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Abstract
Key message  Intracellular factors differentially affected enzyme activities of N assimilation in the roots of maize 
testcrosses where alanine aminotransferase and glutamate synthase were the main enzymes regulating the levels of 
glutamate.
Abstract  N is a key macronutrient for plant growth and development. Breeding maize with improved efficiency in N use 
could help reduce environmental contamination as well as increase profitability for the farmers. Quantitative trait loci (QTL) 
mapping of traits related to N metabolism in the root tissue was undertaken in a maize testcross mapping population grown 
in hydroponic cultures. N concentration was negatively correlated with root and total dry mass. Neither the enzyme activities 
nor metabolites were appreciably correlated between the root and leaf tissues. Repeatability measures for most of the enzymes 
were lower than for dry mass. Weak negative correlations between most of the enzymes and dry mass resulted likely from 
dilution and suggested the presence of excess of enzyme activities for maximal biomass production. Glutamate synthase and 
alanine aminotransferase each explained more variation in glutamate concentration than either aspartate aminotransferase or 
asparagine synthetase whereas glutamine synthetase was inconsequential. Twenty-six QTL were identified across all traits. 
QTL models explained 7–43% of the variance with no significant epistasis between the QTL. Thirteen candidate genes were 
identified underlying QTL within 1-LOD confidence intervals. All the candidate genes were located in trans configuration, 
unlinked or even on different chromosomes, relative to the known genomic positions of the corresponding structural genes. 
Our results have implications in improving NUE in maize and other crop plants.

Introduction

After hydrogen, carbon, and oxygen, nitrogen (N) is the most 
abundant element in plant tissues. Nearly all of it is derived 
from the synthetic fertilizers applied to the soil. Variable 
proportions of the applied soil N are lost to the environment 
by leaching and denitrification. Leached N flows into the 
streams and rivers, and eventually into the ocean, supporting 

algal growth. Excessive algal growth forms “dead zones”, 
for example, in the Gulf of Mexico, by depleting oxygen in 
the water, and thus asphyxiating life (Goolsby and Battaglin 
2000). Annual delivery of nitrate from the Mississippi river 
to the Gulf has nearly tripled in the last half century. The 
size of the dead zone of the Mississippi delta varies depend-
ing upon the frequency and the intensity of precipitation in 
the catchment area of the Mississippi river.

One approach to reduce N loss from the soil is to improve 
N use efficiency (NUE) of maize. NUE, which in cereals has 
been defined as the ratio of grain produced per unit of soil N, 
can be subdivided into two main components: N acquisition 
efficiency (total plant N/soil N) and N utilization efficiency 
(total grain yield/total plant N) (Moll et al. 1982; Dhugga 
and Waines 1989). A comprehensive understanding of N 
metabolism at the genetic level could provide new avenues 
to improve NUE in maize (Trucillo Silva et al. 2017).

The model pathway for N reduction and incorporation of 
reduced N into organic molecules has been well described 
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(Yemm and Folkes 1958; Lea et al. 1990; Lea and Miflin 
2010; Plett et al. 2016; Trucillo Silva et al. 2017) (Fig. 1). 
Nitrate is reduced to nitrite by nitrate reductase (NR) in the 
cytoplasm, followed by reduction of nitrite in the plastids to 
ammonium by nitrite reductase (NiR). Ammonium thus gen-
erated is coupled to glutamate by glutamine synthetase (GS). 
Another enzyme, glutamine-2-oxoglutarate aminotransferase 
(GOGAT) or glutamate synthase, then converts glutamine 
back to glutamate, producing an additional glutamate from 
2-oxoglutarate, thereby initiating the conversion of inorganic 
N into organic form. This pair of reactions is referred to as 
GS-GOGAT cycle. Asparagine synthase (ASN) produces 
asparagine and glutamate from glutamine and aspartate. 
Glutamate serves as an amino group donor for the forma-
tion of other amino acids, a reaction catalyzed by different 
amino transferases. For instance, alanine aminotransferase 
(AlaAT) catalyzes the amino group transfer to pyruvate to 
form 2-oxoglutarate and alanine, while aspartate aminotrans-
ferase (AspAT) forms 2-oxoglutarate and aspartate after 
transferring the amino group of glutamate to oxaloacetate. 
Following N assimilation, glutamate, asparagine, glutamine 
and other amino acids are transported via vasculature to the 
growing organs. Alternatively, they can be stored as vegeta-
tive storage proteins, which can aid plant growth during the 
periods of N deficiency (Dhugga et al. 2007).

Mapping quantitative trait loci (QTL) is a routine in plant 
genetic investigations and breeding programs. The procedure 
relies on differences among the trait means of genotypes at 
a marker locus (Bernardo 2010). The precision in the iden-
tification of a QTL is important for the success of further 
studies, for instance, identification of candidate genes and 
positional cloning (Remington et al. 2001). That precision in 
the estimation of the QTL position, referred to as resolution, 
varies depending on several factors, such as recombination 

frequency, marker density and population size (Yu et al. 
2011).

Much of the current commercial maize germplasm origi-
nates from seven progenitor lines, including B73 and Mo17 
(Mikel and Dudley 2006). Both inbred lines differ in their 
response to N fertilization (Balko and Russell 1980) and 
are parents of the IBM (intermated B73 × Mo17) mapping 
population (Lee et al. 2002). After ten rounds of random 
mating, 360 doubled haploid (DH) lines were generated 
from the IBMSyn10 population (Hussain et al. 2007), which 
had a higher-resolution for mapping that could be directly 
associated to the physical map established for the B73 inbred 
(http://www.maize​seque​nce.org).

