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Abstract
Key message  High genetic variation in two European maize landraces can be harnessed to improve Gibberella ear 
rot resistance by integrated genomic tools.
Abstract  Fusarium graminearum (Fg) causes Gibberella ear rot (GER) in maize leading to yield reduction and contamination 
of grains with several mycotoxins. This study aimed to elucidate the molecular basis of GER resistance among 500 doubled 
haploid lines derived from two European maize landraces, “Kemater Landmais Gelb” (KE) and “Petkuser Ferdinand Rot” 
(PE). The two landraces were analyzed individually using genome-wide association studies and genomic selection (GS). The 
lines were genotyped with a 600-k maize array and phenotyped for GER severity, days to silking, plant height, and seed-set 
in four environments using artificial infection with a highly aggressive Fg isolate. High genotypic variances and broad-sense 
heritabilities were found for all traits. Genotype-environment interaction was important throughout. The phenotypic (r) and 
genotypic ( r

g
 ) correlations between GER severity and three agronomic traits were low (r =  − 0.27 to 0.20; r

g
=  − 0.32 to 

0.22). For GER severity, eight QTLs were detected in KE jointly explaining 34% of the genetic variance. In PE, no significant 
QTLs for GER severity were detected. No common QTLs were found between GER severity and the three agronomic traits. 
The mean prediction accuracies ( � ) of weighted GS (wRR-BLUP) were higher than � of marker-assisted selection (MAS) 
and unweighted GS (RR-BLUP) for GER severity. Using KE as the training set and PE as the validation set resulted in very 
low � that could be improved by using fixed marker effects in the GS model.

Introduction

Ear rot infections caused by Fusarium graminearum, F. ver-
ticillioides, Aspergillus flavus, and/or Stenocarpella maydis 
are  global threats to maize production. In Germany, a recent 
survey on the prevalence of Fusarium species showed that 
F. graminearum (Fg) and F. verticillioides (Fv) were domi-
nant, their relative occurrence depending on temperature and 
humidity (Pfordt et al. 2020). F. graminearum (sexual stage: 
Gibberella zeae) causes Gibberella ear rot (GER) which 
reduces the quantity and quality of maize kernels and more 
importantly, contaminates the grains with mycotoxins such 
as deoxynivalenol (DON) and zearalenone (ZON) (Trail 
2009; Ding et al. 2011; Martin et al. 2012a; Mesterházy 
et al. 2012). These mycotoxins are associated with serious 
health problems such as kidney diseases, poor growth, and 
disorders of reproduction in animals and humans (Pinton and 
Oswald 2014; Zhou et al. 2018). Empirical studies revealed 
high correlations between GER severity and DON as well 
as ZON contents in European maize by artificial infection 
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with individual isolates (Bolduan et al. 2009; Martin et al. 
2012a; Mesterházy et al. 2020). Because of the adverse 
health and economic effects of mycotoxins, regulatory bod-
ies in most parts of the world have set recommended limits 
in maize kernels and products (FAO 2003; The Commission 
of the European Communities 2006; Foroud et al. 2019). An 
integrated disease management strategy can support exist-
ing efforts to reduce ear rots and associated mycotoxin con-
taminations in maize with GER resistant cultivars being an 
essential prerequisite.

In maize, GER resistance is inherited quantitatively with 
mostly small-effect quantitative trait loci (QTLs) (Xiang 
et al. 2010; Martin et al. 2012a). In the past years, a genome-
wide association study (GWAS) was performed to identify 
QTLs for GER resistance using single-locus models (Han 
et al. 2018). However, multi-locus models such as fixed and 
random model circulating probability unification (FarmCPU, 
Liu et al. 2016) have been found to be more powerful in 
detecting SNP-trait associations with a lower rate of false 
positives and false negatives than single SNP-based models, 
especially for traits with complex genetic architecture (Abed 
and Belzile 2019; Kaler et al. 2020; Malik et al. 2019; Miao 
et al. 2019; Odilbekov et al. 2019; Wei et al. 2017; Xu et al. 
2018; Zhang et al. 2019; Zhu et al. 2018).

For complex polygenic traits, genomic selection (GS) 
offers an attractive alternative to conventional or marker-
assisted selection (Meuwissen et al. 2001). The potential 
of GS for improving quantitative resistances has been ana-
lyzed for several pathosystems, e.g., for resistance to lethal 
necrosis (Gowda et al. 2015), Diplodia ear rot (dos Santos 
et al. 2016) and Northern corn leaf blight (Technow et al. 
2013). Two studies (Han et al. 2018; Riedelsheimer et al. 
2013) investigated the prospects of GS for GER resistance 
in European elite maize lines.

Landraces serve as repositories of diverse alleles of agro-
nomic importance and have great potential for broadening 
the genetic diversity of elite maize germplasm as illustrated 
for several agronomical traits (Yao et al. 2007; Strigens et al. 
2013; Bedoya et al. 2017). European maize landraces have 
experienced several hundred years of adaptation to Euro-
pean growing conditions and can have a higher chance of 
successful allele transfer to elite backgrounds compared to 
non-adapted lines. The molecular diversity of 35 European 
maize landraces was investigated by Mayer et al. (2017) 
using high-density genotypic data and landraces, “Kemater 
Landmais Gelb” (KE, originating from Austria) and “Pet-
kuser Ferdinand Rot” (PE, originating from Germany) rep-
resented a high proportion of the total molecular diversity 
(Mayer et al. 2017; Hölker et al. 2019). Thus, they were 
chosen for large-scale production of doubled haploid (DH) 
lines, which were extensively genotyped and phenotyped 
for numerous agronomic traits but not for Fusarium diseases 
(Hölker et al. 2019).

