional breeding methods. The list of the inbred lines, 
the source germplasm and the method employed for the 
development of the lines can be found at http://www.data.
cimmy​t.org. This panel broadly represents tropical and 
subtropical maize genetic diversity, including germplasm 

derived from diverse breeding programs at CIMMYT (Wen 
et al. 2011).

Field evaluation, experimental design 
and artificial infestation with Striga 
hermonthica

The 380 inbred lines were evaluated in replicated trials in 
three environments (environment 1—Kibos2013, environ-
ment 2—Alupe2013 and environment 3—Alupe2014) under 
artificial Striga infestation during the long rainy seasons 
(March–August). Both Kibos [− 0.03861°S, 34.81596°E; 
1,193 m above mean sea level (masl); 865 mm mean annual 
rainfall] and Alupe (0.503725°N, 34.12148°E; 1153 masl; 
1400 mm mean annual rainfall) have a bimodal rainfall dis-
tribution. Striga seeds collected from sorghum fields were 
stored for few months which helps to break the seed dor-
mancy which was later used for the infestation. Artificial 
infestation of the S. hermonthica trials at Kibos and Alupe 
was carried out by adding viable Striga seeds to each plant-
ing hole. Each maize plant was exposed to a minimum of 
2000 viable S. hermonthica seeds. A standard scoop cali-
brated to deliver specified amount of germinable Striga 
seeds per hill was used for the artificial infestation (Kim 
1991). Striga seeds collected earlier from farmers maize 
and sorghum fields around Kibos station, containing about 
25% extraneous material and 25% viability in 10 g of soil/
seed mixture, were added to an enlarged planting hole at 
a depth of 7–10 cm directly below the maize, as per the 
protocol optimized by Kanampiu et al. (2018) to ensure 
that each maize plant was exposed to Striga at germination. 
Two maize seeds were placed into the holes infested with 
sand–Striga seeds mixture and then covered with soil. The 
experimental design used was 5 by 76 simple alpha-lattice 
with two replications at both locations. Plot size was two 
rows, with a spacing of 0.75 m and 0.25 m between rows 
and plants, respectively. Plots were thinned to one plant per 
hill two weeks after planting to attain a population density 
of approximately 53,333 plants per hectare. The recom-
mended fertilizer rate was reduced, and application was 
delayed up to three weeks after planting to induce the pro-
duction of strigolactones which stimulate good germination 
of the Striga seeds and the attachment of the Striga plants to 
the roots of host plants (Adewale et al. 2020; Badu-Apraku 
et al. 2020a, b). Weeding was done by hand to remove all 
weeds from the field except S. hermonthica. IMAS panel was 
also evaluated in Striga-free environments, under Striga-free 
conditions as well as under low N (Ertiro et al. 2020) and 
under maize lethal necrosis conditions (Sitonik et al. 2019). 
However, in this study, we focused only on data collected 
under Striga infestation environments.

http://www.data.cimmyt.org
http://www.data.cimmyt.org
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Data recording

Grain yield, host plant Striga damage syndrome rating and 
emerged Striga plant counts were recorded in the field 
trials. Host plant Striga damage syndrome rating (SDR) 
was visually rated for each plot at 10 and 12 weeks after 
planting (WAP) using a scale of 1–9, where 1 to 3 = no vis-
ible or mild damage symptoms; 4 to 5 = some leaf blotch-
ing, wilting and stunting; 6 to 8 = extensive leaf scorch-
ing, noticeable stunting and reduction in plant growth; 
and 9 = all leaves completely scorched and dead (Kim 
1994). The number of emerged S. hermonthica plants 
was recorded at 8, 10 and 12 WAP. The emerged Striga 
plant counts at the three intervals were used to calculate 
the “area under the Striga number progress curve” (AUS-
NPC), using the formula for “area under the disease pro-
gress curve” (AUDPC) (Shaner and Finney 1977; Hauss-
mann et al. 2000).

Other agronomic traits including days to anthesis (AD, 
days from planting to when 50% of the plants had shed 
pollen) and days to silking (SD, days from planting to 
when 50% of the plants had extruded silks) were recorded. 
Plant height (PH, measured in centimeters as the distance 
from the base of the plant to the height of the first tas-
sel branch), ear height (EH, measured in centimeters), 
number of ears per plant (EPP, determined by dividing 
the total number of ears per plot by the number of plants 
harvested per plot), husk cover (HC, obtained by dividing 
the number of ears with poor husk cover by the number or 
plants harvested per plot), plant aspect (PASP, rated on a 
scale of 1–5, where 1 = excellent plant type and 5 = poor 
plant type) and grain moisture at the time of harvest were 
also recorded. All the ears harvested from each plot were 
weighed, and representative samples of ears were shelled 
to determine percentage moisture using a Dickey John 
moisture meter at all locations. Grain yield (GY, t ha−1) 
was calculated from ear weight and grain moisture, assum-
ing a shelling percentage of 80% and adjusted to 12.5% 
grain moisture content. These agronomic traits data were 
collected to understand their correlations and their useful-
ness in the breeding for Striga resistance. Further other 
traits are also used in multivariate predictions for Striga-
related traits and GY.

Phenotypic data analyses

All quantitative genetic parameters were estimated based 
on the performance of the 380 inbred lines in the IMAS 
association mapping panel. Residuals for all traits were 
normally distributed. Individual location analyses were 

performed, and data from locations with significant geno-
typic variation and good repeatability were selected for 
across location analyses. We removed the outliers and 
did the across location analyses. Analyses of variance 
within and across environments were undertaken by the 
restricted maximum likelihood method using the software 
ASREML-R (Gilmour et al. 2009). The following linear 
mixed model was used for analysis:

where Yijko is the phenotypic performance of the ith geno-
type at the jth environment in the kth replication of the oth 
incomplete block, µ is an intercept term, Gi is the genetic 
effect of the ith genotype, Ej is the effect of the jth environ-
ment, R(E)kj is the effect of the kth replication at the jth 
environment, B(R.E)ojk is the effect of the oth incomplete 
block in the kth replication at the jth environment and eijko is 
the residual. Environments and replications were treated as 
fixed effects and the other effects as random. Heritability on 
an entry-mean basis was estimated from the variance com-
ponents on a progeny mean basis as described by Hallauer 
and Miranda (1981): h2 = �2

G
∕ (�2

G
+ �2

GXE
∕E + �2

e
∕ER ), 

where �2

G
, �2

GXE,
�2

e
 refer to the genotypic, genotype X envi-

ronment interaction and error variances, and E and R indi-
cate the number of environments and replications, respec-
tively. Best linear unbiased predictions (BLUPs) and best 
linear unbiased estimates (BLUEs) were calculated using 
META-R software (Alvarado et al. 2015) (https​://hdl.handl​
e.net/11529​/10201​). Pairwise Pearson’s correlation coeffi-
cients (r) among the traits were calculated using R software 
version 3.2.5 (https​://www.r-proje​ct.org/).