Several studies have shown association between QTL and 
N-metabolism related enzymes (Bertin and Gallais 2001; 
Hirel et al. 2001; Limami et al. 2002; Zhang et al. 2010, 
2015; Liu et al. 2012; Trucillo Silva et al. 2017). We pre-
viously described the mapping of various enzymes of N 
metabolism in the leaf tissue of maize testcrosses (TCs) 
derived from the IBMSyn10-DH lines and an elite inbred, 
grown in hydroponics. In this study, we present the map-
ping of enzymes and metabolites related to N metabolism in 
the root tissue, and relate those observations to the preced-
ing study of N metabolism in the shoot tissue. This is the 
first QTL analysis for N-metabolism related enzymes and 
metabolites in maize roots, particularly in a TC population.

Materials and methods

Plant material

From the cross between IBMSyn10-DH lines and an elite 
inbred (PEI), property of DuPont Pioneer, 176 TC genotypes 
were generated and used in this investigation. The IBM-
Syn10-DH population consists of a set of DH lines derived 
from a population after ten generations of random mating 
from the cross between B73 × Mo17 (Hussain et al. 2007).

Experimental design

The same experimental design as described previously was 
used (Trucillo Silva et al. 2017). Each TC genotype was ger-
minated in autoclaved paper rolls and sterilized water, and 
subsequently grown under hydroponic conditions. Ten tanks 
(i.e., sets) containing appropriate growth media were planted 
with 264 seedlings per tank. In every set, 22 genotypes were 
grown, and each genotype was replicated 12 times. Two 
genotypes (B73 and Mo17 each crossed to the PEI) served 
as controls, and were included in every set and replication.

The growth media consisted of MgSO4·7H2O 0.5 mM, 
KH2PO4 0.5 mM, Fe-EDTA 0.1 mM, FeEDDHA 0.1 mM, 
Ca(NO3)2·4H2O 1.25  mM, KNO3 2.5  mM, Na(OH) 

Fig. 1   Enzymes and proteins involved in N-acquisition and assimi-
lation in C4 plants (created with Adobe Illustrator CS2). AlaAT and 
GOGAT each explained more variation in glutamate than AspAT 
and ASN. AlaAT alanine aminotransferase, ASN asparagine synthase, 
AspAT aspartate aminotransferase, GDH glutamate dehydrogenase, 
GOGAT​ glutamate synthase, GS glutamine synthetase, NR nitrate 
reductase, NiR nitrite reductase, PEPC phosphoenolpyruvate carbox-
ylase, PPDK pyruvate orthophosphate dikinase (adapted from Truci-
llo Silva et al. 2017)

http://www.maizesequence.org
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0.1 mM, and 0.4 L of trace elements (25 mM H3BO3, 2 mM 
MnSO4·H2O, 2 mM ZnSO4·7H2O, 0.5 mM CuSO4·5H2O, 
0.5 mM Na2MoO4·2H2O and 50 mM KCl) in a total of 
400 L solution per hydroponic tank. The pH was maintained 
between 5.9 and 6.1 as described in Garnett et al. (2013). A 
flux density at the canopy level of ~ 500 µmol m−2 s−1 was 
supplied at 14 h (25 °C) day: 10 h (20 °C) night cycle. The 
plants were randomized in the tank every 5 days to guard 
against the position effects. Two weeks after planting, the 
six most representative uniform plants of each genotype 
(based on root and shoot development), were selected and 
transplanted into another hydroponic tank with same media.

When plants reached V4 stage (Abendroth et al. 2011), 
usually 4–5 weeks from planting, 4–5 cm of the primary root 
from six plants were collected and stored at − 80 °C while 
the rest of the plant tissues were dried for 12 days at 48 °C.

The V4 stage of development was selected for assays 
because inter-plant shading became a factor after this. The 
potential border-row effect was mitigated by randomizing 
the plants more than once during their growth (Tuberosa 
et al. 2002).

Biochemical assays

All the biochemical assays were performed as previously 
described (Trucillo Silva et al. 2017). Activity of eight 
enzymes related with the N-metabolism pathway was 
determined in root samples of each genotype. The set of 
enzymes included NR, NiR, GS, GOGAT, AlaAT, ASN, 
AspAT and PEPC, and specific protocols were adapted by 
K. Dhugga, R. Abbaraju and L. Fallis and described in Plett 
et al. (2016). GS, GOGAT, Asp AT and PEPC assay proto-
cols were adapted from Gibon et al. (2004), NR from Lea 
et al. (1990), NiR from Bourne and Miflin (1973), ASN from 
Joy and Ireland (1990), and AlaAT protocol was modified 
from Ashton et al. (1990). Metabolites nitrate and gluta-
mate were measured as byproducts of enzyme reactions. All 
measurements were determined by the absorbance of each 
biochemical reaction compared to known standards using a 
spectrophotometer (Spectramax Plus 384 Microplate Reader, 
Molecular Devices).

Plant tissues were weighed and analyzed for N content by 
combustion analysis as described by DeBruin et al. (2013). 
Based on root biomass dry weight (RW) and percentage of N 
measurements (Nr), total amount of N present in root (TNr) 
tissues was calculated. In addition, Nratio was estimated as 
the ratio between total amount of N present in shoot tissues 
(TNs) and TNr. The analysis of shoot dry weight (SW), TNs 
and Ns is presented in Trucillo Silva et al. (2017).