Our objective was to investigate the genetic architecture 
of Fg resistance in two DH libraries derived from landraces 
KE and PE and the potential of genetic improvement by 
marker-assisted (MAS) and genomic selection (GS). Specifi-
cally, we aimed to (1) estimate variances and covariances 
for GER severity and the agronomic traits, days to silking, 
plant height, and seed-set, (2) map QTLs using a multi-SNP 
GWAS model based on the markers from a 600 k SNP array, 
and (3) compare the prediction accuracies of MAS and two 
GS approaches for GER severity. Therefore, 250 DH lines 
from each landrace were artificially infected by F. gramine-
arum in four environments.

Materials and methods

Plant materials, experimental design and data 
collected

Plant materials consisted of a panel of 500 DH lines pro-
duced from two European flint landrace populations, KE 
and PE by KWS SAAT SE & Co. KGaA, Einbeck, Germany. 
We phenotyped 250 DH lines per population plus 10 checks 
(including the two original source populations) in 2018 and 
2019 at Hohenheim (HOH) near Stuttgart, Germany, and 
at Gondelsheim (GON) near Karlsruhe, Germany. The DH 
lines represent a random sample of the DH lines described 
by Hölker et al. (2019). The experimental design was a 
51 × 10 alpha lattice design (10 genotypes per 51 incom-
plete blocks) with 2 replicates in both locations and years. 
Sowing was done mechanically. Each plot was a single row 
of 3 m length and consisted of 20 plants at intra-row spacing 
of 15 cm. Inter-row spacing was 75 cm. Eight to ten maize 
ears per plot, leaving out border plants, were inoculated with 
inoculum prepared from a highly aggressive F. graminearum 
(Fg) isolate, FG 163 (= IFA 66, Martin et al. 2012a, b) at 
a concentration of 1.5 × 104 spores mL−1. The isolate was 
shared by Prof. Marc Lemmens, BOKU, Vienna, Austria. 
Each upper ear was inoculated by a one-needle vaccinator on 
the silk channel of the maize cobs with approximately 2 ml 
of the inoculum at 4–6 days after 50% silk emergence (Reid 
et al. 1996). Though significant genotype-isolate interaction 
for ear rot severity and DON content was reported in previ-
ous studies, Miedaner et al. (2010) found no rank reversals 
for GER resistance in early maize inbred lines inoculated 
with eight F. graminearum isolates where our isolate used 
in this study was one of them. Therefore, inoculation with 
one highly aggressive isolate should be adequate to discrimi-
nate resistant and susceptible lines. Days to silking (DS), 
plant height (PHT, cm), seed-set (SS, %), and GER severity 
(%) were recorded in all 4 environments (= location × year 
combinations). Briefly, days to silking were recorded as the 
number of days taken to achieve ≥ 50% female flowering per 
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plot. PHT was measured plotwise from ground level to the 
first tassel branch using a meter rule in cm. At physiologi-
cal maturity (about 18–20% grain moisture), we manually 
dehusked each ear and assessed visually seed-set as the pro-
portion of kernels per cob (%), where 0% = no kernels on the 
cob and 100% = cob fully covered with kernels. GER sever-
ity was visually assessed on the same ears on a quantitative 
scale from 0 to 100%, where 0% = no Fg mold visible and 
100% = entire ear covered with Fg mold.

Data analysis

Phenotypic analysis

ASReml R package version 3.0 (Butler 2009) was used to 
estimate means and variance components for all four traits. 
Trait values from each environment were used to calculate 
best linear unbiased estimates (BLUEs), regarding genotypes 
as fixed effects. Estimates of variance components and best 
linear unbiased predictors (BLUPs) were calculated by the 
following model, regarding genotypes within each popula-
tion and the other factors as random:

where Yijklm = the observed phenotypic value for genotype j 
from population i in replicate l and block m at environment 
k, � = general mean, Pi = effect of the ith population, Gj(i) 
= effect of the jth genotype nested in the ith population, 
Ek = effect of the kth environment, Rl(k) = effect of the lth 
replicate nested in the kth environment, Bm(kl) = effect of the 
mth block nested in the lth replicate and the kth environment, 
PEik = interaction effect between the ith population and the 
kth environment, GEJk = interaction effect between the jth 
genotype and the kth environment, and eijklm = residual error. 
We assumed heterogeneous variances of residual effects 
in different environments. Dummy variables were used to 
separate the genotypes into checks and the two landraces 
(KE and PE) in the random statement to obtain the variance 
components for each population (Piepho et al. 2006). The 
likelihood ratio test based on full and reduced models was 
used to determine the significance of variance components. 
The same model was used for calculations in individual 
environments by omitting the environment factor. Repeat-
abilities and broad-sense heritabilities (H2) were estimated 
by standard procedures described by Hallauer et al. (1988). 
Pearson correlation coefficient (r) between BLUEs of traits 
were estimated using the function “cor.test” in R program-
ming language (R Core Team 2018). Genotypic correlations 
( rg ) between traits and their P-values were calculated using 
bivariate models described in details by Wilson et al. (2010), 
in Asreml-R 3.0 (Butler 2009).