Molecular data analyses

Detailed description of the IMAS panel and their genotyp-
ing with genotyping-by-sequencing (GBS) markers was 
described earlier (Gowda et al. 2015; Ertiro et al. 2020). 
In brief, DNA of all inbred lines extracted from 2–3 weeks 
old seedlings was genotyped using GBS (Elshire et  al. 
2011) at Cornell University, Ithaca, USA, as per the pro-
cedure described earlier (Elshire et al. 2011; Glaubitz et al. 
2014). SNPs which were polymorphic, having minor allele 
frequency of > 0.05, with < 5% of missing data, and hete-
rozygosity of < 5%, were reserved for final GWAS analysis. 
Applying these filtering metrics, 278,810 polymorphic SNPs 
were retained for GWAS in the IMAS panel.

BLUPs calculated for Striga count at 8, 10 and 12 WAP, 
AUSNPC, SDR and GY at each environment and across 
environments were used in GWAS. Trait data were corrected 
for population structure using the general linear model 
(GLM), as well as population structure and kinship (Q + K) 

Yijko = � + Gi + Ej + (GE)ij + R(E)kj + B(R.E)ojk + eijko

https://hdl.handle.net/11529/10201
https://hdl.handle.net/11529/10201
https://www.r-project.org/
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using the mixed linear model (MLM) algorithm (Flint‐Gar-
cia et al. 2005; Yu and Buckler 2006). GWAS and principal 
component (PC) analysis were performed using TASSEL 
ver 4.0 (Bradbury et al. 2007). Population structure was cor-
rected by using the first three PCs which explained the maxi-
mum variation. For multiple testing correction to determine 
the significance threshold, instead of 278,810 independent 
tests, the total number of tests was estimated based on the 
average extent of LD at r2 = 0.1 (Cui et al. 2016, 2017). 
Based on this, significant associations were declared when 
the P values in independent tests were less than 2 × 10−06 for 
Striga resistance traits and P = 5.6 × 10–6 for GY. The total 
proportion of phenotypic variance explained by the detected 
QTL was calculated by fitting all significant SNPs simulta-
neously in a linear model to obtain R2

adj. The proportion of 
the genotypic variance explained by all QTLs was calculated 
as the ratio of pG = R2

adj/h2. Candidate genes containing or 
adjacent to the significant SNPs were obtained from the 
B73 gene set in Maize GDB (https​://www.maize​gdb.org/
gene_cente​r/gene).

Multivariate predictions of Striga‑related traits 
and grain yield

We used the IBCF approach for multivariate prediction of 
GY and Striga-associated traits in individual environments 
using its similarity to other traits measured at different envi-
ronments. The detailed steps involved in IBCF approach 
implementation are described in earlier studies (Juliana et al. 
2017, 2018; Montesinos-López et al. 2018a). In brief, the 
basic idea of IBCF algorithm is building a database of users 
(lines) by preferences for items (trait-environment combina-
tion). Then, each column of this matrix ( 

[

zij = (yij − �j

)

�−1
j
] ) 

is standardized, where i denotes the users (lines), j denotes 
the columns (trait-environment combinations), �j is the 
mean of column j and �j denotes the standard deviation of 
column j . Then, the Pearson correlation between the columns 
of the resulting standardized matrix (trait-environment com-
binations) is computed. Next with the following formula 
(Sarwar et al. 2001; Montesinos-López et al. 2018a), the 
predictions for the missing phenotypes of line i in item j are 
computed.

where ẑij =
∑

j� ∫ Ni(j)
zij�wjj�

∑

j� ∫ Ni(j)
wjj�

 is the predicted scaled phenotype for 

user (line) i on item (trait-environment) j. Ni(j) denotes the 
items rated by user (line) i most similar to item j, wjj′ is the 
weight between items j and j′ and the weights are obtained 
from an item-to-item similarity matrix built using the Pear-
son’s correlation, which provides information on how similar 
an item is to another item. We implemented IBCF to predict 
each trait from one environment using other traits from 

ŷij = 𝜇j + 𝜎jẑij

remaining environments in the complete set of lines using 
the ‘R’ package IBCF.MTME (Montesinos-López et al. 
2018a).

Genomic prediction

High similarities have been reported among available GP 
models (Juliana et al. 2017). In this study, we used the whole-
genome regression approach GBLUP which employed the 
genomic relationship matrix (G-matrix) calculated from 
markers (VanRaden 2008) and has been successfully applied 
to predict complex traits (Habier et al. 2013; Yang et al. 
2017). The GBLUP model was implemented in the ‘R’ pack-
age BGLR (Pérez and de Los Campos 2014). The models 
include genomic effect within environment, and multi-envi-
ronment including environment and genomic main effects and 
genomic × environment interaction (G × E). First, we provide 
the model used within each environment, with only the main 
effects of genotypes (genomic) in the predictor:

where yj represents the normal response observed in the j
-th line with j = 1, 2,… J. Gj represents the genotype effect 
of the j-th line and is assumed as a random effect distrib-
uted as G =

(

G1,… ,GJ

)T
∼ N

(

0,G1�
2

G

)

 , where G1 denotes 
the genomic relationship matrix calculated as suggested by 
(VanRaden 2008) and �2

G
 denotes the genomic variance. 

Finally, �j is the random error term associated with the j-th 
line distributed N

(

0, �2

e

)

 , where �2

e
 denotes the residual vari-

ance. Next, the model containing environmental main effects 
and the genotype × environment interaction is

where yij represented the normal response observed 
in the j-th line at the i -th environment, where 
i = 1, 2,… , I; j = 1, 2,… J. The main effect of environ-
ments Ei ∼ N

(

0, I�2

E

)

 (where I is the identity matrix and 
�2

E
 is the variance of environments) EGij is the interaction 

between the genotype effect of the j-line with the i-th envi-
ronment and is also assumed as a random effect distributed 
as GE =

(

EG11,… , EGIJ

)T
∼N

(

0,G1 ⊗ II𝜎
2

GE

)

 , where �2

GE
 

denotes the variance of the interaction of G × E. Finally, �ij 
is the random error term associated with the j-th line in the 
i-th environment distributed N

(

0, �2

e

)

 , where �2

e
 denotes the 

residual variance.

Evaluation of prediction performance

The IBCF was used only for one type of cross-validation 
(CV) scheme and was found very useful in breeding pro-
grams, this cross-validation called incomplete field trials 

(1)yj = Gj + �j

(2)yij = Ei + Gj + EGij + �ij

https://www.maizegdb.org/gene_center/gene
https://www.maizegdb.org/gene_center/gene
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(CV2) was the practical method when some lines were 
evaluated in some environments but not in others; the goal 
here was to predict the performance of these lines in envi-
ronments where they had not been phenotyped (Crossa et al. 
2017). However, the GBLUP model in addition to the CV2 
cross-validation also evaluated the prediction of new lines 
(CV1) in an attempt to measure the predictive ability of new 
lines that had not been phenotyped in any environments, pre-
dictive ability between phenotyped and unphenotyped lines 
were primarily based on genetic similarities as the main 
source of information, and predicting already observed lines 
in unobserved environments (CV0; leaving one environment 
out). Here, the main interest was to predict the performance 
of lines in potentially new locations. For random cross-val-
idation CV0, CV1 and CV2, the prediction accuracies were 
calculated by performing random fivefold cross-validation 
where 20% of the maize lines (testing set) were predicted 
and 80% were used as training set. For CV1, none of the 20% 
of the lines in the testing set was observed in any of the envi-
ronments, whereas for CV2 (in both the GBLUP and IBCF), 
the 20% of the lines in the testing set were observed in some 
environments but not in the others. The prediction accuracy 
was computed as the correlations between the observed and 
predicted values. Additionally, one more CV was carried out 
where accuracies were predicted within IMAS association 
mapping panel by using BLUEs across environments. The 
GP was carried out with and without inclusion of significant 
markers detected in GWAS analyses for the respective traits. 
For each trait, the sampling of training and validation sets 
was repeated 100 times.