Trait data analysis

Statistical analysis was implemented in R statistical pro-
gram (RCoreTeam 2014) as described in Trucillo Silva et al. 
(2017). Ggplot2 (Wickham 2010) and GGally (Schloerke 
et al. 2014) R packages were used for initial analysis of the 
raw data. First, a univariate analysis, where a single variable 
is fitted in a model, followed by a multivariate approach, 
where multiple variables are analyzed simultaneously, was 
performed to comprehend the relationship among the varia-
bles. Then, based on a jackknife resampling strategy, outliers 
in the dataset were identified as described in Trucillo Silva 
et al. (2016). The main procedure consists on fitting a sta-
tistical model n times, systematically omitting one observa-
tion from the dataset, followed by the prediction of random 
effects for a subset of the most consistent genotypes each 
of the n times. The mixed model was fitted with ASReml R 
package (Butler et al. 2007) and correspondent mixed model 
equations were solved for the prediction of random effects 
and estimation of fixed effects.

The statistical model can be represented as follows:

where y denotes a n × 1 vector of observed response values, 
b is a p × 1 vector of fixed effects, X is a n × p design matrix, 
u is a q × 1 vector of random effects,Z is a n × q design 
matrix, and e being the error term.

The following assumptions were used: E (u)  =  0, E 
(e) = 0, Cov (u, e) = 0, and Var (u) = G and, Var (e) = R. 
The G matrix had a compound symmetry structure on the 
genotype levels and R matrix is a diagonal matrix with dif-
ferent values for each set, allowing non-constant variance 
across sets. The response variable was the activity of the 
enzyme and the metabolite concentration, respectively. Set, 
the light replicate and plate were included as fixed effects 
in the model (where replicate and plate are nested in a set), 
and the check genotype effect was included as a continuous 
covariate. Finally, the genotype was included as a random 
effect in the linear model. Several genotypes were discarded 
depending on the trait (e.g., for both AlaAT and NR five 
genotypes were removed). Furthermore, one and four com-
plete sets of data were removed for glutamate and nitrate, 
respectively, due to the contamination of samples and very 
low accuracy in the estimations.

Significance of genetic variance was calculated based 
on log-likelihood ratio test by comparing models with and 
without the TC random effect. Correlations were calculated 
among BLUP values for each pair of traits and significance 
was adjusted after the Bonferroni correction for multiple 
comparisons. Repeatability was derived from variance 
estimations from ASReml. The variance components were 
estimated for each different set. As a result, different values 
of repeatabilities were estimated and partial estimates were 

y = Xb + Zu + e,
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averaged. Path coefficient was performed as described by 
Wright (1921) and Trucillo Silva et al. (2017).

The studied traits followed Gaussian distribution as 
judged from the similarity of mean and median values along 
with skewness estimates (Supplementary Material 1).

Genotypic information and genetic maps

TC materials were genotyped with 5306 single nucleotide 
polymorphism (SNP) markers by the Beijing Genomics 
Institute. Physical and genetic positions of the markers were 
determined and genetic maps were created with R/qtl (Bro-
man et al. 2003). Recombination fractions were estimated 
and the Kosambi mapping function was implemented to cal-
culate genetic map distances (Kosambi 1944). In addition, 
mapping distances were adjusted to compare the results with 
previous investigations. The expansion factor was deter-
mined based on the following equation: ∝=

j

2
+ (2i − 1)∕2i, 

where j corresponds to the number of generations of inter-
mating including the two generations for generating the F2, 
and i is the number of inbred generations after intermating 
(Teuscher et al. 2005).

The real map was 11,265.25 cM and map distances were 
reduced by a factor of 6.5 to estimate the adjusted F2 map. 
The final adjusted map was 1733.12 cM length with an aver-
age spacing between markers of 0.33 cM, while the maximal 
spacing between markers was nearly 7 cM, on chromosome 
6. With regard to physical distance, the length of the total 
genome was 2051.75 Mb, with the biggest gap between 
markers of 69.80 Mb length (located on chromosome 2). 
On average there was a marker positioned every 400 Kb.

QTL mapping and identification of candidate genes

QTL Cartographer (Basten et al. 2002) was utilized to detect 
associations between phenotypes and genotypes. Single-
marker analysis, linear regression analysis and composite 
interval mapping (CIM) was implemented. Zmap (model 
6) was performed for CIM, using the ten most significant 
marker cofactors identified by forward and backward regres-
sion. QTL were scanned at intervals of 1 cM and at every 
marker while cofactors located within a window of 10 cM 
of the scanned position were excluded from the analysis. 
To determine LOD score thresholds of 5%, and significant 
QTL, 1000 permutations were performed for every trait. 
Two nearby QTL were considered as different when LOD 
peaks were localized 20 cM or greater apart. Effects of QTL 
are expressed relative to the B73 allele, where an effect with 
a positive sign represents an increasing allele from B73 and 
the one with a negative sign denotes an increasing allele 
from Mo17.

Multiple interval mapping (MIM) analysis was performed 
by fitting previously identified QTL from CIM analysis, and 

parameters were re-estimated and positions refined. All pair-
wise interactions between QTL in every model were exam-
ined for each trait. The significance was determined based on 
the information criterion: IC (k) = − 2 (log (L) − kc (n)/2), 
where the penalty function corresponds to: c (n) = log (n) 
and a threshold of 0.0 was used (Basten et al. 2002). The 
proportion of the total phenotypic variance associated with 
each model was estimated.

