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Abstract
Key message Hyperspectral and genomic data are effective predictors of biomass yield in winter rye. Variable selec-
tion procedures can improve the informativeness of reflectance data.
Abstract Integrating cutting-edge technologies is imperative to sustainably breed crops for a growing global population. To 
predict dry matter yield (DMY) in winter rye (Secale cereale L.), we tested single-kernel models based on genomic (GBLUP) 
and hyperspectral reflectance-derived (HBLUP) relationship matrices, a multi-kernel model combining both matrices and 
a bivariate model fitted with plant height as a secondary trait. In total, 274 elite rye lines were genotyped using a 10 k-SNP 
array and phenotyped as testcrosses for DMY and plant height at four locations in Germany in two years (eight environments). 
Spectral data consisted of 400 discrete narrow bands ranging between 410 and 993 nm collected by an unmanned aerial 
vehicle (UAV) on two dates on each environment. To reduce data dimensionality, variable selection of bands was performed, 
resulting in the least absolute shrinkage and selection operator (Lasso) as the best method in terms of predictive abilities. The 
mean heritability of reflectance data was moderate ( h2 = 0.72) and highly variable across the spectrum. Correlations between 
DMY and single bands were generally significant (p < 0.05) but low (≤ 0.29). Across environments and training set (TRN) 
sizes, the bivariate model showed the highest prediction abilities (0.56–0.75), followed by the multi-kernel (0.45–0.71) and 
single-kernel (0.33–0.61) models. With reduced TRN, HBLUP performed better than GBLUP. The HBLUP model fitted 
with a set of selected bands was preferred. Within and across environments, prediction abilities increased with larger TRN. 
Our results suggest that in the era of digital breeding, the integration of high-throughput phenotyping and genomic selection 
is a promising strategy to achieve superior selection gains in hybrid rye.

Introduction

The European biogas sector has attracted increasing atten-
tion as a renewable source of heat, electricity, and trans-
port suitable for climate change mitigation with additional 
socioeconomic advantages (Scarlat et al. 2018). Political 
directives (European Renewable Energy Directive 2009/28/
EC) supporting the production of bioenergy have already 
been implemented in Europe (European Union 2009). This 
legislation stated that, by 2020, the energy demanded in the 
European Union (EU) should be supplied in at least 20% 
by renewable sources. Among the EU members, therefore, 
the role of energy crops as bioenergy feedstocks has under-
gone a considerable increase, represented mainly by silage 
maize (European Commission 2018). Maize monocropping 
is, however, discouraged by regulations toward enhanced 
sustainability of the biomass production (European Union 
2010).
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Additionally, in Germany, the principal biogas producer 
in Europe, a limit was placed on the amount of maize accept-
able in the fermentation substrate. In 2012, this limit was 
set to 60%, while in 2021, it will be reduced further to 44% 
(Renewable Energy Sources Act “EEG”; EEG 2012, 2017). 
Consequently, the growing demand for bioenergy combined 
with the search for alternative sources of biomass opens a 
very attractive opportunity for diversifying crop rotations.

Winter rye (Secale cereale L.) is a small-grain cereal with 
vigorous growth and enhanced tolerance to abiotic (e.g., low 
temperatures, light or acid soils with low fertility) and biotic 
stress factors. It can, therefore, be cultivated in vast areas less 
suited for other cereal crops (Geiger and Miedaner 2009), 
representing a sustainable biomass source with reduced 
competition with food or feed (Miedaner et al. 2012; Geiger 
and Miedaner 2009). Although it is present worldwide, rye 
is mostly grown in Northeastern Europe, where Germany, 
Poland, Russia, and Fennoscandia concentrate about 60% of 
the total area of rye cultivation (FAO 2019). Considering its 
potential as a dual-purpose crop, enhanced dry matter yield 
(DMY) has emerged as a new target in rye breeding, which 
has been primarily driven by grain yield GY (Haffke et al. 
2014). In contrast to GY, which in our breeding program is 
already tested at the first year of general combining ability 
testing (GCA-1), DMY is traditionally evaluated through 
destructive methods at later selection stages on a strongly 
reduced set of genotypes. Thus, lower selection gains can 
be expected due to the loss of important genetic variation 
during the breeding process.

Efficient indirect selection for dry matter yield (DMY) 
would, therefore, be needed to exploit the full genetic vari-
ation present at early selection stages. Plant height (PH) has 
been identified as an indirect selection target for enhanced 
DMY, but biomass-specific trials with a particular focus 
on lodging resistance were still recommended (Roux et al. 
2010; Haffke et al. 2014). Genomic selection (GS) (Meuwis-
sen et al. 2001) aims to indirectly select unphenotyped candi-
dates based on a model trained in a reduced set of genotyped 
and phenotyped entries (training set, TRN). Genomic tools 
have been proposed to increase the efficiency of selection 
in hybrid rye breeding (Miedaner et al. 2019). For instance, 
GS has been recommended for enhanced prediction of grain 
yield in rye across breeding cycles (Auinger et al. 2016; 
Bernal-Vasquez et al. 2017). Another study in rye showed 
that, in terms of prediction accuracy, GS was preferred to 
marker-assisted selection (MAS) in intra-pool crosses not 
only for GY but also for PH and quality traits (i.e., starch 
and pentosan content, Wang et al. 2014).

The development of molecular techniques has increased 
the needs of reliable and cost-effective phenotypic infor-
mation, representing a great challenge for the progress of 
plant-genetic studies (Araus and Cairns 2014; Montes et al. 
2007). High-throughput phenotyping (HTP) has emerged 

as a suitable strategy for phenotyping thousands of new 
genotypes effectively and affordably based on reflectance 
information (Furbank and Tester 2011; White et al. 2012). 
Unmanned aerial vehicles (UAVs) such as polycopters 
outperform ground-based HTP platforms regarding work-
ing capacity while deriving high-resolution image data 
(Araus and Cairns 2014). So, they may represent a suitable 
approach for screening multi-environment field trials, expo-
nentially increasing the amount of data available. In this 
context, a positive impact on practical plant breeding may 
be expected if reflectance data are associated with the target 
trait (Rutkoski et al. 2016). This would be of great interest, 
for instance, to enhance indirect estimation of DMY within 
a breeding population at first stage of GY trials, when a 
direct assessment of the trait by destructive measures would 
not be feasible, but aiming for a dual-purpose program with 
genotypes being superior for both DMY and GY.