Results

Severity of Striga hermonthica infestation was moderate to 
high at the phenotyping locations. The average Striga plant 
count at 8 WAP was 6.2 which gradually increased to 30 
and 65 after 10 and 12 WAP, respectively (Table 1). Loca-
tion means for AUNSPC ranged from 189 to 2457 with the 
mean of 970. SDR scored 12 WAP ranged between 2 and 7. 
The GY of the 380 lines under artificial Striga infestation 
ranged from 0.0 to 3.5 tons ha−1, with an average of 1.52 
tons ha−1. All measured traits showed significant (P < 0.05) 
genotypic and genotype-by-environment (G × E) interaction 
variances (Table 1). For traits associated with Striga resist-
ance, the ratio of genotypic variance to G × E interaction 
variance was highest for SDR with 8.1 and lowest for Striga 
count at 8 WAP with 0.7. Heritability estimates under artifi-
cial Striga infestation were moderate (0.51–0.68) for Striga 
plant counts and AUSNPC, and high for SDR (0.84) and GY 
(0.70). The distribution of phenotypic values was unimodal 
for the number of emerged Striga plants at different inter-
vals, AUSNPC and SDR indicating the quantitative nature 
of Striga resistance (Fig. 1).

The strongest positive and significant correlations were 
observed between number of emerged Striga plants at 8, 10 
and 12 WAP and AUNSPC (Fig. 2). SDR was positively 
and significantly correlated with number of emerged Striga 
plants at different intervals and AUSNPC. GY was signifi-
cantly but negatively correlated with number of emerged 
Striga plants at different time intervals, AUSNPC and SDR. 
AD was positively correlated with number of emerged Striga 

Table 1   Means, ranges and 
components of variance for 
Striga hermonthica-related traits 
(under artificial infestation) for 
maize inbred lines in the IMAS 
association panel

nStr8WAP, nStr10WAP, nStr12WAP = Striga count at 8, 10 and 12 weeks after planting, respectively; AUS-
NPC Area under Striga number progress curve; SDR Striga damage rating at 12 weeks after planting in 
1–9 scale; GY Grain yield under Striga artificial infestation in tons/ha; AD Days to anthesis; SD Days to 
silking; PH Plant height in cm; EH Ear height in cm; EPP Number of ears per plant; HC Husk cover in %; 
Pasp = Plant aspect in 1–5 scale
*and *significance at P < 0.05 and P < 0.01, respectively

Trait Mean (range) σ2
G σ2

G × E σ2
e H2

nStr_8WAP 6 (2–18) 10.13** 13.72** 31.24 0.51
nStr_10WAP 30 (9–79) 163.41** 159.44** 460.87 0.56
nStr_12WAP 65 (17–148) 579.53** 313.28** 990.88 0.68
AUSNPC 971 (190–2458) 1460.78** 1208.30** 2270.43 0.65
SDR 4.17 (2.18–6.54) 0.78** 0.10** 0.72 0.84
GY 1.52 (0.00-3.48) 0.28** 0.11** 0.53 0.70
AD 73 (62–84) 15.26** 1.45** 4.93 0.92
SD 76 (64–93) 20.58** 2.52** 8.53 0.90
PH 114.9 (83.8–162.8) 254.47** 7.98** 228.99 0.86
EH 54.4 (35.5–84.0) 98.00** 3.78** 96.93 0.85
EPP 1.1 (0.8–1.6) 0.02* 0.02* 0.14 0.42
HC 12.5 (2.3–99.9) 202.99** 56.90** 162.23 0.82
Pasp 3.4 (2.4–4.1) 0.11** 0.06* 0.21 0.66
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plants at different time intervals, AUSNPC and SDR, and 
was negatively correlated with GY. HC was also negatively 
correlated with all Striga resistance indicator traits except 
for SDR. We observed significant correlations but of low 
magnitude between Striga resistance indicator traits and 

other agronomic traits. The correlation between GY and 
AUSNPC, as well as between GY and SDR, revealed many 
lines with good levels of resistance based on AUSNPC and 
SDR yielding > 2 tons per hectare of grain (Supplementary 
Figure S1).

Fig. 1   Phenotypic distribution of Striga resistance-related traits in the IMAS association mapping panel

Fig. 2   Correlations among 
fourteen measured traits. The 
correlation level is color-coded 
according to the color key 
plotted on the extreme right. 
Correlation values with > 0.12 
and > 0.16 were significant at 
P = 0.05 and P = 0.01 lev-
els, respectively. Str8, Str10, 
Str12 = Striga emerged plant 
count at 8, 10 and 12 weeks 
after planting, respectively; 
AUSPC = Area under Striga 
number progress curve; 
SDR12 = Striga damage rating 
at 12 weeks after planting; 
GY = Grain yield; AD = days 
to anthesis; PH = plant height, 
EPO = ear position; EPP = num-
ber of ears per plant; HC = husk 
cover; GLS = gray leaf spot; 
TLB = Turcicum leaf blight; 
ER = Fusarium ear rot



948	 Theoretical and Applied Genetics (2021) 134:941–958

1 3

The top 16 lines in terms of GY and their performance 
for other traits under Striga infestation are shown in Table 2. 
IMAS panel lines IMAS175 (DTPYC9-F46-1–2-1–2-B) and 
IMAS275 ((JL16.R119W)-1–1-#) had the highest GY cou-
pled with low SDR. However, both IMAS175 (DTPYC9-
F46-1–2-1–2-B) and IMAS275 ((JL16.R119W)-1–1-#) also 
supported a high number of Striga plants at 10 and 12 WAP. 
Inbred lines with high GY and supporting a low number of 
emerged Striga plants in addition to lower SDR were con-
sidered as resistant/tolerant to Striga.

GWAS was performed for the number of emerged Striga 
plants at 8, 10 and 12 WAP, AUSNPC, SDR and GY. The 
results for the six traits are shown in Manhattan and Q–Q 
plots of P values comparing the expected -log10p values to 
observed  − log10p values (Fig. 3 and Supplementary Figure 
S3). GWAS detected 57 SNPs distributed across the genome 
that were significantly associated with the six different traits 
(Table 3; P = 2 × 10–6). Eleven, fourteen and six significant 
SNPs individually explained 8–10%, 8–11% and 8–10% of 
the total phenotypic variance for number of emerged Striga 
plants at 8, 10 and 12 WAP, respectively. For AUSNPC, 
SDR and GY, sets of 11, four and nine significant SNPs 
individually explaining 7–10%, 6–7% and 7–8% of the total 
phenotypic variance, respectively, were detected. The most 
significant SNP across the six traits was S5_56842787 on 
chromosome 5 which explained 10% of the total phenotypic 
variance for number of emerged Striga plants at 8 WAP. 