Candidate genes annotated on corresponding 1-LOD 
QTL confidence interval regions were examined from 
MaizeGDB (Lawrence et al. 2008) and Phytozome (Good-
stein et al. 2012). Those candidate genes directly related 
to N-metabolism based on descriptions in model species, 
such as rice (Oryza sativa) and Arabidopsis (Arabidopsis 
thaliana), were proposed for further studies. Several other 
candidate genes may be promising candidates for further 
investigations, including transcription factors; however, 
they were not considered due to the difficulties to ascertain 
a direct relationship with N-metabolism in maize based on 
available descriptions.

Results

Plant dry mass and its relationship to biochemical 
traits

Shoot and root dry mass, respectively, explained 83 and 17% 
variation in total plant biomass as determined by path coef-
ficient analysis, which mirrors the actual, average propor-
tion of the two components of the plant across all the TC at 
86 and 14% (data not shown). The coefficient of variation 
(CV) was, respectively, 26.2, 19.3, and 19.9% for the root, 
shoot, and total biomass. A relatively lower CV of 13.4% for 
the root/shoot ratio implies that partitioning of dry matter 
between these two plant parts was less variable than the total 
dry matter accumulation itself.

Root dry mass exhibited a negative, logarithmic relation-
ship with N concentration, with an R2 of 0.51 (Fig. 2). Shoot 
N concentration did not correlate with shoot or total dry 
mass (data not shown). Root N concentration in fact was also 
negatively correlated with the shoot dry mass and total dry 
mass with R2 values of 0.35 and 0.39, respectively, which 
is not surprising because shoot/root ratio was less variable 
than either of these traits as discussed earlier. This implies 
that the roots of the rapidly growing plants retained less N, 
pointing to a limitation of sink in the shoot for the absorbed 
N. Apparently, N acquisition, unlike dry matter formation, 
was not a limiting factor in plant growth. A limitation in 
dry matter deposition seemingly limited dilution of N in the 
dry matter, which is manifested in a negative correlation 
between these two traits. These results are from the plants 
grown under non-limiting N levels, however, where the 
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root surface was continuously bathed with nitrate. N uptake 
could become limiting, particularly under low soil N, where 
a depletion zone develops around the root, particularly dur-
ing the peak period of transpiration.

ASN and NR had higher activities on a protein basis in 
the leaves than in the roots, GOGAT was similar between 
these two tissues, but the activities of the remaining enzymes 
were higher in the roots at varying levels with NiR being 
approximately four-fold more active (Fig. 3). Nitrate concen-
tration on dry mass basis was higher in the shoot, implying 
its efficient transport from the root to the shoot tissue. Glu 
was more abundant in the roots than in the leaves, suggesting 
significant nitrate reduction in the roots (Fig. 3).

Enzyme activities and metabolite concentrations were 
poorly correlated between the root and the shoot tissues 
(Fig.  4). The highest correlation coefficient, 0.26, was 
observed for tissue N concentration. These results imply that 
the enzymes for N metabolism operate independently in the 
root and shoot tissues. It is possible that the leaf enzymes 
are primarily reflective of dry matter deposition, and root 
enzymes of maintaining N absorption and transport; the rel-
ative proportions of these two components in the plant are 84 
and 16%, respectively. Furthermore, the reduction of nitrate 
in the roots may be a mechanism to maintain a favorable 
electrochemical potential gradient for its continued uptake.

Regression of root and shoot dry matter on each of the 
enzyme activities revealed a weakly negative relationship 
for all but two of the enzymes (Table 1). GS explained the 
most variation, 9%, whereas AspAT and NR each explained 
approximately 4% of the variation in root dry mass. For 
the shoot dry mass, AspAT, ASN, GOGAT, NiR, GS, and 
AlaAT explained 9.5, 7.5, 6.6, 4.7, 4.6, and 3.3% variation, 
respectively. Of these, AspAT, NiR, and ASN subsumed the 

variation explained by GOGAT, GS, and AlaAT as indi-
cated by the direct and indirect contributions of each of the 
enzymes (Trucillo Silva et al. 2017). These observations 
point to the dilution effect of cell expansion on the cellu-
lar contents and suggest that excess capacity for enzyme 
activities is reflective of metabolic homeostasis to maintain 
biomass productivity.

Repeatability of N‑metabolism associated traits

Repeatability, also referred to as broad-sense heritability 
in forward selection, is a measure of consistency of a trait 
among the plants (replicates) of the same TC (Fig. 5). All 
traits were measured on the same plants grown in the same 
hydroponic culture system under controlled light and tem-
perature (Table 2). Since the standard error of replicated 
assays from each plant was negligible, repeatability provides 
a measure of consistency of different traits among plants in 
each line. Nitrate concentration and ASN in the shoot tis-
sue were the most and least consistent traits, respectively. 

Fig. 2   Relationship of root dry mass to root N concentration (cre-
ated with Adobe Illustrator CS2). The R2 values for root N versus   
shoot dry mass and root N versus total dry mass were 0.35 and 0.39, 
respectively; *** indicates statistically significant at P < 0.001

Fig. 3   Shoot to root ratios for various enzymes and metabolites in 
maize IBMsyn10-DH test crosses (created with Adobe Illustrator 
CS2). The ratio for shoot dry mass to root dry mass was 6.3

Fig. 4   Pearson correlation coefficients for enzyme activities and 
metabolite concentrations between root and shoot tissues in the 
IBMSyn10-DH testcross population (created with Adobe Illustrator 
CS2). *, **, *** indicate statistically significant at P  <  0.05, 0.01, 
and 0.001, respectively
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Nitrite reductase (NiR) in the leaves was the most consistent 
enzyme although NR was a close second. PEPC was more 
uniform in the roots than in leaves, which could be because 
the light-inducible form in the leaves is the main enzyme for 
C4 photosynthesis and responds to small changes in light 
availability. The plants were in close proximity to each other 
and slight interference from variable shading was unavoid-
able. The root PEPC was perhaps more stable because its 
role is primarily anaplerotic, that is, to fix CO2 released by 
respiration into oxaloacetate using phosphoenolpyruvate as 
the other substrate to support amino acid formation (Fig. 1). 