Hyperspectral sensors deliver information of hundreds of 
wavelengths (hereafter referred as “bands”) at a nanometer-
level resolution covering a broad spectral range (from 350 
up to 2500 nm) that includes the visible spectrum (VS) and 
the infrared (IR) regions (Mahlein et al. 2012). This imag-
ing technique is a promising tool for field phenotyping but 
presents additional computation efforts due to the increased 
data dimensionality (Fahlgren et al. 2015). To address this 
issue, several strategies have been proposed for integrating 
reflectance data into practical plant breeding. One approach 
is to summarize a few individual bands into vegetation indi-
ces (VIs; Xue and Su 2017; Galán et al. 2020). However, 
prediction accuracy of VIs was found to be lower than equa-
tions incorporating whole-spectrum data by ordinary least 
squares (OLS), partial least squares (PLS), and Bayesian 
shrinkage for GY prediction in maize (Aguate et al. 2017) 
and by Bayesian functional models in wheat (Montesinos-
López et al. 2017).

In both studies, models were tested under p < n scenarios, 
where the number of predictors (p) was smaller than the 
population size (n). On the contrary, when p >  > n as in GS, 
regularization (penalized) models have shown to be suitable 
for incorporating thousands of predictors, including several 
unrelated to the trait of interest, or highly intercorrelated 
(Ogutu et al. 2012). A similar situation may be expected 
when analyzing hyperspectral data collected in several envi-
ronments and on several dates. To reduce multicollinearity, 
increase prediction accuracy, minimize calculation time, and 
extract the most informative features, regularization methods 
such as the elastic net (Zou and Hastie 2005) or the least 
absolute shrinkage and selection operator (Lasso; Tibshirani 
1996) are also preferred for facing high-dimensional spectral 
data (Liu and Li 2017).

Alternatively, Krause et al. (2019) found that deriving 
relationship matrices from hyperspectral data was a suit-
able approach to integrate whole-spectrum reflectance 
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information into multi-kernel GS for predicting GY in 
wheat within multi-environment field trials. Multivariate 
models integrating correlated traits have demonstrated to 
be more precise than univariate models in GS (Jia and Jan-
nink 2012). In wheat, for instance, GS prediction ability of 
GY was significantly enhanced by fitting traits derived from 
hyperspectral data (Sun et al. 2019; Rutkoski et al. 2016; 
Crain et al. 2018).

Similar to GS, models seeking the estimation of breeding 
values utilizing hyperspectral information also need phe-
notypic data (e.g., DMY) for model training. In our study 
case, the TRN size is economically highly relevant, since 
the acquisition of the phenotypic data requires to evaluate 
the candidates in GY-plots and DMY-plots separately under 
the conditions of a dual-purpose breeding program. The 
positive relationship between GS accuracy and TRN size is 
widely known (VanRaden et al. 2009). However, a broader 
TRN represents an increase in breeding costs. Thus, efficient 
breeding programs would benefit from reduced TRN while 
maintaining, or at least minimizing the loss of prediction 
accuracy. Approaches to enable the highest accuracy for a 
reduced TRN by integrating phenotypic and hyperspectral 
information to GS are, therefore, highly relevant for deliver-
ing high-yielding DMY varieties.

The aim of the present study was to test these approaches 
within the same breeding population by evaluating a set of 
274 elite rye lines as a testcross series in multi-environment 
field trials on a phenotypic, genotypic, and hyperspectral 
level. In particular, the objectives were (1) to identify the 
most relevant spectral regions to DMY prediction in rye, (2) 
to integrate the different sources of information into multi-
kernel and bivariate models for leveraging selection gain of 
DMY in rye, and (3) to compare prediction ability of models 
across different TRN sizes.

Materials and methods

Plant materials and field experiments

The plant materials and field experiments analyzed in the 
present study are described in detail in Galán et al. (2020). 
In short, a total of 264 recombinant inbred lines (RILs) of 
generation  S4 (i.e., lines after continued self-fertilization of 
single plants for four consecutive years) were derived from 
ten diverse parental lines of the Petkus (seed parent) gene 
pool following a single round-robin design (Verhoeven et al. 
2006). In practical plant breeding, these parental lines rep-
resent elite breeding material, since in contrast to a diverse 
panel of genetic resources, they were obtained after several 
selection cycles for line per se performance and general com-
bining ability (GCA). Testcross seed was produced from the 
cross of these 264 RILs and their ten parental components 

with a single-cross tester from the opposite (pollinator) 
gene pool. The obtained 274 genotypes, thus, correspond 
to three-way hybrids, (A· B) × C. They were analyzed for 
their dry matter yield (DMY) and plant height (PH) in two 
trials with a size of 130 and 134 entries, respectively, laid 
out as resolvable incomplete block designs (α-lattice design) 
with two replicates. These field trials were grown adjacent to 
each other and conducted in 2017 and 2018 at each of four 
environmentally contrasting locations in Northern Germany 
(Suppl. Table 1), thus comprising eight environments (loca-
tion–year combinations). Plots were harvested by a com-
mercial plot chopper at late milk stage (BBCH 77; Meier 
1997) to get the respective yield per plot as fresh matter 
yield (FMY, dt ha −1). For DMY (dt ha −1) determination, 
representative samples of about 1000 g were weighted from 
each plot and oven-dried at 110 °C till a constant weight 
was reached. Dry matter content (DMC) in percentage was 
determined from weight differences of the samples. DMY 
per plot was estimated as DMY = FMY × DMC/100. Also, 
PH (cm) was recorded at each plot.

Hyperspectral data

Hyperspectral data consisting of 400 bands ranging from 
410 to 993 nm were obtained in all environments and for all 
genotypes by an unmanned aerial vehicle (UAV; Camflight 
FX8HL, Sandnes, Norway) that was fitted with a hyperspec-
tral camera (HySpex Mjolnir V-1240, Skedsmokorset, Nor-
way) as described previously in detail Galán et al. (2020). 
Reflectance data were recorded after flowering (i.e., during 
the grain filling stage) at two flight dates in each environ-
ment, except for location Bernburg in 2017 (BBG 2017) 
where only one flight was conducted (Suppl. Table 1). On 
each flight date, the UAV quadcopter flew at about 25 m 
above plots, around solar noontime. Each plot was demar-
cated on the obtained images by a polygon, provided by digi-
tal geographic information system (GIS) field plans. Raw 
data were radiometrically calibrated (HySpex PostProces-
sor Version 1.2). This is a hyperspectral standard procedure 
(Adão et al. 2017) to convert the arbitrary digital numbers 
to values, which are proportional to the International System 
of Units (SI) unit W/sr nm  m2 (HySpex Mjolnir‐1024 User’s 
Manual). Coefficients of incident sunlight were captured by 
placing a 70-by-150 cm wooden board painted gray in the 
center of the field and using it as a reference to account for 
different irradiance conditions at each data collection time. 
The chosen gray panel reflects 60% of incident sun light, 
minimizing the risk of oversaturation of the hyperspectral 
sensor under varying sunlight conditions. The spectrum 
from the gray reflection target was assumed to represent the 
maximal reflection for each wavelength derived from sun-
light. Normalized hyperspectral data (NormHyp) were then 
estimated based on this spectrum according to the formula 
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Normhyp = Hyperspectral reflectance/Gray panel spectrum. 
Further, hyperspectral imaging data were orthorectified and 
georeferenced via the PARGE Software (ReSe Applications 
LLC, Wil, Switzerland).