SNPs S5_56842787 on chromosome 5, S7_70368510, 
S7_7160192 and S7_144538472 on chromosome 7, 
S1_298988628 on chromosome 1 and S7_165944748 on 
chromosome 7 were found to be the most significantly 
associated for Striga count at 8, 10 and 12 WAP, AUSNPC, 
SDR and GY under Striga, respectively. A set of putative 
candidate genes associated with the significant markers was 
identified (Table 3). Additionally, the genome-wide linkage 
disequilibrium (LD) decay was plotted as LD (r2) between 
adjacent pair of markers and distance in kb (Figure S2). The 
average physical distance was 6.53 kb and 18.82 kb at a cut-
off value of r2 = 0.2 and 0.1, respectively.

GP was applied to evaluate the accuracy with different 
cross-validation methods with individual locations as well as 
across locations. Average correlations between predictions 
and observed phenotypes in CV0, CV1 and CV2 for all the 
measured traits with and without G × E interaction effects 
are presented in Table 4 and Fig. 4. Among the three differ-
ent cross-validations, CV1 performed poorly compared with 
CV0 and CV2 for measured traits, with CV0 and CV2 per-
forming equally well. Prediction for one environment (Alupe 
2014) showed better correlations for number of emerged 
Striga plants at 8, 10 and 12 WAP and AUSNPC compared 
with the other environments, whereas for SDR and GY, 
Alupe2013 performed better. There were slight increases 
in the prediction correlations for models with the G × E 
interaction in cross-validation scenarios for most traits and 

Table 2   Performance of the best maize inbred lines for grain yield, number of Striga plants, Striga damage rating and agronomic traits under 
artificial Striga infestation across two years (2013 and 2014)

8WAP, 10WAP, 12WAP = number of emerged Striga plants at 8, 10 and 12 weeks after planting, respectively; AUSNPC Area under Striga num-
ber progress curve; SDR Striga damage rating; GY Grain yield under artificial Striga infestation; AD Days to anthesis

Genotype Pedigree GY (t/ha) Number of Striga plants SDR AD Additional information

8 WAP 10 WAP 12 WAP AUSNPC 12 WAP

IMAS_175 DTPYC9-F46-1–2-1–2-B 3.48 3.4 19.6 26.4 507.9 2.6 65.8 Drought tolerant
IMAS_275 (JL16.R119W)-1–1-# 3.45 3.0 16.5 30.5 438.6 4.2 73.6 White, ARC South Africa
IMAS_131 CPHYS104 3.38 5.9 17.7 54.1 670.7 3.9 69.0 Drought sensitive
IMAS_241 CML454 3.37 4.8 13.8 42.7 456.1 4.3 76.8 Orange, lowland tropics
IMAS_255 R118W\R119W:(P4.VHKW)-4 

U2540W)
3.25 4.7 26.4 60.6 842.6 3.5 71.6 White, ARC South Africa

IMAS_139 CPHYS112 3.25 4.7 24.4 55.1 775.9 3.5 68.4 Drought sensitive
IMAS_158 DTPWC9-F115-1–2-1–2-B 3.18 5.8 27.5 60.0 897.1 3.9 72.2 Drought tolerant
IMAS_346 Kit A1-3 3.08 8.2 28.9 51.9 900.6 2.9 69.5 White, Highlands, Kenya
IMAS_405 KIL-1 3.00 5.9 30.7 66.1 984.2 3.9 71.5 White, Mid-altitude, Kenya
IMAS_164 DTPWC9-F55-1–1-1–1-B 2.95 3.8 28.9 49.2 795.9 3.3 73.2 Low N tolerant
IMAS_261 [(TSELS(1)\15.(B2P36)S3\19]S 

3.I137TNW)-1–1-1.U2540W)
2.84 6.3 27.7 64.4 935.1 3.7 69.2 White, ARC South Africa

IMAS_20 INTA/INTB-B-52-B-1–1-B 2.83 5.8 29.2 66.0 966.0 2.9 72.7 Low N tolerant
IMAS_312 CNO8Y/523 2.80 6.4 29.2 78.6 1047.2 3.5 72.4 Yellow, ARC South Africa
IMAS_117 CLQRCWQ108 2.77 6.2 39.3 65.0 1136.4 4.1 76.0 White, lowland tropics
IMAS_17 INTA/INTB-B-41-B-1–1-B 2.73 4.0 23.3 60.4 780.7 3.5 73.4 Low N sensitive
IMAS_309 CNO8Y/500 2.71 3.6 22.3 50.4 687.3 3.7 70.9 Yellow, ARC South Africa
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environments. Prediction correlations were also obtained 
for the measured traits using BLUEs across locations which 
showed values similar to those observed for CV0 and CV2 
(Fig. 4). Inclusion of significant markers detected through 
GWAS in the prediction model showed slight increase in 
prediction correlations for all the Striga resistance indicator 
traits and GY. The prediction correlations were higher for 
all Striga resistance-related traits compared with GY. For 
GY in CV2, we observed a similar increase in the predic-
tion correlations for two out of three environments. The two 
environments Alupe 2014 and Kibos 2013 had prediction 
correlations of 0.376 and 0.505 for a model without G × E 
and 0.411 and 0.518 for a model with G × E, respectively.

We compared prediction accuracies from the GBLUP 
model with the IBCF approach with CV2 (Table 5). For 

IBCF, the training population included all the traits from 
any two environments while the prediction set included the 
target traits in the remaining third environment. GY was 
predicted with moderate accuracy with IBCF approach, 
with 0.010, and 0.013 increases in accuracy in location 
Alupe 2014 and Kibos 2013, respectively. However, in 
Alupe 2013, a decrease (-0.004) in accuracy compared 
with the GBLUP model was observed. For all Striga resist-
ance indicator traits, the prediction accuracy was at least 
15% higher with the IBCF approach compared with the 
GBLUP model in all locations (Table 5). Overall, with the 
IBCF approach, a maximum increase of 0.40 was observed 
for number of emerged Striga plants at 10 WAP and AUS-
NPC for Alupe2013 over the GBLUP model.