Yijklm = � + Pi + Gj(i) + Ek + Rl(k) + Bm(kl) + PEik + GEjk + eijklm

Molecular analysis

The 500 DH lines (250 derived from PE and KE, respec-
tively) were previously genotyped using a high-density 
Affymetrix® Axiom® Maize Genotyping Array optimized 
for temperate maize (Unterseer et al. 2014, Mayer et al. 
2020). SNP markers having call rate < 90%, minor allele fre-
quency < 5%, and too high heterozygosity (false discovery 
rate < 1%) were excluded from the marker data. The remain-
ing heterozygous loci were replaced with missing values, 
and the new data set without heterozygous loci was filtered 
again as described above. Remaining missing values were 
imputed using Beagle 5.0 software (Browning et al. 2018). 
A total of 388,999 SNPs and 462 DH lines (KE = 236, 
PE = 226) were left for further statistical analyses after qual-
ity check. Physical positions of all markers are available on 
the public maize reference genome, B73 RefGen_v4, AGPv4 
(Jiao et al. 2017).

Principal component analysis and genomic kinship

Principal component analysis (PCA) was carried out by the 
default method in the R package Genome Association and 
Integrated Prediction Tool (GAPIT) 3.0 (Lipka et al. 2012). 
In addition, a kinship plot was created from the genomic 
relationship matrix of the high-density SNP marker data 
using the default kinship.algorithm, VanRaden (VanRaden 
2008) in GAPIT 3.0 (Lipka et al. 2012).

Genome‑wide association studies (GWAS)

The BLUEs and the high density filtered SNPs were used 
to perform GWAS for GER severity (%), DS (days), PHT 
(cm), and SS (%), employing the multi-locus-based method, 
FarmCPU (Liu et al. 2016) implemented in the R package 
GAPIT 3.0 (Lipka et al. 2012). The GWAS was conducted 
with the filtered DH lines from each population (KE = 236 
and PE = 226) separately. In FarmCPU, false positives are 
controlled by using a special kinship (K) matrix created 
from pseudo-quantitative traits nucleotides (pseudo-QTNs) 
as random effect (Liu et al. 2016). The parameter, “method.
bin” was set to “optimum” for the optimization process, 
using the default bin.size = c(5e5,5e6,5e7) and bin.selec-
tion = seq(10,100,10). The “bin.size” function refers to the 
division of the whole genome into bins in kilo base pairs 
and represents the window size used to select a probable 
QTN. The “bin.selection” indicates the number of possi-
ble QTNs that can be selected into the model as covariates 
in loops. After the optimization process in a random effect 
model, the marker having the most significant P-value in a 
particular bin is used to represent that bin (Liu et al. 2016). 
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The two steps of FarmCPU model, which are run iteratively 
are described in detail by Liu et al. (2016) and can be rep-
resented as.

S t e p  1 .  F i x e d  e f f e c t  m o d e l  ( F E M ) : 
yj = Mj1T1 +Mj2T2 + ... +MjtTt + Sjnen + �j

Step 2. Random Effect Model (REM): yj = uj + �j

In both FEM and REM, yj=the trait value (i.e., BLUE 
across environments) of the jth maize DH line and �j = resid-
ual ~ N(0,�2

�
 ). In FEM, Mj1,Mj2, ...,Mjt = the genotypes of t 

pseudo-QTNs, initiated as an empty set (Liu et al. 2016), 
T1, T2, ..., Tt = the corresponding effects of the pseudo-QTNs; 
Sjn = the genotype score of the jth DH line at the nth SNP 
marker and en = the corresponding effect of the nth SNP 
marker. In REM, uj = the total genetic effect of the jth DH 
line, where the variance and covariance matrix is repre-
sented by G = 2K�2

g
 , K = the kinship matrix constructed 

based on the pseudo-QTNs and �2
g
 = the genetic variance 

pertaining to the REM (Liu et al. 2016).
In order to identify which SNPs were most likely associ-

ated with each trait, we adopted an exploratory significant 
threshold of P-value ≤ 0.0001 (–log10 (P-value) ≤ 4) and 
Bonferroni-corrected threshold of (–log10 (P-value) = 6.89). 
The total proportion of genotypic variance ( pG ) explained 
by the QTLs detected were calculated using the formula.

where H2 is the broad-sense heritability of the trait, and R2
adj

 
is the adjusted R2 from a linear model (Utz et al. 2000). 
Calculation of R2

adj
 and pG for (a) a simultaneous fit of all 

significant QTL and (b) individual QTL  followed the pro-
cedure described by Würschum et al. (2015).