Finally, all data points per each wavelength within each 
polygon were spatially averaged, resulting in one spectrum 
per plot. Consequently, each plot contains a single value 
for each wavelength in the studied spectrum. A tabular data 
frame was constructed, including the computed reflectance 
values of all bands.

Genotypic data

All 274 genotypes (264 RILs and their ten parental compo-
nents) were genotyped with an Illumina INFINIUM chip 
with 9,963 single-nucleotide polymorphisms (SNPs) assays 
(KWS SAAT SE & Co. KG, Einbeck, Germany). The SNPs 
of this assay are partially overlapping with the 5 k-SNP assay 
of Martis et al. (2013) and the 600 k-SNP assay of Bauer 
et al. (2017), whereof 3017 markers have been previously 
mapped by Bauer et al. (2017). SNPs showing more than 
10% of missing values or a minor allele frequency < 0.05 
were excluded. Imputation of the missing values in the 
remaining set of SNPs was performed with Linkimpute 
(Money et al. 2015). After imputation, data were filtered 
again for low minor allele frequency (< 0.05). Thus, 6420 
markers were retained for subsequent analyses.

Phenotypic data analysis

Within and across environments, phenotypic data (i.e., DMY 
and PH) were analyzed by different mixed models to obtain 
variance components and BLUEs (best linear unbiased esti-
mators) of genotypes for later use in prediction modeling.

A combined analysis across locations and years was con-
ducted by applying the following mixed model:

where � denotes the observed genotype performance, G the 
genotypes,L the locations, Y  the years, T  the trials within 
environments ENV (equivalent to year–location combina-
tions), R the replicates within trials, B the blocks within 
replicates, and e the error associated with the observation 
� . Error, trial, block, and replicate variances were assumed 
heterogeneous among environments. In model (1), the dot 
operator (·) specifies crossed effects (A·B) and fixed and 
random terms are separated by a colon (:), with fixed terms 
appearing first (Piepho et al. 2003). Variance components 
and pairwise variances of genotype mean (BLUEs) differ-
ences (needed for heritability estimation) were estimated 

(1)
� = G ∶ L + Y

+ L ⋅ G + Y ⋅ G + Y ⋅ L + L ⋅ Y ⋅ G

+ ENV ⋅ T + ENV ⋅ T ⋅ R + ENV ⋅ T ⋅ R ⋅ B + e

by restricted maximum likelihood (REML) for all random 
effects in model (1). This also holds for estimation of the 
genotypic variance ( �2

g
 ), which required an additional analy-

sis fitting the above model with random genotypic effects. 
Significance of variance component estimates was tested by 
model comparisons using likelihood ratio tests (Stram and 
Lee 1994).

BLUEs of genotypes were also analyzed within environ-
ments by the following mixed model:

This model (2) differs from the first model (1) only in 
dropping the year and location main effects and correspond-
ing interactions with genotypes. Variance components for sin-
gle environments were estimated as described previously for 
model (1). Phenotypic outliers were tested for DMY and PH 
based on the Bonferroni–Holm test (method “M4r”; Bernal-
Vasquez et al. 2016). Plots flagged as outliers were excluded 
from the analysis. Hyperspectral information was excluded 
from plots flagged as an outlier for DMY.

Three‑stage analysis for DMY prediction

To reduce computing cost, prediction ability of DMY based on 
different information sources was conducted by a three-stage 
procedure (Piepho et al. 2012), where in the first two stages, 
hyperspectral data were analyzed across dates and environ-
ments to obtain BLUEs per genotype, which were then incor-
porated into DMY prediction models in the last stage.

First‑stage models

In the first stage, hyperspectral bands were adjusted across 
dates per environment according to the model

where � is the observed band value, G the genotypes, D the 
measurement dates, T  the trials, R the replicates within tri-
als, B the blocks within replicates, and e the error associ-
ated with the observation � . Errors of different measurement 
dates on the same plot are correlated; therefore, a correla-
tion structure (“Compound Symmetry”) was assumed for e 
as described in Piepho et al. (2004). This model was used 
here because there were only two measurement dates per 
environment. The random effects for trials, replicates, and 
blocks also imply a compound symmetry variance–covari-
ance structure for repeated observations on these units. 
For BLUEs estimation, all factors included in model (1) 
except G were considered as random. For single bands in 
each flight date (“first” and “second”), the random effects 

(2)� = G ∶ T + T ⋅ R + T ⋅ R ⋅ B + e

(3)
� = G ∶ D + D ⋅ G

+ T + T ⋅ R + T ⋅ R ⋅ B

+ D ⋅ T + D ⋅ T ⋅ R + D ⋅ T ⋅ R ⋅ B + e



3005Theoretical and Applied Genetics (2020) 133:3001–3015 

1 3

of the date, including the corresponding interaction terms, 
were excluded from model (3). To allow a fair compari-
son between across and within flight dates, data collected 
in BBG (2017), where only one flight was conducted, were 
included in both single-date and across-dates analyses.

Second‑stage models

In the second stage, variance components and BLUEs per 
genotypes were estimated across environments following 
the model

where � is the adjusted genotype mean (BLUEs) from the 
first stage for the band value, G and ENV denote genotypes 
and environments, respectively, and e is the error associated 
with the observation � . When adjusted means from the first 
stage are forwarded to second-stage models, the incorpora-
tion of a weighting method is preferable (Möhring and Pie-
pho 2009). Means were therefore weighted by the diagonal 
elements of the inverse of their variance–covariance matrix 
calculated in the first stage as proposed by Smith et al. 
(2001). For hyperspectral data, estimates of variance com-
ponents, pairwise variances of genotype mean differences 
(BLUEs) as well as significance tests of variance compo-
nents were computed as for the phenotypic data. The syntax 
of models (1), (2), (3), and (4) is also compatible.

At this stage, heritability ( h2 ) was estimated for DMY, 
PH, and each band for single and for combined flight dates 
across environments as (Piepho and Möhring 2007)

where v is the mean variance of a difference between two 
adjusted genotype means (BLUEs) derived from model (1) 
or from model (4) for phenotypic and hyperspectral data, 
respectively. All statistical analyses were performed within 
the R-environment v. 3.4.4 (R Core Team 2018). BLUEs 
of genotypes were calculated with the software package 
ASReml-R v. 3.0 (Gilmour et al. 2009).

Third‑stage models

In the third stage, the obtained phenotypic and hyperspec-
tral BLUEs from model (1 or 2) and (3 or 4), respectively, 
were used for fitting several models (described in Table 1) 
for predicting DMY, including genetic, hyperspectral, and 
phenotypic data. A weighting method was applied also on 
this stage as described before, with weights derived from 
models (1) or (2).