Fig. 3   Manhattan plots of the GWAS for six different Striga-related 
traits in IMAS association mapping panel. The dashed horizontal line 
depicts the significance threshold (P = 2 × 10–6 for Striga resistance 

traits and P = 5.6 × 10–6 for GY). The X-axis indicates the SNP loca-
tion along the 10 chromosomes, with chromosomes separated by dif-
ferent colors; Y-axis is the—log10(P observed) for each analysis
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Table 3   Chromosomal positions and SNPs significantly associated with various Striga resistance-related traits detected by SNP-based GWAS in 
the IMAS association mapping panel

SNP-Namea Chr Position (bp) MLM-P values R2 MAF Alleles Putative candidate gene Predicted function of candidate gene

Number of Striga counts_8WAP
S2_152347470 2 152,347,470 1.23E-06 0.09 0.09 G/A GRMZM2G314215 Unknown
S4_188749704 4 188,749,704 1.24E-06 0.09 0.11 A/G GRMZM2G127230 Chloroplast signal recognition particle 

54 kDa subunit (CPSRP54)
S4_234419757 4 234,419,757 3.35E-07 0.09 0.15 T/C GRMZM2G146034 ABC transporters and multidrug resist-

ance systems ABC transporter family
S4_234499448 4 234,499,448 1.25E-06 0.08 0.27 A/G GRMZM2G145962 Ribosomal protein S21 family protein
S5_19133910 5 19,133,910 3.36E-07 0.09 0.07 T/C GRMZM2G074871 Oxidoreductase activity, acting on paired 

donors, with incorporation or reduction 
of molecular oxygen

S5_56842787 5 56,842,787 3.20E-08 0.10 0.06 G/A GRMZM2G077208 Protein synthesis, ribosomal protein, 
eukaryotic

S7_172979397 7 172,979,397 6.95E-07 0.08 0.05 A/G GRMZM2G053554 Minor CHO metabolism, galactose, 
alpha-galactosidases Melibiase family 
protein

S7_172979399 7 172,979,399 6.95E-07 0.08 0.05 A/C
S7_172979402 7 172,979,402 6.95E-07 0.08 0.05 A/C
S7_172979403 7 172,979,403 7.44E-07 0.09 0.06 C/G
S9_139760291 9 139,760,291 1.55E-06 0.08 0.05 T/C GRMZM2G114126 Cell vesicle transport OSBP (oxysterol 

binding protein)-related protein 3C 
(ORP3C)

Number of Striga counts_10WAP
S3_143803575 3 143,803,575 1.31E-06 0.08 0.05 T/C GRMZM2G164502 Signaling, receptor kinases, LRR I LRR 

protein kinase family protein
S3_143804650 3 143,804,650 1.99E-06 0.09 0.06 C/G
S3_145603175 3 145,603,175 2.26E-07 0.08 0.07 T/C GRMZM2G061206 Proteinaceous RNase P 2
S3_145603187 3 145,603,187 3.87E-07 0.08 0.06 A/G
S3_158421414 3 158,421,414 1.11E-06 0.09 0.05 A/G GRMZM2G092112 Protein degradation, autophagy encodes 

autophagy protein 6 (ATG6), required 
for pollen germination and plant devel-
opment

S3_169078369 3 169,078,369 1.97E-06 0.08 0.06 A/C GRMZM2G026855 Alcohol dehydrogenases zinc-binding 
dehydrogenase family protein

S3_169078370 3 169,078,370 1.97E-06 0.08 0.06 T/C
S3_169078372 3 169,078,372 1.97E-06 0.08 0.06 T/C
S3_220734197 3 220,734,197 3.74E-07 0.08 0.08 A/C GRMZM2G121313 Unknown
S4_170790739 4 170,790,739 9.71E-07 0.08 0.06 G/A GRMZM2G075368 Hormone metabolism, ethylene signal 

transduction involved in ethylene 
perception in Arabidopsis ethylene 
response 2 (ETR2)

S7_7162177 7 7,162,177 1.62E-06 0.08 0.08 A/C GRMZM2G018508 Protein degradation, ubiquitin ubiquitin-
specific protease 13 (UBP13)

S7_70368510 7 70,368,510 1.27E-07 0.11 0.05 T/C GRMZM5G892471 Unknown
S7_144538472 7 144,538,472 8.71E-07 0.09 0.42 T/C GRMZM2G015520 Basic helix-loop-helix (bHLH) DNA-

binding superfamily protein
S9_153482728 9 153,482,728 7.80E-07 0.08 0.05 C/T GRMZM2G171986 Unknown
Number of Striga counts_12WAP
S3_143804650 3 143,804,650 8.08E-07 0.10 0.06 G/C GRMZM2G164502 Signaling, receptor kinases, LRR I LRR 

protein kinase family protein
S3_158421414 3 158,421,414 1.83E-06 0.09 0.05 A/G GRMZM2G092112 Protein degradation, autophagy encodes 

autophagy protein 6 (ATG6), required 
for pollen germination and plant devel-
opment
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Table 3   (continued)

SNP-Namea Chr Position (bp) MLM-P values R2 MAF Alleles Putative candidate gene Predicted function of candidate gene

S7_7160182 7 7,160,182 8.05E-07 0.08 0.08 T/A GRMZM2G018508 Protein degradation. ubiquitin ubiquitin-
specific protease 13

S7_7160192 7 7,160,192 3.19E-07 0.09 0.08 T/A
S7_144404387 7 144,404,387 1.05E-06 0.08 0.05 G/C GRMZM2G450069 Unknown
S7_144538472 7 144,538,472 3.36E-07 0.09 0.42 T/C GRMZM2G015520 Basic helix-loop-helix (bHLH) DNA-

binding superfamily protein
Area under number of Striga counts progress curve (AUNSPC)
S3_143803575 3 143,803,575 5.37E-07 0.08 0.05 T/C GRMZM2G164502 Signaling, receptor kinases, LRR I LRR 

protein kinase family protein
S3_143804650 3 143,804,650 2.79E-07 0.10 0.06 G/C
S3_145603175 3 145,603,175 4.41E-07 0.08 0.07 T/C GRMZM2G061206 Proteinaceous RNase P 1
S3_145603187 3 145,603,187 7.74E-07 0.08 0.06 A/G
S3_158421414 3 158,421,414 1.28E-06 0.09 0.05 A/G GRMZM2G092112 Protein degradation, autophagy encodes 

autophagy protein 6 (ATG6), required 
for pollen germination and plant devel-
opment

S3_220734197 3 220,734,197 1.49E-07 0.09 0.08 A/C GRMZM2G121313 Unknown
S7_7160182 7 7,160,182 1.80E-06 0.08 0.08 T/A GRMZM2G018508 Protein degradation, ubiquitin ubiquitin-

specific protease 13 (UBP13)
S7_7160192 7 7,160,192 4.40E-07 0.08 0.08 T/A
S7_7162177 7 7,162,177 7.17E-07 0.09 0.08 A/C
S7_70368510 7 70,368,510 3.41E-07 0.10 0.05 T/C GRMZM5G892471 Unknown
S7_144404387 7 144,404,387 1.59E-06 0.07 0.05 G/C GRMZM2G450069 Unknown protein
S7_144538472 7 144,538,472 1.33E-07 0.10 0.42 T/C GRMZM2G015520 Basic helix-loop-helix (bHLH) DNA-

binding superfamily protein
Striga damage rate_12WAP
S1_66175831 1 66,175,831 1.19E-06 0.09 0.46 C/T GRMZM2G143086 Uncharacterized protein
S1_298964314 1 298,964,314 1.07E-06 0.10 0.06 T/G GRMZM2G422670 Lipid metabolism, lipid degradation, 

lysophospholipases phosphoinositide 
phospholipase

S1_298988628 1 298,988,628 2.61E-07 0.09 0.08 G/A GRMZM2G099987 Ribonuclease P protein subunit P38-
related