Nitrate concentration was less variable among plants in 
the leaves than in the roots, which suggests that roots likely 
respond to feedback from the leaves for free N status, and 
thus adjust nitrate absorption to maintain homeostasis in the 
leaves, where most of it is reduced. This could particularly 

be the case because nitrate concentration was higher in the 
leaves than in the roots (Fig. 3).

Despite wide variation in repeatability among the 
enzymes of N assimilation, both root and shoot biomass 
were more uniform among the plants sampled for analysis 
(Fig. 5). Since the plants were selected for uniformity by 
rejecting the outliers (see Materials and Methods), the root 
and shoot dry masses are relatively uniform.

Enzymes for glutamate formation and utilization

Glutamate is a key amino acid in N assimilation as it consti-
tutes the entry step of inorganic N into organic form (Truci-
llo Silva et al. 2017). A path coefficient diagram depicting 
the direct and indirect effects of various enzymes toward 
the cellular glutamate concentration is shown in Fig. 6. In 
the leaf tissue, AlaAT alone explained 58% of the varia-
tion in glutamate, suggesting a key role in maintaining the 
intracellular concentration of this amino acid (Trucillo Silva 
et al. 2017). No single enzyme was as strongly correlated 
with glutamate in the roots, however, perhaps because roots 
act more as conduits for nitrate uptake but not for primary 
N assimilation. AlaAT alone still explained 10% of the net 
variation in glutamate level, but GOGAT was just as impor-
tant, explaining 11% of the variation (Fig. 6). AspAT and 
ASN each explained 4% variation in the glutamate level. GS 
was inconsequential in determining glutamate level, which 
implies that glutamine, a substrate for glutamate regenera-
tion along with α-ketoglutarate (Fig. 1), was not a limiting 
factor in the root-cell glutamate level (Fig. 6). A limitation 
of carbon skeletons because of their utilization in dry matter 
deposition in expanding cells might favor N cycling between 
glutamate and alanine (C/N ratio 3) than between glutamate 
and aspartate (C/N ratio 4) (Trucillo Silva et al. 2017). This 
pattern appears less prominent in the roots, perhaps because 
they are not the primary sites of carbon fixation, N reduction 
and assimilation (Fig. 6). Pairwise correlation coefficients 
for all the traits are shown in Supplementary Material 2. Of 

Table 1   Regression of root 
and shoot dry mass on enzyme 
activities for N metabolism in 
maize testcrosses

Variation explained by each enzyme in total dry mass is shown in the RSQ (R2) column; *, **, *** indicate 
statistically significant at P < 0.05, 0.01, and 0.001, respectively

Enzyme Root Shoot

b Intercept RSQ b Intercept RSQ

AlaAT − 0.051 110.9 0.003 − 0.051 103.5 0.033*
ASN − 0.033 107.3 0.008 − 0.030 100.3 0.075***
AspAT − 0.070 109.5 0.042** − 0.032 101.4 0.095***
GOGAT​ 0.029 106.7 0.002 − 0.036 100.7 0.066***
GS − 0.135 117.3 0.087*** − 0.023 102.2 0.046**
NiR − 0.017 98.4 0.001 0.245 66.4 0.047*
PEPC 0.067 97.2 0.006 − 0.005 103.4 0.000
NR − 0.641 131.1 0.038* 0.094 87.4 0.005

Fig. 5   Repeatability values for traits measured on root and shoot tis-
sues in the maize IBMSyn10-DH TC population (created with Adobe 
Illustrator CS2). AlaAT alanine aminotransferase, ASN asparagine 
synthase, AspAT aspartate synthase, GOGAT​ glutamine oxoglutarate 
aminotransferase or glutamate synthase, GS glutamine synthetase, 
NiR nitrite reductase, NR nitrate reductase, PEPC phosphoenol pyru-
vate carboxylase, Glu glutamate, DM dry matter. For the shoot tissue, 
enzyme activities were measured on the youngest, fully expanded leaf 
at V4 stage (Trucillo Silva et al. 2017)