(4)� = G ∶ ENV + G ⋅ ENV + e

(5)h2 =
�2
g

�2
g
+

v

2

The predictive power of these models was assessed 
in two different scenarios: (S1) across the series of eight 
environments by cross-validation (CV) and (S2) by fit-
ting prediction models with data collected on a variable 
number of environments (E = 1,2,…,7), while one envi-
ronment not included in E was used for model validation. 
Coefficients of phenotypic correlation r (Pearson’s coef-
ficients of correlation) between DMY and all other traits 
were calculated from the BLUEs of genotypes from model 
(1) or (2) for prediction scenarios S1 or S2, respectively.

Third-stage models were single-kernel and multi-kernel 
prediction models, providing best linear unbiased predic-
tions (BLUP) of genotypic effects of DMY, which differ 
in the information used to model the random genotypic 
effect. Single-kernel prediction models were fitted with 
genetic (genomic BLUP, GBLUP) or hyperspectral (hyper-
spectral BLUP, HBLUP) information with n = 274 indi-
viduals, based on m SNP markers or b bands, respectively. 
Thus, genomic estimated breeding values (GEBVs) were 
derived from the GBLUP model, whereas hyperspectral 
estimated breeding values (HEBVs) were obtained from 
the HBLUP model.

The two models were defined as

where y is the n-dimensional vector of BLUEs of DMY 
obtained from model (1) or model (2) for prediction sce-
narios S1 or S2, respectively, � is the overall mean, 1n an 
n-dimensional vector of ones, gK and gH are n-dimensional 
vectors of random genotypic effects, and e is the n-dimen-
sional vector of residuals. The vector of residuals e asso-
ciated with y was assumed as normally distributed with 
zero mean and variance R [ e ~ N (0, R)]. R is defined as a 
diagonal matrix with diagonal elements equivalent to the 
inverses of the diagonal elements of inverse of the origi-
nal variance–covariance matrix of the means adjusted on 

(6)GBLUP ∶ y = �1n + gK + e,

(7)HBLUP ∶ y = �1n + gH + e,

Table 1  Overview over the models used

Model Integrated variables

Single-kernel models
 GBLUP Genotypic data
 HBLUP Hyperspectral data

Multi-kernel model
 G + H Genotypic + hyperspectral data

Bivariate models
 Bivariate_G Genotypic data + plant height
 Bivariate_H Hyperspectral data + plant height
 Bivariate_G + H Genotypic + hyperspectral data + plant height
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the second stage of this analysis (Smith et al. 2001). When 
means adjusted in the second stage are forwarded to third-
stage models, the incorporation of a weighting method was 
performed as described before.

For GBLUP, the random genetic values were estimated as 
gK ~ N (0, G �2

g
 ) where �2

g
 is the genetic variance and G the 

genomic additive relationship matrix (Habier et al. 2013). 
For estimating genotypic values based on hyperspectral data, 
the random genetic values in model 7 were calculated as 
gH ~ N (0, H �2

b
 ) where �2

b
 is the hyperspectral band variance 

and H a hyperspectral reflectance-based relationship matrix.
G was estimated with the synbreed package (Wimmer 

et al. 2012) in R following the first method of VanRaden 
(VanRaden 2008) as G =

ZZ�

2
∑

pi(1−pi)
 , where Z = M-P, M is the 

n × m marker matrix of alleles coded as 0  (A1A1), 1  (A1A2), 
or 2  (A2A2) for the nth individual at the mth SNP position, 
P contains a n × m matrix of allele frequencies multiplied by 
2, pi is the allele frequency of the ith allele.

H was also calculated for the n = 274 genotypes by incor-
porating the BLUEs for each band derived from model (4) 
or (3) for prediction scenarios S1 and S2, respectively. 
These matrices were of the form H = DD� , where D is a 
n × b hyperspectral matrix of the standardized BLUEs of the 
bands. Standardization was done by subtracting the arith-
metic mean and dividing by the standard deviation of all 
BLUEs. For H estimation, different numbers of bands were 
considered: Hall is derived from the total number of bands 
available (b = 400), whereas Hvsel (b = 32) and Hh2 (b = 216) 
are based on a reduced set of bands. Bands included in Hvsel 
were selected as described in the next sections, while Hh2 
is based only on bands with  h2 larger than the mean value 
observed for all bands ( h2 > 0.72).

Finally, a multi-kernel prediction model combining 
genetic and hyperspectral information was fitted:

where all factors listed are defined as above in models (6) 
and (7). The random vectors gK and gH in (8) are considered 
as independent of each other and normally distributed. Here, 
the H matrix assumes the form of Hvsel. For exploring the 
benefits of incorporating PH as a predictor, model (9) was 
extended to a bivariate model (Bivariate_G + H) as

where y1 is a vector of BLUEs for DMY, y2 is a vector of 
BLUEs for PH, with y1 and y2 incorporating BLUEs derived 
from model (1) for prediction scenario S1, �1 is the overall 
mean for DMY, �2 is the overall mean for PH,  gk1 and gH1 
are n-dimensional vectors of random effects for DMY, gK2 
and gH2

 are n-dimensional vectors of random effects for PH, 
e1 is the n-dimensional vector of residuals for DMY, and e2 

(8)y = �1n + gK + gH + e,

(9)
[
y1
y2

]
=

[
1n0n
0n1n

][
�1

�2

]
+

[
gK1
gK2

]
+

[
gH1

gH2

]
+

[
e
1

e
2

]

is the n-dimensional vector of residuals for PH. The random 
vectors are considered as independent of each other and nor-

mal ly  d i s t r ibu ted  accord ing  to  
[
gK1
gK2

]
 ~  N(0 , 

CK ⊗ G),
[
gH1

gH2

]
 ~ N(0, CH ⊗ H), and 

[
e1
e2

]
 ~ N(0, R ⊗ I), 

where G is defined as in model (4), ⊗ is the Kronecker prod-
uct (direct product) operator, CK and CH are the 2 × 2 vari-
ance–covariance matrices for the breeding values of the two 
traits, H is defined as in model (7) and adopts the form of 
Hvsel, I is an identity matrix, and R is the residual vari-
ance–covariance matrix for DMY and PH. The covariance 
matrices CK, CH, and R were considered unstructured. At 
this stage, model (9) was fitted without a weighting method 
to reduce computing costs. Bivariate_G + H aims to predict 
DMY based on PH as well as hyperspectral and genetic data. 
For addressing the impact of PH on the predictive power of 
bivariate models based only on hyperspectral (Bivariate_H) 
or genetic (Bivariate_G) data, two additional bivariate mod-
els were analyzed. These two models are a reduced version 
of model (9). For models Bivariate_H and Bivariate_G, the 
terms.[

gK1
gK2

]
 or 

[
gH1

gH2

]
 were dropped, respectively. All three-

stage prediction models were fit using the R package "som-
mer" (Covarrubias-Pazaran 2016).