S6_93323528 6 93,323,528 3.58E-07 0.09 0.25 A/G GRMZM2G143782 Protein.degradation.ubiquitin.E3.BTB/
POZ Cullin3.BTB/POZ BTB-POZ and 
MATH domain 1 (BPM1)

Grain yield under Striga infestation
S3_180966178 3 180,966,178 5.65E-06 0.07 0.05 A/G GRMZM2G094771 O-fucosyltransferase family protein
S6_89412913 6 89,412,913 5.69E-06 0.07 0.22 C/G GRMZM2G023051 uncharacterized protein
S7_154508166 7 154,508,166 2.29E-06 0.08 0.18 T/C GRMZM2G468657 Protein degradation, aspartate protease 

Eukaryotic aspartyl protease family
S7_165944748 7 165,944,748 1.44E-06 0.08 0.18 C/A GRMZM2G086856 Uncharacterized protein
S7_165944751 7 165,944,751 1.44E-06 0.08 0.18 C/G
S7_171043455 7 171,043,455 4.62E-06 0.07 0.07 A/G GRMZM2G326263 Pentatricopeptide (PPR) repeat-contain-

ing protein
S7_171043478 7 171,043,478 4.62E-06 0.07 0.07 A/G
S9_46386574 9 46,386,574 3.82E-06 0.07 0.07 G/T GRMZM2G115329 Uncharacterized protein
S10_91087034 10 91,087,034 3.57E-06 0.08 0.08 T/C GRMZM5G876837 Unknown
S10_148086732 10 148,086,732 2.44E-06 0.08 0.11 A/G GRMZM2G343144 Gluco-, galacto- and mannosidases. 

endoglucanase glycosyl hydrolase 9C1

Chr = chromosome; MAF Minor Allele Frequency; Alleles italic represent minor alleles; P value is for mixed linear model;
a The exact physical position of the SNP can be inferred from marker’s name, for example, S1_82702920: chromosome 1; 82,702,920 bp
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Discussion

The defense mechanisms of maize against Striga were 
grouped into resistance and tolerance (Kim 1994). The 
ability of the host plant to withstand the effects of the 
Striga plants that are already attached, regardless of their 
number was termed as tolerance. It is quantified by a host 

damage syndrome rating score using a 1–9 scale (Kim 
1994). Ability of the host plant to prevent the parasite 
from attaching itself to the roots was referred to as resist-
ance (Kim 1994). This is quantified by the number of 
emerged Striga plants around the base of the host plant. 
Resistance mechanisms were also further categorized as 
pre‐attachment and post‐attachment. Mechanisms that 
prevent or reduce  Striga  seed germination rates were 

Table 4   Genomic prediction 
accuracies for Striga resistance-
related traits, including grain 
yield under artificial Striga 
infestation

Average correlations from fivefold cross-validation between the predicted and observed values of geno-
types for each and across environments for models with and without G × E effects with three different 
cross‐validation schemes (CV0, CV1 and CV2). For CV0, CV1 and CV2, the best predicted correlations 
are italicized
nStr8WAP, nStr10WAP, nStr12WAP = Striga plants at 8, 10 and 12  weeks after planting, respectively; 
AUSNPC Area under Striga number progress curve; SDR Striga damage rating at 12 weeks after planting; 
GY Grain yield under Striga infestation

Trait Environment CV0 CV1 CV2

G G + GE G G + GE G G + GE

Str8WAP Alupe2013 0.377 0.401 0.234 0.226 0.390 0.404
Alupe2014 0.508 0.512 0.352 0.342 0.461 0.470
Kibos2013 0.347 0.339 0.260 0.248 0.341 0.331

Str10WAP Alupe2013 0.461 0.483 0.281 0.265 0.468 0.484
Alupe2014 0.541 0.537 0.359 0.343 0.468 0.478
Kibos2013 0.305 0.309 0.213 0.203 0.313 0.313

Str12WAP Alupe2013 0.521 0.542 0.386 0.363 0.550 0.559
Alupe2014 0.616 0.618 0.417 0.404 0.546 0.561
Kibos2013 0.483 0.492 0.312 0.294 0.473 0.485

AUSNPC Alupe2013 0.515 0.543 0.346 0.326 0.540 0.557
Alupe2014 0.625 0.626 0.424 0.407 0.547 0.560
Kibos2013 0.409 0.416 0.266 0.252 0.406 0.413

SDR Alupe2013 0.668 0.665 0.425 0.421 0.665 0.665
Alupe2014 0.586 0.590 0.331 0.324 0.586 0.591
Kibos2013 0.631 0.635 0.334 0.325 0.647 0.651

GY Alupe2013 0.537 0.541 0.351 0.348 0.551 0.551
Alupe2014 0.489 0.491 0.109 0.093 0.376 0.411
Kibos2013 0.444 0.482 0.218 0.197 0.505 0.518

Fig. 4   Distribution of the accuracy of genomic predictions for five 
different Striga related traits and grain yield under artificial Striga 
infestation. Prediction was based on random markers (white box) 

as well as combined prediction based on random markers and trait-
associated markers (gray box) detected through GWAS with fivefold 
cross-validations in IMAS association panel of 380 inbred lines
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categorized as pre‐attachment resistance, while those 
that prevent or reduce the success of root penetration or 
establishment of the vascular connection between host and 
parasite were called post‐attachment resistance (Yoder and 
Scholes 2010). Both host damage score and Striga emer-
gence, along with GY under Striga infestation, were con-
sidered as the most appropriate criteria to use in breeding 
for Striga tolerance/resistance (Kim 1991; Kim et al. 1998; 
Badu-Apraku and Fakorede 1999; Badu-Apraku and Akin-
wale 2011).

Genetic variability is important in efficient selection for 
improved GY under stress environments such as Striga-
infested conditions. The observed significant genotypic vari-
ance for the measured traits in the present study showed the 
potential for selection of improved GY under Striga-infested 
conditions. There was a wide range of responses to Striga 
infestation in terms of GY and Striga resistance parameters. 
The inbred lines used in this study were from diverse geo-
graphical regions with different breeding histories and this 
may have contributed to the variation observed. The lines 
showing good response to artificial Striga infestation should 
be utilized in more detailed studies to ascertain the resist-
ance mechanisms involved. The significant G × E variances 
for the measured traits indicated that they are highly affected 
by the G × E interaction which could be attributed to vari-
ation in climatic and soil conditions across the two years. 
Previous studies have also reported significant G × E under 
Striga-infested conditions (Menkir et al. 2012; Makumbi 
et al. 2015; Kanampiu et al. 2018). Moderate to high her-
itability estimates were observed indicating the potential 
for these traits to be improved through recurrent selec-
tion. Broad-sense heritability is an estimate of the upper 

boundary of the narrow-sense heritability. High broad-sense 
heritability estimates for GY, AUSNPC, SDR and number 
of emerged Striga plants 12 WAP suggest that the actual 
narrow-sense heritability could be higher and that reason-
able genetic gain for these traits could be expected. The high 
broad-sense heritability estimates for GY (0.70) and number 
of emerged Striga plants 12 WAP (0.68) observed in this 
study corroborate previous reports under artificial Striga 
infestation (Menkir et al. 2012; Makumbi et al. 2015; Ade-
wale et al. 2020) and higher than the heritability observed in 
biparental populations (Badu-Apraku et al. 2020a, b).