Candidate gene identification for GER 
resistance

We searched for possible genes for GER resistance using 
the publicly available B73 reference genome version 4 (Zm-
B73-REFERENCE-GRAMENE-4.0, Jiao et al. 2017) from 
MaizeGDB (https​://www.maize​gdb.org/gene_cente​r/gene) 
based on the positions of two most important SNPs explain-
ing > 5% of genotypic variance for GER resistance in KE 
(i.e., ZmSYNBREED_24070_673 on chromosome (chr.) 
2 and ZmSYNBREED_53695_527 on chr. 6). Descrip-
tions and ontology terms of genes located within ≤ 1 cM 
(approx. ≤ 250 kb) around the SNPs (Coan et al. 2018) were 
obtained from the Gramene Annotations (http://www.grame​
ne.org/).

pG =
R2
adj

H2

Marker‑assisted and genomic selection 
for GER severity

We evaluated the potential of GS for GER resistance using 
two models, ridge regression-BLUP (RR-BLUP) and weighted 
ridge regression-BLUP (wRR-BLUP) using the R package 
“rrBLUP” (Endelman 2011; Endelman and Jannink 2012). In 
wRR-BLUP, the significant SNPs from the GWAS explain-
ing > 5% pG for GER severity were fitted in the GS model as a 
fixed effect, and all other SNPs fitted as a random effect (Zhao 
et al. 2014; Spindel et al. 2016). In addition, we compared the 
prediction accuracies of marker-assisted selection (MAS, i.e., 
by using the significant SNPs from the GWAS explaining > 5% 
pG ) and the two genome-wide prediction models (RR-BLUP 
and wRR-BLUP) for GER resistance.

The quality of prediction of these models was evaluated 
by cross-validation using 80% of the data as training set (TS) 
and the remaining 20% as validation set (VS) (Liu et al. 2013; 
Würschum et al. 2014; Würschum and Kraft 2014). Sam-
pling was stratified by landrace population and repeated 1000 
times. To reduce computation time, we did not perform a de 
novo QTL detection for each calibration set for the MAS and 
wRR-BLUP. Instead, we predicted based on QTL positions 
and effects detected in the whole dataset. For RR-BLUP and 
wRR-BLUP, we also investigated the prediction accuracy of 
GS for GER resistance across the two landraces. Here, KE 
was exclusively used as the TS and PE as the VS, and vice 
versa. The prediction accuracy ( � ) was determined by express-
ing the predictive ability (i.e., correlation coefficient between 
the observed BLUEs and the predicted values) as a fraction 
of the square root of the broad-sense heritability of the trait. 
The model used to estimate marker effects in the TS is given 
by the following:

where = Y  the vector of BLUEs for GER; � = vector of fixed 
effects; u ∼ N(0,A�2

u
) = the vector of random marker effects, 

A is a relationship matrix and the residuals are normal with 
constant variance; X and Z = the design matrices; e = the 
residual error (Endelman 2011). We calculated the genomic 
estimated breeding values (GEBV) of the individuals of the 
VS by using the relation.

where Y0 = the vector of GEBV of the VS; X0 and Z0 = 
design matrixes of individuals in the VS. The predictions 
were based on additive effects of markers.

Y = X� + Zu + e

Y0 = X0� + Z0u

https://www.maizegdb.org/gene_center/gene
http://www.gramene.org/
http://www.gramene.org/
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Results

Phenotypic and genetic variation for GER resistance 
and agronomic traits

GER symptoms were observed among maize lines in all four 
environments with the highest mean severity in HOH 2019 
and the lowest in GON 2018 (Fig. 1). Repeatability values 
per environment were moderate to high, ranging from 0.61 
to 0.96, depending on the trait (Supplementary Table 1). 
Across the four environments, KE source population was 

slightly more resistant than PE source population (Fig. 2a). 
Accordingly, KE DH lines had a lower mean GER severity 
than PE lines (Fig. 1 and Fig. 2a). Variation within each 
population was high, GER severity ranging from 1 to 87% 
for KE and 7% to 97% for PE. On average, KE lines were 
about 25 cm taller than PE lines while DS was similar for 
both landraces. The average SS was slightly higher for KE 
than PE lines. Accordingly, the KE source population had 
a slightly higher seed set than the PE population (80% vs. 
75%) (Table 1, Fig. 2b). We found significant (P ≤ 0.0001) 
genotypic and genotype–environment interaction variances 
and high H2 estimates for all traits (Table 1). H2 was higher 
for KE than PE for most traits. Phenotypic and genotypic 
correlations between GER severity and DS and SS were sig-
nificant (P ≤ 0.01) in most cases but very low and similar for 
KE and PE (Table 2). DS was significantly and moderately 
correlated with SS. No significant correlations were found 
between GER severity and plant height.

Principal component analysis and genomic 
relationship

The PCA grouped the 462 DH lines used for the molecular 
analyses into two major clusters corresponding to the two 
maize landrace populations, KE and PE (Supplementary 
Fig. 1). The first, second, and third PCs explained 16.75%, 
3.36%, and 3.25% of the molecular variation, respectively. 
Within KE, the percentage of variation explained by the first 
three PCs were 7.27%, 4.41%, and 4.16%, respectively. Simi-
larly, among PE lines, the first three PCs explained 8.56%, 

Fig. 1   Box plots of adjusted means for Gibberella ear rot (GER) 
infection among Kemater (KE) and Petkuser (PE) DH lines at Gon-
delsheim (GON) and Hohenheim (HOH) in 2018 and 2019 plus the 
four environments combined. Horizontal thick lines in boxes indicate 
the median

Fig. 2   Histograms showing the distribution of a Gibberella ear rot 
(GER) severity and b seed-set among 250 DH lines within each lan-
drace, across four environments. The red arrows indicate the mean 

value of GER severity and seed-set for the respective source popu-
lations (replicated 4-fold). Vertical dashed lines represent the mean 
disease severity and seed-set of DH lines



798	 Theoretical and Applied Genetics (2021) 134:793–805

1 3

5.22%, and 3.47% of the molecular variation, respectively. 
The genomic relationship plot also showed two major groups 
corresponding to KE and PE landraces, with smaller sub-
clusters within each landrace (Supplementary Fig. 2).