1197Theoretical and Applied Genetics (2018) 131:1191–1205	

1 3

Ta
bl

e 
2  

S
am

pl
e 

si
ze

, m
ea

n 
va

lu
es

 fo
r t

he
 p

op
ul

at
io

n 
an

d 
ch

ec
ks

, m
in

im
um

 v
al

ue
s, 

m
ax

im
um

 v
al

ue
s, 

st
an

da
rd

 d
ev

ia
tio

n,
 c

oe
ffi

ci
en

ts
 o

f v
ar

ia
tio

n,
 g

en
et

ic
 e

ffe
ct

 P
 v

al
ue

s a
nd

 re
pe

at
ab

ili
ty

 v
al

ue
s 

of
 th

e 
tra

its
 m

ea
su

re
d 

ro
ot

 ti
ss

ue
 fr

om
 th

e 
IB

M
Sy

n1
0-

D
H

 T
C

 p
op

ul
at

io
n 

of
 m

ai
ze

N
s a

nd
 S

W
 v

al
ue

s a
re

 in
cl

ud
ed

 fo
r c

om
pa

ris
on

 p
ur

po
se

s a
nd

 p
re

se
nt

ed
 b

y 
Tr

uc
ill

o 
Si

lv
a 

et
 a

l. 
20

17
a  Po

pu
la

tio
n 

si
ze

b  Po
pu

la
tio

n 
m

ea
n

c,
d  B

LU
P 

va
lu

e 
fo

r p
ar

en
ta

l g
en

ot
yp

es
 in

 te
stc

ro
ss

 g
en

ot
yp

e
e  M

in
im

um
 v

al
ue

f  M
ax

im
um

 v
al

ue
g  St

an
da

rd
 d

ev
ia

tio
n

h  C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n 
(%

)
i  P 

va
lu

e 
of

 th
e 

ge
ne

tic
 e

ffe
ct

j  R
ep

ea
ta

bi
lit

y;
 n

or
m

al
iz

ed
 v

al
ue

s w
er

e 
m

ul
tip

lie
d 

by
 a

 fa
ct

or
 o

f 1
.1

31
 fo

r A
la

A
T,

 A
S 

an
d 

A
sp

A
T,

 a
nd

 b
y 

1.
15

1 
fo

r G
O

G
A

T​

Tr
ai

t
U

ni
t

na
Po

p 
µb

B
73

TC
c

M
o1

7T
C

d
M

in
e

M
ax

f
SD

g
C

V
h

G
 e

ffe
ct

 P
i

Re
pe

at
-

ab
lit

yj

A
la

A
T

G
lu

 m
g−

1  p
ro

te
in

 0
.5

 h
−

1  (n
m

ol
)

17
1

24
1.

11
29

3.
38

22
0.

65
18

9.
83

31
8.

37
24

.7
8

10
.2

8
1.

75
E−

12
0.

51
A

SN
G

lu
 m

g−
1  p

ro
te

in
 0

.5
 h

−
1  (n

m
ol

)
17

6
47

2.
65

47
4.

28
47

6.
30

41
2.

90
53

8.
98

20
.4

3
4.

32
1.

55
E−

08
0.

48
A

sp
A

T
G

lu
 m

g−
1  p

ro
te

in
 0

.5
 h

−
1  (n

m
ol

)
17

6
93

0.
63

96
3.

72
92

9.
91

83
5.

90
10

70
.2

9
38

.9
7

4.
19

6.
75

E−
07

0.
39

G
O

G
A

T​
G

lu
 m

g−
1  p

ro
te

in
 0

.5
 h

−
1  (n

m
ol

)
17

5
18

2.
80

19
0.

14
19

2.
76

14
6.

11
22

0.
28

12
.8

1
7.

01
1.

98
E−

08
0.

45
G

S
G

H
A

 m
g−

1  p
ro

te
in

 0
.5

 h
−

1  (n
m

ol
)

17
6

40
7.

11
45

3.
90

34
8.

95
35

3.
72

47
1.

38
22

.0
8

5.
42

2.
66

E−
06

0.
38

N
iR

N
itr

ite
 re

du
ce

d 
m

g−
1  p

ro
te

in
 (n

m
ol

)
17

2
69

9.
90

64
8.

80
58

9.
15

62
3.

88
77

9.
67

33
.1

4
4.

73
1.

12
E−

08
0.

48
N

R
N

itr
ite

 p
ro

du
ce

d 
m

g−
1  p

ro
te

in
 (n

m
ol

)
17

1
2.

82
2.

78
1.

40
0.

03
6.

81
1.

36
48

.2
3

4.
40

E−
11

0.
65

PE
PC

N
A

D
 re

du
ce

d 
m

in
-1

 m
g-

1 
pr

ot
ei

n 
(µ

m
ol

e)
17

2
39

4.
85

35
7.

26
42

3.
80

32
0.

09
50

6.
06

40
.8

7
10

.3
5

<
 1

.0
0E

−
12

0.
62

N
itr

at
e

nm
ol

e 
m

g−
1  p

ro
te

in
15

7
19

9.
16

24
5.

32
18

9.
28

16
0.

51
23

6.
25

17
.2

6
8.

66
2.

99
E−

09
0.

52
G

lu
ta

m
at

e
G

lu
 m

g−
1  p

ro
te

in
 0

.5
 h

−
1  (n

m
ol

)
10

6
19

4.
38

22
3.

96
19

2.
06

16
6.

71
23

1.
09

12
.0

6
6.

20
4.

33
E−

09
0.

57
TN

r
m

g
17

6
4.

75
7.

10
5.

10
2.

21
9.

13
1.

09
22

.9
4

7.
12

E−
07

0.
70

N
ra

tio
R

at
io

17
6

6.
70

6.
23

6.
45

5.
91

7.
37

0.
26

3.
88

3.
92

E−
13

0.
50

N
r

m
g 

g−
1  (%

)
17

6
4.

56
4.

37
4.

47
3.

89
5.

25
0.

24
5.

31
7.

76
E−

11
0.

61
N

s
m

g 
g−

1  (%
)

17
2

4.
64

4.
46

4.
73

4.
31

5.
00

12
.7

2
17

.9
8

1.
21

E−
08

0.
71

SW
m

g
17

6
66

1.
40

97
9.

73
70

3.
93

37
4.

50
11

27
.9

9
12

7.
95

19
.3

4
1.

00
E−

15
0.

74
RW

m
g

17
6

10
5.

16
17

1.
54

11
3.

77
44

.7
8

22
8.

75
27

.5
7

26
.2

2
1.

12
E−

11
0.

69
TW

m
g

17
6

76
6.

56
11

52
.9

4
81

4.
96

41
9.

28
13

56
.7

4
15

2.
89

19
.9

4
1.