The significant negative correlation between GY and 
number of emerged Striga plants indicated that increase in 
number of emerged Striga plants led to severe reduction in 
GY (Menkir et al. 2012; Adewale et al. 2020). For SDR, 
tolerance is associated with lower values in the 1–9 scale 
and thus significant negative correlation between SDR and 
GY implied that lower SDR values were associated with 
improved GY. The observed positive and significant corre-
lations between number of emerged Striga plants, SDR and 
AUNSPC suggest that these traits can be combined into an 
index for selection under Striga infestation.

The detection power of GWAS depends on the LD 
between the QTL and the markers. Cross-pollinated crops 
like maize have more rapid LD decay compared with self-
pollinated crops due to outcrossing and consequently high 
genetic diversity (Kaler et al. 2020). The results of the pre-
sent study indicated that the LD decayed rapidly across the 
physical distance (18.82 kb and 6.53 kb at a cut-off value 
of r2 = 0.1 and 0.2; Supplementary Figure S2) indicating 
that the IMAS association mapping panel has significant 
diversity, mimicking a natural population, and thus was 

Table 5   Prediction correlations for lines with missing phenotypic data at specific environments: Alupe2013, Alupe2014 and Kibos2013 under 
cross-validation scheme CV2, using item-based collaborative filtering (IBCF) and genomic best linear unbiased prediction (GBLUP) methods

Trait phenotypes in one environment were predicted using data from other two environments
nStr8WAP, nStr10WAP, nStr12WAP = number of emerged Striga plants at 8, 10 and 12 weeks after planting, respectively; AUSNPC Area under 
Striga number progress curve; SDR Striga damage rating at 12 weeks after planting; GY Grain yield under Striga infestation; AD Days to anthe-
sis; PH Plant height; EH Ear height

Trait Testing environment

IBCF GBLUP

Alupe 2013 Alupe 2014 Kibos 2013 Mean Alupe 2013 Alupe 2014 Kibos 2013 Mean

GY 0.547 0.386 0.518 0.484 0.551 0.376 0.505 0.477
Str8WAP 0.747 0.732 0.568 0.682 0.390 0.461 0.341 0.398
Str10WAP 0.872 0.825 0.610 0.769 0.468 0.468 0.313 0.416
Str12WAP 0.827 0.794 0.638 0.753 0.550 0.546 0.473 0.523
AUSNPC 0.933 0.880 0.685 0.833 0.540 0.547 0.406 0.498
SDR 0.860 0.866 0.812 0.846 0.665 0.586 0.647 0.633
PH 0.798 0.642 0.732 0.724 0.703 0.616 0.694 0.671
EH 0.919 0.853 0.844 0.872 0.697 0.558 0.700 0.652
AD 0.799 0.545 0.677 0.674 0.823 0.784 0.819 0.809
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appropriate for conducting GWAS. Previous studies on the 
population structure of the IMAS panel used in this study 
showed confounding structure in the panel (Gowda et al. 
2015; Ertiro et al. 2020).

Correcting for population structure is an important step 
in GWAS to reduce the false positives that could arise from 
it without overcorrecting and further causing false negatives 
(Jaiswal et al. 2019). Another factor that leads to false posi-
tives is the more recent common ancestry and family related-
ness which is controlled by the inclusion of a kinship model 
through the identity by state approach (Loiselle et al. 1995). 
Therefore, we incorporated the population structure and kin-
ship matrix as covariates (Q + K) in the mixed linear model. 
The Q–Q plots of the six traits showed proper distribution of 
the observed over the expected P values indicating that the 
model and the comparison method used were an appropri-
ate fit in this GWAS approach (Supplementary Figure S3).

At a significant threshold p value (p = 2 × 10–6 for Striga 
resistance traits and P = 5.6 × 10–6 for GY), we identified 
a total of 57 marker trait associations distributed across 
the genome and controlled by few major and many minor 
effect QTL (6–11% of the total phenotypic variance) sug-
gesting the complexity of resistance to Striga infestation. 
For SDR and number of emerged Striga plants at 8 WAP, 
we observed four and 11 SNPs and Adewale et al (2020) 
reported nine and one significantly associated SNPs, respec-
tively. However, no overlapping SNPs were observed across 
the studies for both the traits possibly due to different timing 
of data scored and the different materials used in the study. 
On the other hand, one SNP S3_158421414 detected con-
sistently for number of emerged Striga plants at 10 and 12 
WAP and AUSNPC was overlapped with the QTL reported 
by Badu-Apraku et al (2020a) in biparental population. In 
this study, no overlapping of SNPs was detected between 
number of Striga-emerged plants and SDR, however five 
SNPs on chromosome 3 (S3_143803575, S3_143804650, 
S3_145603175, S3_145603187 and S3_158421414) detected 
for number of Striga-emerged plants were overlapped with 
four QTL detected for SDR in an earlier study (Badu-Apraku 
et al 2020b) which suggests this region might be carrying an 
important gene/s for resistance to Striga.

A set of putative candidate genes associated with the 
significant markers was identified; their functions indi-
cated their direct or indirect involvement in plant defense 
responses (Table 3). These candidate genes may be useful 
after validation in breeding for Striga resistance through 
marker-assisted selection. Out of the nine, two candidate 
genes: GRMZM2G018508 and GRMZM2G015520 were 
most significantly associated with number of emerged Striga 
plants at 10 and 12 WAP, respectively. GRMZM2G018508 
was identified to be involved in the ubiquitination processes 
(Zhou et al. 2017), while GRMZM2G015520 is involved 
in signal- and stress-related regulated pathways of the 

transcription factors (Niu et al. 2017) that play important 
roles in plant responses to stress.

The other seven candidate genes are involved in plant 
responses to stress through various mechanisms ranging 
from metabolism and biosynthesis of compounds to detoxi-
fication processes. In particular, GRMZM2G127230 is 
linked to chloroplast recognition particle (cpSRP) involved 
in the post-translational targeting of the nuclear encoding 
light harvesting chlorophyll-binding proteins (LHCPs) to 
the thylakoid membrane (Funke et al. 2005). The LHCPs 
members are positively involved in the abscisic acid (ABA) 
signaling in the stomata movement and plant responses to 
stress (Funke et al. 2005). GRMZM2G146034 is linked to 
the ABC transporters found in the plant cell membranes and 
is involved in the detoxification processes, response to abi-
otic stresses, pathogen resistance and interaction of the plant 
with its environment (Choi 2005). GRMZM2G074871 was 
found to be involved in the metabolism of a wide variety of 
exogenous and endogenous compounds, biosynthesis of pig-
ments, volatiles, antioxidants, allelochemicals and defense 
compounds including phenolics and conjugates through the 
heme–thiolate proteins in specific, the cytochrome P450s 
(Chadha et al. 2018).