Feature selection for the hyperspectral data

Multicollinearity in regression equations is expected when 
numerous highly intercorrelated hyperspectral variables 
are incorporated (Dunagan et  al. 2007). To overcome 
this, two variable selection methods were used and imple-
mented in the GlmNet R package (Friedman et al. 2010). 
Since weighted and unweighted variable selection proce-
dures yielded similar results, we performed the following 
methods without the incorporation of a weighting factor.

The least absolute shrinkage and selection operator 
(Lasso; Tibshirani 1996) is a well-known and powerful 
regression method for regularization and variable selec-
tion for minimizing the prediction error. Applying the l1 
penalty sets some of the regression coefficients to zero, 
while others are shrunk toward zero yielding a sparse solu-
tion. The Lasso should, however, be used with care in the 
case of sets of highly correlated variables since it tends to 
arbitrarily select one variable and overlook the rest (Fried-
man et al. 2010).

The elastic net (EN; Zou and Hastie 2005) was developed 
to overcome the restrictions of Lasso. It combines both l1 
(Lasso) and l2 (Ridge Regression, Hoerl and Kennard 1970) 
penalization terms to obtain a more stable solution to highly 
correlated predictors.
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The estimators ( 𝛽  ) for Lasso and EN can be calculated 
from the following penalized equation (Wimmer et al. 2013):

where � is defined as in model (4), X is a n × b matrix of 
bands; � is the vector of the regression coefficients of the 
bands; Pen(�) is the penalization term, which is defined by 
the quadratic l2 norm for RR as Pen(�) = � ‖� ‖2

2
= �

∑p

j=1
�2
j
  

,  b y  t h e  l1  n o r m  f o r  L a s s o  w i t h 
Pen(�) = � ‖� ‖1 = �

∑p

j=1

���� j
��� , and for EN by combining 

both as Pen(�) = �1�1 + �2�
2
2
 . For EN, the procedure can 

be described as a penalized least square method with 
� =

�2

�1+�2
 ; thus, Eq. (10) is equivalent to the optimization 

p r o b l e m  𝜷 =
argmin

𝜷
‖𝜸 − X𝜷 ‖2

2
 ,  s u b j e c t  t o 

P�(�) = (1 − �)�1 + ��2
2
≤ s for some s.

For fitting and comparing the Lasso and EN models, the 
optimal values for the tuning parameter ( � ≥ 0 ), which con-
trol the degree of shrinkage of the estimator, were obtained 
by tenfold cross-validation with the function cv.glmnet of 
the GlmNet R package (Friedman et al. 2010) with default 
settings. In addition, for the defined optimal � , the best value 
for � for the EN was estimated outside the GlmNet package 
by a tenfold cross-validation.

Validation of variable selection procedures 
and proposed prediction models

In the present study, two prediction scenarios were consid-
ered, namely S1 and S2. A fivefold cross-validation (CV) 
was used to assess the predictive ability of models in S1, 
where models were fitted to fourfold (~ 219 genotypes), and 
model error was estimated when predicting the remaining 
validation fold (~ 55 genotypes). This was conducted for all 
five possible validation folds, and the obtained estimates 
of prediction error were combined. This procedure was 
repeated 100 times (i.e., 500 cross-validations), each repeti-
tion with a random composition of folds to assess CV error.

To investigate the effect of the TRN size on the predic-
tion ability of all models in scenario S1, TRN was sampled 
according to a defined size (i.e., 55, 110, 165, or 220 individ-
uals) and the validation set (VAL) consisted on the remain-
ing genotypes. As described before, models were fitted to the 
TRN and model error was determined when predicting the 
VAL. This process, including the random sampling of the 
TRN, was repeated 500 times. For the larger TRN size, the 
prediction models were further evaluated. This procedure 
consisted of extracting, at each CV iteration, the predicted 
best yielding genotypes ranked above certain thresholds (10, 
20, 30, and 40%). Then, the performance of the selected 

(10)𝜷 =
argmin

𝜷
‖𝜸 − X𝜷 ‖2

2
+ Pen(�)

fraction was assessed in terms of its observed DMY and PH 
according to the BLUEs derived from model (1). Finally, 
the prediction ability of each model for each selected frac-
tion was estimated as described below (see suppl. Table S4).

In scenario S2, HBLUP fitted with Hall was tested across 
all possible combinations between E and validation environ-
ments. Also, the environmental distinctiveness was assessed 
by the discriminant analysis of principal components DAPC 
(Jombart et al. 2010) using the R package adegenet (Jombart 
2008) based on hyperspectral BLUEs derived from model 
(3).

For all validation approaches, prediction ability for DMY 
was assessed as the correlation r between estimated breed-
ing values and the observed BLUEs derived from model 
(1) for S1 and from model (2) for S2. Predictive abilities of 
bivariate models were estimated based on PH, hyperspec-
tral, and genetic data (for Bivariate_H and Bivariate_G, only 
the corresponding data were included), whereas DMY was 
additionally used only for model training. Mean prediction 
abilities were compared according to Tukey’s honestly sig-
nificant difference (HSD) test (p < 0.01) with the R package 
multcomp (Hothorn et al. 2016). For Lasso and EN, each 
predictor (band), whose regression coefficient was not set 
to zero ( 𝛽 ≠ 0 ), was extracted and saved in a tabular form. 
Across variable selection runs, bands retaining > 40% of 
the time were considered as selected (recovery rate). The 
regularization method with the highest prediction ability 
based on the smallest number of selected bands was consid-
ered as the best procedure for reducing multicollinearity in 
the hyperspectral data. For Hvsel estimation, selected bands 
derived from the best regularization scheme were used.

Results

In the present study, hyperspectral data were collected by 
two different flights performed after the heading stage, 
which were analyzed both individually and jointly. For all 
the issues under analysis, similar trends with no major con-
tradictions could be observed, regardless of the number of 
flights considered. Therefore, the following sections are 
based on the joint analysis of both flight dates. The main 
results of the adjustment of individual flights can be found 
in the supplementary files (Suppl. Fig. S2, Suppl. Fig. S5, 
Suppl. Table S3).

Heritability and correlation estimates

Across eight environments and two flight dates, the mean 
heritability of the reflectance data was moderate ( h2 = 0.72, 
Fig. 1). VS bands had mostly higher estimates than those 
from the IR. Generally, h2 decreased in the VS with higher 
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wavelength, while the opposite was observed for the IR. 
Estimates were highly variable among the whole spec-
trum (from 0.31 to 0.92), especially in the red edge region 
(~ 720–750 nm), wherein about 30 nm, h2 dropped from 0.73 
(720 nm) to 0.32 (761 nm). Also, DMY and PH were ana-
lyzed in the present study and showed moderate ( h2 = 0.50 
for DMY) to high ( h2 = 0.82 for PH) estimates (Fig. 2).