14
E−

08
0.

73



1198	 Theoretical and Applied Genetics (2018) 131:1191–1205

1 3

all the pairwise correlations, 31% were highly significant (p 
value < 0.001). All significant correlations between enzyme 
activities, enzymes and metabolites, and between metabo-
lites were positive.

Identification of quantitative trait loci

Composite interval mapping

Twenty-six QTL were identified across all the traits. Five 
QTL were detected on one chromosome, 7, whereas only 
one was identified on chromosome 8 (Fig. 7). AlaAT-3 and 
AspAT-2 were the only QTL that overlapped their respective 
1-LOD CI on chromosome 10. The number of QTL varied 
for different traits, ranging from only one for some traits 
(GOGAT and NR) to four for NiR (Fig. 7).

A majority of the QTL, 19, explained less than 10% of 
the genetic variance. Six QTL explained 10–25%, while one 
explained > 25% of the variance. The QTL which accounted 
for the highest amount of variance (31.5%) and presented 
the highest LOD score (23.4) was for PEPC-1, located on 
chromosome 5. For that QTL, the B73 allele had a negative 
effect (− 23.78 µmole NADH/min/mg protein). Further-
more, for 70% of all QTL detected across traits, B73 alleles 
had negative additive effects. For certain traits, for example, 
AspAT, GOGAT, and GS, B73 alleles exhibited only a nega-
tive effect, however, for ASN QTL, B73 alleles had positive 
effects (Table 3).

Confidence intervals (CI 1-LOD) for QTL ranged from 
1.04 to 24.46 cM (0.16–3.76 cM adjusted distance) length, 
with an average of 7.79 cM (1.2 cM adjusted distance). 
Those CI correspond to 0.2–21.1 Mb in physical distance, 
with a mean CI length of 2.46 Mb (Table 3).

Multiple interval mapping

First order epistatic interactions between QTL identified pre-
viously by CIM were not significant for any of the traits, thus 
epistatic digenic effects were excluded from genetic mod-
els. Even though 43% of the total variance was explained in 
PEPC by fitting two QTL in an MIM model, other genetic 
models captured less than 10% of the phenotypic variance, 
such as for ASN, GOGAT, GS and NR (Table 4). On aver-
age, multiple QTL models explained 15.1% of the variance 
when two QTL were included in each of the models.

Candidate genes

An average of 63 genes were annotated underlying QTL 
1-LOD regions, with CI regions containing between 
six and 376 genes. Only a subset of the putative genes 
could be associated to N-metabolism pathway based on 
their descriptions in model species. The most promis-
ing genes were GRMZM2G028574, GRMZM2G111225, 
G R M Z M 2 G 1 3 6 7 1 2 ,  G R M Z M 2 G 1 5 5 9 7 4 , 
G R M Z M 2 G 1 6 6 3 6 6 ,  G R M Z M 2 G 3 7 4 3 0 2 , 
G R M Z M 2 G 4 0 9 1 3 1 ,  G R M Z M 2 G 4 6 6 5 4 3 , 
G R M Z M 2 G 4 7 3 0 0 1 ,  G R M Z M 2 G 4 8 1 5 2 9 , 
G R M Z M 5 G 8 1 7 0 5 8 ,  G R M Z M 2 G 5 7 5 6 9 6  a n d 
GRMZM2G580894 (Table 5). Each of them was associ-
ated with a putative function relevant to NUE. Examples 
are PEPC, nitrilase, aspartate kinase, glutathione synthetase, 
aspartate kinase, arginine decarboxylase, phosphofructoki-
nase, arogenate dehydratase, phosphopyruvate hydratase, 
phosphoribosyl transferase, and last two genes as S-adeno-
syl-methionine-dependent (SAM)-methyltransferase, respec-
tively. In agreement with our earlier study on the leaves of 
this population (Trucillo Silva et al. 2017), all the QTL iden-
tified in this study are located on a different position to the 
known genomic location of each corresponding structural 
gene. For example, GS QTL were identified on chromo-
somes 7 and 9 at physical positions 158.15 and 23.85 Mb in 
this study, whereas GS1 and GS2 locus are located in chro-
mosomes 1, 2, 4, 5, 9 (between 146.06 and 146.07 Mb), and 
10, based on the following nearest loci on the IBM2 2008 
Neighbors map, respectively. The candidate genes identified 
within the QTL regions might affect the enzyme activities 
in a trans-acting regulatory manner as previously described, 
most likely through metabolic pathways as all the genes are 
non-regulatory in nature (Zhang et al. 2010). The candidate 
genes we identified are located on chromosomes 1, 2, 3, 4, 
6, and 7. No candidate genes related to N metabolism were 
identified underlying QTL for ASN, GS, NiR, PEPC, nitrate, 
and glutamate.

Fig. 6   Direct and indirect relationship between glutamate and 
enzymes directly involved in its formation and utilization (created 
with Adobe Illustrator CS2). See pathway in Fig.  1. On the right 
is the table showing partial R2 for each of the enzymes. Double 
arrows describe the correlation coefficients between various pairs of 
enzymes. Path coefficients from each of the enzymes are shown as 
lines with single arrows. Unexplained path coefficient, which is the 
square root of the unexplained variation (1 − R2), is shown separately. 
*, **, *** indicate statistically significant at P  <  0.05, 0.01, and 
0.001, respectively
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Fig. 7   Genetic map and distribution of QTL associated with 
N  metabolism related enzymes and metabolites measured on root 
tissue in the maize IBMSyn10-DH TC population. Created with 
MapChart  2.2 (Voorrips 2002). QTL positions are shown at left of 
chromosomes (in cM) and the lengths of   QTL bars are determined 

by 2-LOD confidence intervals. Only selected markers are displayed 
in the figure  to the right of chromosomes. QTL associated with the 
enzyme activities are in blue, while QTL associated with metabolites 
are in red (color figure online)
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Discussion

Previously, we reported the genetic and biochemical analy-
ses of shoot enzymes and metabolites in a TC mapping 
population (Trucillo Silva et al. 2017). In this report, we 
focus on the root tissue of the same population.