QTLs for GER severity

Among KE DH lines (N = 236), at P = 0.0001, 8 QTLs 
collectively explaining 34% of pG for GER severity were 
found (Fig. 3a, Table 3). One SNP on chr. 2 (ZmSYN-
BREED_29737_831) exceeded the Bonferroni threshold 
(Fig. 3, Table 3). We detected 13, 11, and 1 QTL(s) for DS, 

PHT, and SS, respectively. None of the QTLs identified for 
GER severity colocalized with the QTLs detected for the 
agronomic traits in KE (Supplementary Table 2).

For PE (N = 226), no QTL were detected for GER sever-
ity at P = 0.0001 (Fig. 3b). SNP-GER resistance associa-
tions among PE lines were found at or near some of the loci 
identified in KE only with a lower significance level (e.g., 
P ≤ 0.01). Ten QTLs were detected for DS and PHT while 
one QTL was detected for SS in PE (P = 0.0001, Supple-
mentary Table 3).

The two most important SNPs with the largest pG for 
GER severity in KE (i.e., ZmSYNBREED_24070_673 and 
ZmSYNBREED_53695_527) were placed in 25 protein-
coding genes/gene models in the chosen interval, which 
could be placed into 10 functional categories (Supplemen-
tary Table 4).

Genomic prediction versus marker‑assisted 
selection for GER resistance

We evaluated the prospects of MAS and GS for GER 
resistance. For KE, we used the two SNPs explain-
ing > 5% pG from the GWAS for MAS (Zhang et al. 2005) 
and all 388,999 markers for GS by adopting two mod-
els, RR-BLUP and wRR-BLUP. In wRR-BLUP, we used 
the medium-to-large-effect SNPs associated with GER 
QTLs as fixed effects as described in the Material and 
Methods. For KE (NTS = 189, NVS = 47), MAS and RR-
BLUP yielded similar � for GER severity (~ 0.40) while 
wRR-BLUP yielded the highest � (0.51, Fig. 4). In PE 

Table 1   Means, genotypic variance ( �2

G
 ), genotype-environment 

interaction variance ( �2

G×E
 ) and residual variance ( �2

�
 ) components 

and broad-sense heritabilities ( H2 ) of Gibberella ear rot (GER) sever-
ity, days to silking (DS), plant height (PHT), and seed-set (SS) within 
landraces

�
2

G
 and �2

G×E
 for all traits and populations were significantly different 

from zero at P < 0.0001

Parameter GER (%) DS (days) PHT (cm) SS (%)

Kemater (KE)
Mean 44.12 80.44 133.61 61.34
�
2

G
251.30 14.65 377.49 473.83

�
2

G×E
94.64 2.00 53.35 123.45

�
2

�
305.01 2.53 85.10 182.04

H
2 0.80 0.95 0.94 0.90

Petkuser (PE)
Mean 58.57 79.86 108.70 57.88
�
2

G
255.60 14.75 324.03 302.01

�
2

G×E
146.95 3.57 44.57 143.16

�
2

�
305.01 2.53 85.10 182.04

H
2 0.77 0.92 0.94 0.84

Table 2   Phenotypic and genotypic (in brackets) correlations between 
Gibberella ear rot (GER) severity and days to silking (DS), plant 
height (PHT), and seed-set (SS) within landraces across four environ-
ments

**,***Significantly different from zero at P ≤ 0.01 and P ≤ 0.0001, 
respectively (for both the phenotypic and genotypic correlations)

Traits DS PHT SS

Kemater DH
GER severity  − 0.25 

( − 0.32)***
 − 0.03 ( − 0.04) 0.20 (0.22)**

DS  − 0.52 
( − 0.56)***

Petkuser DH
GER severity  − 0.27 

( − 0.31)***
 − 0.05 ( − 0.06) 0.18 (0.22)**

DS  − 0.54 
( − 0.59)***

Fig. 3   Manhattan plot of the GWAS scan for Gibberella ear rot 
(GER) severity in a “Kemater Landmais gelb” (N=236), and b ”Pet-
kuser Ferdinand rot” (N=226). Ex pl. Exploratory threshold at P ≤ 
0.0001; Bonf. Bonferroni-corrected threshold at P ≤ 0.05
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(NVS = 181, NVS = 45), the mean � of RR-BLUP was 0.38 
(Fig. 4b). For GS across the two landraces, when only DH 
lines from KE were used as TS and PE as VS in RR-BLUP, 
� for GER severity was 0.03 and vice versa � was -0.01. 
When the two SNPs explaining > 5% pG for GER severity 
in KE were used as fixed effects in the GS model (wRR-
BLUP), � increased to 0.22 when KE lines constituted the 
TS and PE lines the VS.

Discussion

Over the past decade, only few phenotypic and molecular 
studies have been conducted on GER resistance in elite 
maize germplasm compared to wheat (Gaikpa and Mie-
daner 2019) and exploitation of the genetic diversity among 
European flint maize landraces for GER resistance using 
genomic tools has not been pursued hitherto. In this study, 
we conducted GWAS and GS for GER resistance in two 
European flint maize landraces (KE from Austria and PE 
from Germany). To analyze potential covariations, we addi-
tionally evaluated days to silking (DS), plant height (PHT), 
and seed-set (SS).