The magnitudes of the correlations involving DMY were 
higher for PH ( r = 0.57, p < 0.001, Fig. 2) than for each of 
the 400 bands. Between DMY and the hyperspectral data, 
r ranged from −0.19 for bands around 930 to 0.29 nm for 
bands around 750 nm. Estimates ≥ |0.12| were significant 
at the 5% probability level. The mean correlation among 
bands in the VS was slightly higher than the observed for the 
IR (0.17 and 0.11, respectively). On the other hand, bands 
were highly intercorrelated. Bands within the VS as well as 
within the IR were highly positively intercorrelated (Suppl. 
Fig. S1). In contrast, correlations between both regions 
were highly negative. Interestingly, r was very low between 
a small group of bands from the red edge region and the rest 
of the spectrum.

Feature selection for the hyperspectral reflectance 
data

The two regularization methods (Lasso and EN) applied to 
the hyperspectral data performed similarly when predicting 
DMY (r = 0.54, Suppl. Fig. S3). However, they were based 
on a different number of selected variables (Suppl. Fig. S4). 
From the total 400 available bands, only 32 (~ 8%, Suppl. 
Table S2) and 54 (~ 13%) bands were selected by Lasso and 
EN, respectively. EN selected more bands than Lasso; how-
ever, all chosen bands by Lasso were also included in the EN 
selection (Suppl. Fig. S4).Thus, Lasso emerges as the pro-
cedure of choice for the present study because it yielded the 
same predictive power as EN but is based on a simpler pre-
diction model. From the 32 selected bands by Lasso, 26 cor-
responded to the IR and only six to the VS (Fig. 1). These 26 
bands were mostly located at both ends of IR (700–780 nm 
and 925–993 nm). Selected bands for the individual flight 
dates can be also found in Suppl. Fig. S4.

Fig. 1  Heritability estimates (black line) for the hyperspectral bands, 
phenotypic correlations (r, green line) between hyperspectral bands 
and dry matter yield, and recovery rate (%) of hyperspectral bands 
after the least absolute shrinkage and selection operator (Lasso, 
gray-red heatmap) for 274 winter rye hybrids assessed in eight 

environments and two flight dates. The mean heritability across all 
wavelengths is denoted by the dashed black line. Correlation values 
≥ |0.12| are significant (p < 0.05) as shown by the gray dotted lines. 
Selected hyperspectral bands (recovery rate > 40%) are indicated by 
the gray triangles (Lasso variable selection)
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Prediction abilities of models

Two key factors largely affecting the accuracy of prediction 
models based on reflectance data were investigated, namely 
the composition of the H relationship matrix and the TRN 
size. For addressing the first factor affecting HBLUP pre-
dictive power, three HBLUP models based on dissimilar 
H relationship matrices (Hall, Hh2, and Hvsel) were evalu-
ated across the series of environments (Fig. 3, Suppl. Fig. 
S5). Thus, models differed in their number and composi-
tion of incorporated bands. In terms of prediction ability, 
the composition of H was highly relevant. Across environ-
ments, models incorporating all available bands ( r = 0.54) or 
only bands selected by Lasso ( r = 0.59) were considerably 
more accurate than models based only on bands with herit-
abilities > 0.72 ( r = 0.48). For scenario S1, HBLUP models 
based on Hall and Hh2 were therefore discarded and hereafter 
HBLUP models are all based on Hvsel.

For addressing the second factor (i.e., the TRN size), 
the performance of genotypes in scenarios S1 and S2 was 
predicted based on TRN of increased size. In S1, the pre-
diction ability of proposed single-kernel, multi-kernel, and 
bivariate models (Table 1) was assessed with variable TRN 
sizes across environments (Table 2). The TRN sizes evalu-
ated ranged from 55 (~ 20%) to 220 individuals (~ 80%). 
In general, the larger the TRN size, the higher the predic-
tion ability of all models, and the lower their variance. The 
Bivariate_G + H model showed the highest prediction abil-
ity across TRN sizes, followed by the Bivariate_G model, 
the multi-kernel prediction model, the Bivariate_H model, 
and the single-kernel models (HBLUP and GBLUP). On 
the other hand, Bivariate_G + H was associated with the 
highest variability in reduced TRN sizes. This is in par-
ticular observable in Suppl. Fig. S6, where this model was 
compared with single-kernel and multi-kernel models. The 
model Bivariate_G + H estimates breeding values of geno-
types based on PH, genotypic, and hyperspectral data, while 
the multi-kernel model does not include PH. For the smaller 
TRN size, the former showed a predictive ability of 0.56, 
while the latter yielded a predictive ability of 0.46. For the 
largest TRN size, their prediction ability was 0.75 and 0.71, 
respectively. Interestingly, across different selection inten-
sities, the three bivariate models consistently selected the 
taller genotypes, which were not always associated with the 
highest DMY. In contrast, the multi-kernel model selected 
relatively shorter genotypes with an acceptable yield (Supp. 
Table S4). Both single-kernel models performed similarly 
with larger TRN sizes. For example, for TRN size of 80%, 
r was close to 0.60. On the other hand, HBLUP was more 

Fig. 2  Histograms of dry matter yield (DMY) and plant height (PH) 
as well as the phenotypic correlation between both traits, determined 
for 274 winter rye hybrids assessed in eight environments. h2 shows 
the heritability estimates of both traits. ***Significant at the 0.001 
probability level

Fig. 3  Prediction ability for dry matter yield of hyperspectral best 
linear unbiased predictor model (HBLUP) based on different H rela-
tionship matrices, including all available 400 bands (Hall), bands with 
heritability > 0.72, (Hh2), and only selected bands by Lasso (Hvsel) 
for 274 winter rye hybrids. Mean values are shown above each box 
plot and by gray triangles and are significantly different when headed 
by no letter in common (Tukey’s honestly significant difference test; 
α = 0.01%). The dashed line shows the mean value across models
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predictively accurate than GBLUP based on smaller TRN 
sizes. For a TRN size of 55, HBLUP ( r = 0.42) surpassed 
GBLUP ( r = 0.32) by about 25%. A comparison among 

prediction models based on single flight data under valida-
tion scenario S1 is shown in Suppl. Table S3.