Two candidate genes were found to be involved in 
the degradation processes important in plant defense. 
GRMZM2G092112 is involved in protein degradation and 
autophagy processes that allow the plant to perceive and 
react to invading pathogens and thus are involved in plant 
immunity responses through the regulation of programmed 
cell death (Fujiki et al. 2007). Another candidate gene, 
GRMZM2G075368, is involved in the degradation of eth-
ylene receptors and signal transduction (Chen et al. 2007). 
The production of ethylene is tightly regulated by internal 
stimuli during development and in response to environ-
mental stimuli from biotic and abiotic stresses (Chen et al. 
2007). The other candidate gene GRMZM2G164502 plays a 
role in plant stress responses through Leucine-Rich Repeats 
Receptor-Like Kinase which acts as mediators of cell-to-cell 
communication to relay environmental stimuli or to activate 
defense/resistance pathways against pathogens (Dufayard 
et al. 2017). Further studies on the candidate genes can 
pave the way for their potential use in breeding for Striga 
resistance.

GP has been widely applied in plant breeding to circum-
vent the drawbacks of marker-assisted selection by capturing 
all marker effects. GP that includes G × E interaction into 
the model substantially improves the accuracy (Guo et al. 
2013). However, the presence of G × E negatively affects the 
heritability of traits thereby limiting the selection process 
(Roorkiwal et al. 2018). The assessment of GP correlations 
for measured traits with and without G × E using the three 
CVs revealed that CV1 performed relatively poor as com-
pared to CV0 and CV2. The lower prediction correlations 



955Theoretical and Applied Genetics (2021) 134:941–958	

1 3

shown in CV1 corroborate the results from previous studies 
(Burgueño et al. 2012; Jarquín et al. 2014). Overall, CV1 
scenario is more challenging than CV2, as in CV1, we are 
trying to predict the performance of newly developed lines 
(not tested in the field), whereas in CV2, we predict the 
performance of lines that have not been evaluated in some 
environments but which have been evaluated in different 
correlated environments. This is reflected in the results that 
showed CV‐correlations obtained in CV2 to be 12, 13, 15, 
15, 27 and 25% greater than those obtained in CV1 for num-
ber of emerged Striga plants at 8WAP, 10WAP, 12WAP, 
AUSNPC, SDR and GY, respectively. This emphasizes the 
importance of having information from correlated envi-
ronments when predicting performance. Selection of lines 
without field testing, as mimicked in CV1, allows the reduc-
tion of the breeding cycle interval, but the lower prediction 
accuracy might negatively affect the rate of genetic gain in a 
breeding program. Ultimately, the trade-off between desired 
prediction accuracy and generation interval depends on the 
structure of the breeding scheme.

For Striga resistance indicator traits, we observed an 
increase of up to 4% in the prediction accuracy with CV0 
and CV2 but not much change was observed under CV1 after 
incorporating the G × E interaction in the model. Similar to 
observed prediction correlations for GY in CV2, Burgueño 
et al. (2012) and Jarquín et al. (2014) also reported predic-
tion correlations of 0.439 and 0.475 (for a model without 
G × E) and of 0.556 and 0.514 (for a model with G × E), 
respectively, for GY in wheat. These results show the impor-
tance of incorporating the G × E interaction in the model. 
The observed slight differences in the prediction correlations 
between the studies are possibly due to model differences, 
the trait under study and the heritability. Overall, the predic-
tion ability obtained in this study with CV0 and CV2, as well 
as observed accuracy based on BLUEs across locations, is 
high enough to warrant implementation of GP in practical 
breeding for Striga resistance in maize. The prediction accu-
racies based on BLUEs across locations, with and without 
inclusion of GWAS-detected markers, are moderately high. 
This is slightly overestimated since we fitted the markers 
detected with whole population-based GWAS rather train-
ing population alone. Nevertheless, we observed very small 
change in prediction accuracy by including GWAS-detected 
markers into the prediction model which supports Striga 
resistance indicator traits are governed by more of small to 
moderate effect genes/QTLs rather by major effect genes.

The IBCF approach was used to predict Striga resistance 
indicator traits and GY one at a time by integrating infor-
mation from multiple traits evaluated in correlated environ-
ments. We observed an increase in accuracy for GY and 
Striga resistance indicator traits over the GBLUP model for 
all three locations. On the other hand, the GBLUP model 
outperformed the IBCF approach for all three locations for 

AD. The moderately low correlations obtained with the 
IBCF approach for GY compared with high prediction cor-
relations for Striga resistance indicator traits might be due to 
the low magnitude of correlation of other traits with GY, as 
compared to each of the Striga-related traits. This indicates 
that changes in correlations of target trait with related traits 
will affect the predictive ability, especially when there is low 
correlation between selected locations and traits. While the 
ability of the IBCF approach resulted correlations higher 
than the GP correlations specifically for all Striga resist-
ance indicator traits supports the utility of the method for 
improving Striga resistance breeding. This is also clearly 
supported by observed high correlations between Striga 
resistance indicator traits like number of emerged Striga 
plants at 8WAP, 10WAP, 12WAP and AUSNPC (Fig. 2). 
The observed prediction correlations are based on single-
trait model and it is possible to improve further with mul-
tiple trait-based models. In rice for water usage trait data 
collected at different time intervals, multiple-trait regression 
models showed better prediction accuracy over single-trait 
regression model (Baba et al. 2020). Alternatively, from the 
perspective of traditional multiple-trait selection, we can 
also use the phenotype value of the closest related trait as the 
predicted value of the target trait. Overall, IBCF approach 
is very useful when the number of traits or environments, 
as well as correlations between them, is large. Moreover, its 
implementation is very fast as it can be used on very large 
data sets with limited computational power.

Conclusion

In this study, we evaluated an association mapping panel 
of 380 inbred lines in multiple locations in Western Kenya 
under artificial S. hermonthica infestation to understand the 
genetic architecture of traits related to resistance to Striga. 
GWAS results revealed the polygenic nature of Striga resist-
ance indicator traits with moderate genetic effects and sig-
nificant G × E. We demonstrated that GWAS together with 
GP could potentially increase the efficiency of breeding for 
Striga resistance by improving the prediction accuracy. We 
found a significant improvement in prediction performance 
of Striga resistance indicator traits when G × E interaction 
was taken into account under the CV0 and CV2 cross-vali-
dation approaches where prediction is for the line’s perfor-
mance in new environments. Results suggested that integra-
tion of GP in maize breeding even with diverse germplasm 
like this IMAS association mapping panel could effectively 
complement phenotypic selection to improve resistance 
to Striga, besides significantly reducing time and cost of 
breeding. Incorporation of the IBCF approach could further 
improve selection decisions in breeding for Striga resistance.
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