Variation for GER severity and agronomic 
traits in European landraces

Inoculation with the highly aggressive F. graminearum iso-
late FG163 resulted in GER infection in all locations and 
years. The environment and its interaction with the DH lines 
influenced GER severity in both landraces. Although the 
genotypic variances were quite similar for both landraces, 
PE showed higher genotype × environment variance result-
ing in a slightly higher H2 for KE (Table 1). A large effect of 
the environmental conditions on ear rot resistance has been 
reported several times in the literature (Giomi et al. 2016; 
Han et al. 2018; Galić et al. 2019; Morales et al. 2019). 
Therefore, it is important to phenotype lines for GER resist-
ance in multi-environmental trials. The broad-sense herit-
ability values were similar to previous reports (Martin et al. 
2012a, b; Giomi et al. 2016; Han et al. 2016; Kebede et al. 
2016).

We analyzed additionally agronomic traits such as DS, 
PHT, and SS, because they may lead to physiological 
escape or could have pleiotropic effects on GER resistance. 
All three traits had high H2 estimates ranging from 0.84 
to 0.95 (Table 1). Within each population, low correlations 
(r =  − 0.27 to 0.20; rg =  − 0.32 to 0.22) were found between 

Table 3   Significant SNPs 
detected for Gibberella ear 
rot (GER) severity, their 
chromosomal position, P-value, 
frequency of the favorable 
allele (FAF), additive effects 
and proportion of explained 
genotypic variance ( p

G
 ) in 

“Kemater Landmais gelb” (KE)

a Chromosome

Marker Chra Coordinate (cM) P-value FAF Additive effect p
G

 (%)

ZmSYNBREED_24070_673 2 49.00 2.70E–07 0.42 5.00 15.04
ZmSYNBREED_29737_831 2 119.54 1.17E–08 0.26 4.56 1.28
ZmSYNBREED_30537_486 2 162.00 1.70E–05 0.41  − 3.33 2.84
ZmSYNBREED_44869_210 4 162.93 2.33E–05 0.36 3.27 4.35
ZmSYNBREED_47633_944 5 78.30 1.75E–05 0.47 3.41 3.27
ZmSYNBREED_53695_527 6 31.15 6.36E–07 0.50  − 3.52 6.04
ZmSYNBREED_55609_889 6 91.78 9.50E–05 0.67  − 3.14 0.46
ZmSYNBREED_70955_321 9 110.30 1.18E–05 0.19  − 4.11 3.53
Total 33.69

Fig. 4   Box plots showing the prediction accuracies (%) of marker-
assisted selection (MAS), ridge regression-BLUP (RR-BLUP) and 
weighted RR-BLUP (wRR-BLUP) models for Gibberella ear rot 
severity (%) in a “Kemater Landmais Gelb”, b “Petkuser Ferdinand 
Rot”
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GER severity and the three agronomic traits analyzed, 
though significant in most instances (Table 2). Similarly to 
our findings, Han et al. (2018) and Martin et al. (2012c) 
reported low negative correlations between GER severity 
and days to silking illustrating that late materials tend to get 
less infected.

In wheat, PHT can highly affect severity of Fusarium 
head blight infection (Mesterházy 1995; Gaikpa et al. 2020), 
but this was not the case in our study with maize as judged 
from the non-significant correlations between PHT and GER 
severity (Table 2). This might be explained by the direct 
inoculation of the maize ears by hand while in wheat spray 
inoculation from above is commonly practiced.

Seed-set is an important fertility and yield-related trait 
in maize and also highly affected by inbreeding depression. 
DH lines from landraces are known to suffer more from 
inbreeding depression (Böhm et al. 2017; Strigens et al. 
2013) because they have not experienced several cycles of 
inbreeding like elite material. Fusarium species are noto-
rious in benefitting from host stress and the proportion of 
kernels on maize cobs itself might influence GER severity 
because many missing kernels reduce the nutrient ability 
of the fungus. In both cases, a close correlation between 
GER severity and SS should occur. The respective correla-
tion coefficients between the two traits were significant, but 
low (Table 2). This implies that those DH lines that were 
heavily affected by inbreeding depression and consequently 
showing a low SS did not systematically suffer more from 
GER. The large differences in SS (Fig. 2b) within our popu-
lations might have been caused also by variation in flowering 
date as indicated by moderate negative correlations between 
both traits (r =  − 0.52 to  − 0.54, rg =  − 0.59 to  − 0.56, 
P < 0.0001). Genotypes flowering late had reduced seed-
set, but this might have been caused by unusually low rain-
fall and higher temperatures towards the end of the silk-
ing period in 2018 and partially also in 2019 rather than by 
inbreeding depression. PHT is also affected by inbreeding 
depression, but the association between PHT and SS was not 
significant ( rg = 0.02 in KE and  − 0.06 in PE). Hence, we 
conclude that in our study GER was not strongly affected by 
inbreeding depression among lines. This is supported by the 
fact that the mean of the DH lines is not drastically higher 
than the mean of the source populations (Fig. 2a).

Our findings corroborate earlier studies reporting a high 
amount of genetic variation among landraces for Fusarium 
ear rot caused by F. verticillioides (Böhm et al. 2017). In the 
latter study, some DH lines from landraces were even less 
susceptible to FER than elite maize lines. The high pheno-
typic variation observed in this study can be exploited for 
GER resistance breeding and can be used for genomic-based 
approaches, like GWAS and GS. GER resistance was not 
much affected by the three agronomic traits and can, thus, 
be selected without undesirable correlated response.