Table 2  Mean prediction 
abilities and standard errors for 
dry matter yield of six models 
across different training set 
sizes for 274 winter rye hybrids 
assessed in eight environments 
across two flight dates

a See Table 1 for more information about the listed models
b Within a column, means with no letter in common are significantly different (Tukey’s honestly significant 
difference test; α = 0.01%)

Modela Training set  sizeb

20 (%) 40 (%) 60 (%) 80 (%)

GBLUP 0.32a ± 0.002 0.44a ± 0.002 0.54a ± 0.002 0.60a ± 0.003
HBLUP 0.42b ± 0.004 0.51b ± 0.002 0.56b ± 0.002 0.59a ± 0.003
G + H 0.46c ± 0.003 0.59d ± 0.002 0.66d ± 0.002 0.71d ± 0.003
Bivariate_G 0.54e ± 0.004 0.61e ± 0.002 0.66d ± 0.002 0.69c ± 0.003
Bivariate_H 0.50d ± 0.005 0.55c ± 0.004 0.60c ± 0.002 0.62b ± 0.003
Bivariate_G + H 0.56f ± 0.007 0.65f ± 0.004 0.71e ± 0.003 0.75e ± 0.002

Fig. 4  Prediction ability for dry 
matter yield of the hyperspectral 
best linear unbiased predictor 
model (HBLUP) on each envi-
ronment with increased number 
of environments included in 
the training set (TRN). Models 
were tested under validation 
scenario S2
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In S2, predictions were based on HBLUP models fitted 
with all bands (Hall) collected in a variable number of envi-
ronments. These environments were highly diverse accord-
ing to a discriminant analysis (DAPC) based on reflectance 
data (Suppl. Fig. S7). Locations from the same year were 
mostly clustered together. The PET (2018) environment, on 
the other hand, was distinct to both clusters. Overall, the pre-
diction of DMY in individual environments was improved 
by increased TRN size (Fig. 4). Thus, the higher the number 
of environments included in the TRN, the more accurate the 
prediction. However, the prediction ability was highly vari-
able across environments. For TRN including only one envi-
ronment, WOH (2018) showed the highest prediction ability 
( r = 0.29), while BBG (2017) showed the lowest ( r = 0.13). 
When seven environments were considered as TRN, DMY 
had the highest prediction ability in PRI (2018) ( r = 0.36), 
while it had the smallest in PET (2018) ( r = 0.06).

Discussion

The high versatility of rye as a dual-use crop (Miedaner 
and Laidig 2019) contrasts with traditional breeding 
programs, which are mainly driven by GY (Geiger and 
Miedaner 2009). Thus, the improvement of DMY is often 
pushed into later selection stages. To overcome this situ-
ation, an effective indirect estimation of DMY based on 
data collected on GY plots would be needed. Thus, in the 
present study, single-kernel, multi-kernel, and bivariate 
models based on different information sources collected 
within the same breeding population were compared 
regarding their DMY prediction ability across different 
validation approaches.

Impact of heritability estimates of bands on HBLUP 
models

Across the spectrum, the magnitude and variability of h2 
estimates were higher than those of the correlation ( r ) 
between bands and DMY for combined (Fig. 1) and sin-
gle flight dates (Suppl. Fig. S2). Highly variable h2 for 
bands were also reported in wheat (Krause et al. 2019; 
Montesinos-López et al. 2017). We observed that h2 and 
r showed the greatest variability and the lower values 
within the IR. HBLUP models exploiting all available 
bands were substantially more precise than those fitted 
only with highly heritable bands ( h2 > 0.72). This seems 
counterintuitive from a breeding perspective since, accord-
ing to quantitative-genetic theory (Falconer and Mackay 
1996), highly heritable secondary traits correlated with the 
feature of interest are preferred for indirect selection of the 
target trait. A possible explanation of the low performance 

observed by models based on bands with h2 > 0.72 is that 
the proposed threshold excluded almost all the bands 
belonging to IR. Despite their relatively lower mean r 
with DMY, based on our results, this spectral region still 
captures information closely related to DMY, since bands 
around 750 nm had the highest correlation with DMY 
(Fig. 1). The magnitudes of these correlations were rather 
low but significant (< 0.29; p < 0.05) and are compara-
ble to those stated for biomass in wheat by Hansen and 
Schjoerring (2003).Thus, the exclusion of bands from the 
IR because of their relatively lower h2 deteriorated the 
predictive power of HBLUP models. This is in agreement 
with Montesinos-López et al. (2017), who found that GY 
prediction in wheat was not improved by removing bands 
with lower h2.

Reduction in the dimensionality of hyperspectral 
data

High-throughput phenotyping is a promising tool for 
overcoming the phenotyping bottleneck in modern plant 
breeding (Araus and Cairns 2014). On the one hand, the 
use of hyperspectral sensors can substantially increase the 
amount of data available for dissecting the genetics behind 
the trait of interest. On the other hand, the application of 
this technology on multi-environmental trials is computa-
tionally and economically challenging.

The exploitation of a vast amount of hyperspectral data 
should be performed with caution, since the combination 
of a large number of predictors, each with small effects, 
can negatively influence the accuracy of regression models 
(Ogutu et al. 2012). The high multicollinearity found among 
contiguous bands (Suppl. Fig S1) suggests that performing 
variable selection could be beneficial. In this context, Lasso 
was a valuable tool for reducing the number of predictors 
incorporated into the HBLUP model. Also, with the constant 
development of high-resolution HTP sensors, the utility of 
feature selection procedures may be increased in proportion 
to the incorporation of broader spectral regions.

Informativeness of the VS and IR spectral regions

Use of HTP based on hyperspectral sensors can be time-con-
suming and resource-intensive although recent substantial 
improvements have occurred. Considerable overlaps were 
observed among specific bands highlighted by Lasso and 
EN in single and combined flight dates (Suppl. Fig. S4). 
Therefore, the reflectance data from these specific wave-
lengths may be of great interest to practical plant breed-
ers. Redirecting computational costs toward these selected 
regions could reduce the efforts in data management. By 
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this, the superiority of hyperspectral sensors in terms of data 
collection and calibration compared to cheaper devices cov-
ering fewer reflectance regions (e.g., RGB cameras, Araus 
and Cairns 2014) may be fully exploited in a less resource-
demanding manner.

In the present study, bands across the whole spectrum 
showed a significant correlation with DMY, with the IR 
displaying the highest correlation estimates (Fig. 1). Also, 
when the IR was excluded, the prediction ability of HBLUP 
substantially dropped as discussed above. The variable 
selection procedures applied have highlighted single bands 
located in the VS and the IR as highly informative for DMY 
prediction (Fig. 1, Suppl. Table S2, Suppl. Fig. S4). Nev-
ertheless, the majority of the selected bands were located 
within the IR. These findings suggest that all spectral regions 
contain information potentially useful for DMY prediction; 
however, IR may be more informative than of VS.