Marker‑trait associations for GER severity 
among maize landraces

Although genotypic variation for GER severity found 
within PE was similar to KE (Table 1), no significant 
QTLs could be detected in PE, whereas in KE, we detected 
eight QTLs. This is astonishing as both landraces were 
evaluated in the same environments, with about the same 
number of genotypes (N ~ 230) and a high-density marker 
array (N = 388,999). As the complexity of a trait highly 
affects the outcome of the molecular analyses (Schön et al. 
2004), many small-effect QTLs with rare alleles might 
control GER resistance in PE that could not be detected 
by GWAS at the chosen significant threshold. Though we 
did not find QTLs for GER severity within PE, QTLs were 
detected for the three other agronomic traits evaluated 
(P = 0.0001, Supplementary Table 3). In GWAS, strong 
linkage disequilibrium (LD) between a marker and a QTL 
allele is required to detect minor-effect QTLs (van Inghe-
landt et al. 2011). As LD decay was faster in PE than in 
KE (Mayer et al. 2017, 2020), this might partly explain 
the difference in QTL detection between both populations. 
Additionally, the presence of rare alleles in a population 
can result in low QTL detection power (Korte and Far-
low 2013). At most of the QTL positions, minor alleles 
improved GER resistance in KE (Table 3). Also, the study 
of Han et al. (2018) found no QTLs for GER severity by 
GWAS in a line sortiment, but several QTLs for DON 
content, some of which were located in the same bin (2.02) 
where GER QTLs were identified in this present study 
(Table 3). Similar to the present outcome, QTLs have been 
reported on chromosome bins 2.03, 5.04, 6.07, and 9.05 
for GER resistance in previous linkage mapping studies 
(Giomi et al. 2016; Han et al. 2016; Martin et al. 2011, 
2012b). Although we found several QTLs for DS, PHT, 
and SS, none colocalized with QTLs for GER severity in 
KE. This accords to the low r and rg found between GER 
and the agronomic traits.

Our molecular results agree with the assumption that 
GER resistance is controlled by many loci each contrib-
uting a small effect to the total genetic variation. Most 
intermediate and small-effect QTLs remain undetected 
in QTL mapping with small population size and lead to 
overestimation of the genotypic variance explained by the 
few detected QTLs (Beavis 1998; Melchinger et al. 1998; 
Schön et al. 2004; Xu 2003). Thus, larger population sizes 
are required to obtain an unbiased estimate of the propor-
tion of explained genotypic variance of detected QTLs. 
The unexplained genetic variance by the QTLs detected 
in KE might be explained by QTLs with small additive 
effects that were below the significant threshold and 
QTLs with non-additive genetic effects on GER severity. 
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Increase in population size and precision of disease rat-
ings as well as exploration of GWAS models that can 
account for non-additive QTL effects are recommended. 
In an analysis combining both landraces KE and PE, how-
ever, we could not detect more QTL than in KE alone 
when including population (KE and PE) as a fixed effect 
in the model.

Candidate genes associated with GER 
resistance

The two prioritized SNPs, ZmSYNBREED_24070_673 
(chr. 2), and ZmSYNBREED_53695_527 (chr. 6) detected 
for GER resistance in KE, were associated with candidate 
genes which code for proteins belonging to families like 
cytochrome P450, mitogen-activated protein kinase kinase 
kinase (MAP3Ks), serine/threonine kinase, tetratricopep-
tide repeat (TPR)-like superfamily protein, leucine-rich 
repeat (LRR) family protein and armadillo (ARM) repeat 
superfamily protein. They are associated with functional 
groups such as binding activities, kinase activity, response 
to stress/stimulation, signal transduction, catalytic activ-
ity, metabolic and biosynthetic processes (Supplementary 
Table 4). Similar functional categories were reported for 
differentially expressed genes for F. graminearum (Yuan 
et al. 2020) and F. verticillioides (Fv, Yao et al. 2020) 
resistances in maize.

In previous studies, cytochrome P450 metabolism was 
found to be involved in Fv resistance in maize (Yao et al. 
2020) because it regulates lipid metabolism and influ-
ences the production and activity of jasmonic acid as well 
as synthesis of secondary metabolites such as flavonoid 
and plant hormones (Koo et al. 2011). Mitogen-activated 
protein kinases (MAPKs) are highly conserved and trans-
duce signals from the environment into cellular response 
in plants (Sopeña-Torres et al. 2018). MAP3Ks YODA 
found in the present study was previously reported to 
confer broad-spectrum resistance to fungi, bacteria, and 
oomycetes in Arabidopsis (Sopeña-Torres et al. 2018). 
Additionally, a combined linkage mapping or GWAS and 
transcriptomic data identified kinase genes for Fv resist-
ance in maize (Maschietto et al. 2017; Yao et al. 2020). 
Han et al. (2018) also found a protein serine/threonine 
kinase annotated gene on chr. 2 associated with DON 
accumulation in maize. The significant roles of TPR-like 
superfamily protein, LRR family protein and ARM repeats 
in biotic and abiotic stress regulations have been exten-
sively documented (Shanmugam 2005; Rosado et al. 2006; 
Padmanabhan et al. 2009; Sharma and Pandey 2016) and 
LLR family protein has been validated to control A. flavus 
resistance in maize (Dhakal et al. 2017).

Weighted genomic selection outperformed 
marker‑assisted selection for GER resistance

In practice, independent TS and VS are used for GS. How-
ever, in this study, we simulated the prospect of MAS and 
GS in the same experimental material using a fivefold 
cross-validation procedure (Liu et al. 2013; Würschum 
et al. 2014; Würschum and Kraft 2014). Additionally, the 
prospect of using each landrace population exclusively as 
TS or VS was evaluated. Within KE, the average predic-
tion accuracy of MAS and unweighted GS (RR-BLUP) 
were similar implying that the QTLs detected by the multi-
locus GWAS model (FarmCPU) were able to capture most 
of the important additive variance controlling GER sever-
ity. MAS is expected to yield better predictions only when 
major QTLs are underlying a trait, e.g., Fhb1, Fhb2, Fhb4, 
Fhb5 for Fusarium head blight resistance in wheat (Buerst-
mayr et al. 2002; Ma et al. 2020). The � estimated by RR-
BLUP was similar for both, KE and PE DH libraries (39% 
and 38%, respectively). In RR-BLUP, the effects of many 
QTLs with small effects are estimated simultaneously 
and can result in underestimation of the effects of major 
genes in a population (Bernardo 2014). In contrast, the 
weighted GS (wRR-BLUP) approach outperformed MAS 
and RR-BLUP (Fig. 4). Therefore, we hypothesize that 
different information is captured by the fixed compared 
to the random effects (Spindel et al. 2016). The superior-
ity of wRR-BLUP agrees with the findings for Fusarium 
head blight and Septoria tritici blotch resistance in small-
grain cereals (Galiano-Carneiro et al. 2019; Herter et al. 
2019; Odilbekov et al. 2019). However, estimates of MAS 
and wRR-BLUP are likely to be somewhat inflated in our 
study, because we based predictions in the VS on QTLs 
detected from GWAS in the entire data set. An alternative 
for getting an unbiased estimate would be the cross-vali-
dation procedure suggested by Utz et al. (2000). However, 
this procedure would be computationally very demanding 
for our study with about 390,000 markers as it requires in 
each of the n runs (1) performing GWAS for QTL detec-
tion and (2) establishing the GS model with 80% of the 
population in the training set, and application of the model 
to the remaining 20% of the population. The unweighted 
GS approach is a possibility when most of the low-effect 
QTLs underlying a trait cannot be detected by a GWAS 
model like in PE.

A close relationship between training set and validation 
set is positively influencing GS (Albrecht et al. 2011; Rie-
delsheimer et al. 2013; Kadam et al. 2016; Brauner et al. 
2018, 2020; Herter et al. 2019). Prediction across different 
maize heterotic pools or highly unrelated individuals can 
even lead to a negative mean � (Riedelsheimer et al. 2013; 
Han et al. 2018). It should be noted that the materials used 
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for our present work were DH lines derived from two lan-
draces both belonging to the same flint pool, but are not as 
closely interrelated as lines from bi-parental or intercon-
nected families. Therefore, GS may yield higher � for GER 
severity in breeding programs incorporating pre-selected 
lines (Albrecht et al. 2011; Brauner et al. 2018).

Across landraces, prediction accuracies close to zero 
were expected. Differences among landraces in the linkage 
phases between QTL and markers might account for this 
result (Brauner et al. 2018; Han et al. 2018), because GS 
basically utilizes the LD between SNPs and QTLs. When 
the TS contained only lines from PE even negative ρ was 
found. KE yielded somewhat higher � than PE when used 
as TS, especially when the two SNPs with intermediate 
to major effects in KE were used as fixed effect in the GS 
model. This reflects the results found for each population in 
GWAS, i.e., the landrace having no major QTL (i.e., PE) was 
a poorer predictor of GER resistance in the landrace where 
GER QTLs could be detected (i.e., KE) while the latter was 
a slightly better predictor of GER resistance in PE.

In an analysis combining both landraces KE and PE for 
GS, the � obtained for GER severity were reduced com-
pared to the results obtained for individual landraces when 
accounting for differences in mean GER severity between 
populations (KE and PE) ( � =  − 0.03 for RR-BLUP and 
0.36 for wRR-BLUP).

Conclusions

This study presents phenotypic and molecular analyses 
of GER resistance among DH lines originating from two 
European maize landraces, KE and PE. The present findings 
suggest that favorable alleles in the two landraces can be 
harnessed for improving GER resistance of elite germplasm 
with genomic tools. Beneficial QTL alleles from KE need 
to be validated and then marker-assisted backcrossed (BC) 
into elite flint lines to increase GER resistance in this heter-
otic group. The BC lines should be subjected to testcrossing 
for selecting maturity, further adaptation traits, and finally 
grain yield. A subsequent selection for GER resistance on 
testcross basis could be beneficial, because the correlation 
between line and testcross performance for this resistance 
trait has been shown to be only moderate (Löffler et al. 2011; 
Martin et al. 2012c). Although no GER QTLs could be 
detected within PE, � estimated by RR-BLUP was of similar 
magnitude than within KE, indicating that beneficial effects 
can be expected also from PE. In future, it might be useful 
to cross selected DH lines from KE and PE to accumulate 
their respective resistance alleles in the flint heterotic group.
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