These findings also indicate that a reduction in predic-
tive power is expected if spectral fingerprints of genotypes 
are based on a reduced number of spectral regions. This 
is consistent with literature highlighting the importance of 
the VS and the IR in assessing essential plant parameters. 
The behavior of plants exposed to visible light has been 
widely investigated since a large proportion of this radia-
tion is absorbed by the pigments present in green tissues 
(Lichtenthaler 1996). For instance, bands within the blue 
(450–520 nm) and green (520–600 nm) channels were found 
to be sensitive to aboveground biomass in wheat (Wang et al. 
2017). In the transition from VS to IR, the so-called red 
edge, not only the highest correlation between bands and 
DMY was detected but also a relatively increased density 
of selected bands. The singularity of this region was also 
observed in the fact that it was correlated neither with VS 
nor with IR (Suppl. Fig. S1). Between 680–750 nm, the 
reflectivity of chlorophyll is sharply increased, a phenom-
enon that can be used to remotely assess plant health and 
growth (Seager et al. 2005) as well as chlorophyll concen-
trations (Filella and Penuelas 1994) and biomass at high 
canopy densities (Mutanga and Skidmore 2004). Similarly, 
the IR contains important information about physiological 
processes affecting biomass including chlorophylls and pho-
tosynthesis activity, as well as plant water status (Tucker 
1979). The present work included IR data up to ~ 1000 nm, 
which have been revealed as highly relevant for DMY pre-
diction. Considering that currently there are configurations 
that allow sensors to collect a broader IR spectrum, further 
research should focus on the benefits of deploying hyper-
spectral sensors capable of collecting additional reflectance 
data up to 2500 nm.

Improved prediction abilities by combining 
different sources of information

Under both validation procedures (S1 and S2), models were 
calibrated in a TRN of increased size. Overall, a positive 
correlation between the prediction abilities of models and 
TRN size was observed (Table 2, Fig. 4, Suppl. Fig. S6). 
The positive influence of TRN size in GS accuracy is well 
acknowledged in animal (VanRaden et al. 2009) and plant 
(Marulanda et al. 2015) breeding. Based on our results 
from the validation scenario S1, this trend also applies to 
HBLUP, multi-kernel, and bivariate models. Interestingly, 
the negative impact of reduced TRN was dissimilar across 
single-kernel models. While in larger TRN, GBLUP was 
more accurate than HBLUP, the opposite was observed in 
smaller TRN (Table 2, Suppl. Fig. S6). The reduction in the 
TRN size to a quarter (from 80 to 20%) represented a decay 
of about one-half and one-third in the prediction abilities of 
GBLUP and HBLUP, respectively. The predictive power of 
HBLUP was substantially higher than linear models fitted 
with VIs reported in a previous study (Galán et al. 2020). 
This is in complete agreement with Aguate et al. (2017) and 
Montesinos-López et al. (2017), who also found the supe-
riority of models based on whole-spectrum data instead of 
on VIs.

In the validation scenario S2, prediction abilities were 
lower than in S1, indicating that predicting the yield of 
genotypes in a new environment is challenging (Fig. 4). In 
the DAPC (Suppl. Fig. S7), environments within the same 
year were grouped, reflecting the strong influence of the year 
effect, not only on agronomic traits (Galán et al. 2020) but 
also in the hyperspectral data collected at each site. The envi-
ronmental conditions were very contrasting between 2017 
and 2018. In Germany, 2018 was a very dry year, especially 
on the light sandy soils where rye is usually grown, and our 
experiments were conducted, e.g., Petkus, which has a very 
light soil (Suppl. Table S1). In this context, the inclusion of 
the maximum number of environments in the TRN, leaving 
only one as a validation environment was beneficial. Under 
CV accounting for environmental sampling, Utz et al. (2000) 
also observed that the proportion of the genotypic variance 
explained by models was enhanced by the inclusion of more 
environments in the TRN, especially for moderate inherited 
traits such as GY and GY components. In our study, HBLUP 
performance was even smaller if the VAL was composed of 
an environment poorly correlated with the sites within the 
TRN. Since models in S2 borrow information from closely 
related environments, prediction of these low correlated 
environments following this scheme is not recommended.

These findings suggest that the incorporation of hyper-
spectral data to enhance DMY prediction in rye could 
improve breeding efficiency. First, if due to budget con-
straints, a larger TRN size is not affordable, HBLUP could 
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be a valid strategy to precisely predict DMY. Second, the 
higher prediction ability of multi-kernel and bivariate mod-
els indicates that the incorporation of reflectance data and 
agronomic traits like PH into GS routines has a synergetic 
effect, when these data are correlated with the target trait. 
These findings are consistent with Krause et al. (2019), who 
found that for predicting GY in wheat, single-kernel models 
fitted with genomic- or hyperspectral-derived relationship 
matrices yielded similar results but multi-kernel models 
integrating both matrices surpassed both.

However, our results suggested that the use of bivari-
ate models should be used with caution. On the one hand, 
they had the highest variability in small TRN. Under these 
circumstances, the sampling variability is substantially 
increased. Therefore, the advantage of bivariate over uni-
variate models is reduced. Thus, multivariate regression 
analysis is not recommended for small sample sizes. On the 
other hand, the positive correlation between PH and DMY 
(Fig. 2) suggests that these prediction models should be used 
with care because taller genotypes would tend to be favored 
in the selection as indeed observed in Suppl. Table S4. So, 
breeding for increased lodging resistance would be highly 
advisable since even small differences in PH of the selected 
genotypes will multiply when subsequent breeding cycles 
are contemplated.

It has to be considered that we estimated our prediction 
abilities within one larger population by fivefold cross-vali-
dation. Validation scenario S1 was fitted with environmen-
tally and genetically related data, representing a possible 
source of bias on the estimation of the predictive power 
of the models. Further research is needed to predict DMY 
across genetically different plant materials and/or different 
selection cycles, i.e., after recombination of selected entries. 
This would also include results from untested environments 
that might have a high impact on prediction ability, as shown 
in Fig. 4.

Conclusions

While the needs of sustainable renewable energy sources 
increase, the interest for high-yielding varieties to diversify 
maize-based cropping systems is boosted in proportion. To 
meet this demand, novel breeding strategies are needed to 
fully exploit the potential of rye as a biomass substrate. This 
study provided strong evidence that hyperspectral data can 
substantially improve the indirect selection of DMY within 
the same breeding population, thus enabling a cost-effective 
dual-purpose program using both DMY and GY as target 
traits. The reduction in data dimensionality could further 
enhance the prediction ability of models based on reflec-
tance data. Relationship matrices derived from HTP data 

could be utilized as an alternative to GS when molecular 
data are not available, especially under reduced TRN sizes. 
Additionally, they are a suitable complementary source of 
information to leverage the accuracy of genomic tools. The 
superiority of the bivariate model over the multi-kernel 
model indicates that agronomic traits correlated with DMY 
can further enhance the efficiency of selection. Similar to 
the comparison of model performances across different TRN 
sizes, it would be relevant for practical breeding to investi-
gate prediction ability across a varying degree of relatedness 
between the TRN and the VAL. Such analysis could assist 
breeders facing challenging prediction scenarios, including 
predicting new environments or novel lines that are unre-
lated to the training population.
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