Variable repeatabilities for various enzymes and metab-
olites both for root and shoot tissues provide a window into 
the stability of each of these traits within a line (Fig. 5). 
Despite the fact that a controlled environment was used 
(light intensity, nutrients, and temperature) in which the 
testcrosses were grown to the maximum extent possible, 

repeatability for a majority of the biochemical traits was 
generally less than 50% both in the roots as well as in 
the leaves (Fig. 5). Higher repeatability for the root and 
shoot dry mass than most of the enzymes suggests that 
enzyme levels can fluctuate to maintain metabolic homeo-
stasis such that dry matter deposition is maintained. A 
slight negative correlation between dry mass and enzyme 
activities suggests that the enzyme amounts are main-
tained above the threshold for optimal biomass produc-
tion (Table 1). Nevertheless, variation for repeatability 
highlights how a trait can vary significantly among plants 
of the same genotype grown in a controlled environment. 
These observations are significant in that they imply that 
environmental variation may be difficult to control under 
the field conditions regardless of measures taken. Increas-
ing the number of replications and years or locations for 
testing genetic variants could help reduce the chances of 
false positives.

A lack of correspondence between the enzyme activities 
of the root and shoot tissues suggests that metabolism in 
these tissues is optimized for different functions, appar-
ently for dry matter accumulation in the shoot and nutrient 
absorption and transport in the root.

Even though numerous QTL associated with enzymes 
involved in N-metabolism were identified in previous stud-
ies (Agrama et al. 1999; Limami et al. 2002; Canas et al. 
2012), only a few investigations were based on a representa-
tive and high-resolution mapping population, such as Zhang 
et al. (2010) and (2015). The performance of most traits in 
maize in the inbred lines is weakly, if at all, correlated with 
their hybrid (Hallauer et al. 2010). Yet, only a few studies 
have focused on mapping in testcross populations (Bertin 
and Gallais 2001; Gallais and Hirel 2004). Furthermore, 
we used TC derived from the IBMsyn10 population, which 

Table 4   Analysis of multiple QTL models for N metabolism related 
enzymes and metabolites measured on root tissue from the maize 
IBMSyn10-DH TC population

a Number of QTL fitted in MIM model
b Total R2 obtained by fitting significant QTL simultaneously in a 
MIM model

Phenotype # QTL in modela Model R2 (%)b

AlaAT 2 11.65
ASN 2 8.07
AspAT 2 12.06
GOGAT​ 1 9.77
GS 2 6.59
NiR 4 26.42
NR 1 9.11
PEPC 2 42.53
Nitrate 3 15.77
Glutamate 2 18.86
TNr 2 8.12
Nratio 2 12.85

Table 5   Candidate genes 
underlying 1-LOD QTL regions 
associated with N metabolism 
related enzymes and metabolites 
measured on root tissue from 
the maize IBMSyn10-DH TC 
population

a Chromosome
b,c Start and end location in bp

Maize GDB ID Corresponding gene annotation Chra Startb Endc QTL name

GRMZM2G028574 PEPC 3 6 115914515 115915086 TNr-2
GRMZM2G111225 Nitrilase 2 4 145590144 145596571 AlaAT-2
GRMZM2G136712 Aspartate kinase 7 80189428 80201455 NR-1
GRMZM2G155974 Glutathione synthetase 3 133812995 133826187 Nratio-2
GRMZM2G166366 Aspartate kinase 6 115555315 115557026 TNr-2
GRMZM2G374302 Arginine decarboxylase 4 144862958 144868207 AlaAT-2
GRMZM2G409131 Phosphofructokinase 7 82344751 82349620 NR-1
GRMZM2G466543 Arogenate dehydratase 6 2 166506882 166509171 AspAT-1
GRMZM2G473001 PEPC 1 7 86459173 86464913 NR-1
GRMZM2G481529 Phosphopyruvate hydratase 1 38637579 38641262 TNr-1
GRMZM5G817058 Phosphoribosyl transferase 7 80946776 80947644 NR-1
GRMZM2G575696 SAM-methyltransferase 7 85199074 85200388 NR-1
GRMZM2G580894 SAM-methyltransferase 7 83464904 8347015 NR-1



1202	 Theoretical and Applied Genetics (2018) 131:1191–1205

1 3

represent a higher recombination frequency, and thus nar-
rower intervals of the identified QTL. To account for the 
higher recombination rate, we used a platform with 5303 
SNP markers.

As reported in previous studies, the activity of enzymes 
investigated, constituents of the N-metabolism pathway 
(except PEPC, which is a member of the primary C-metab-
olism), seem to be co-regulated (Zhang et al. 2010; Truci-
llo Silva et al. 2017). Hence, a positive correlation between 
enzyme activities, as well as within metabolites concentra-
tion, was expected and our observations confirmed it. Signif-
icant correlations between enzyme activities and metabolites 
were also positive (Supplementary Material 2).

In comparison to previous studies (Zhang et al. 2010; 
Trucillo Silva et al. 2017), in which leaf tissue was investi-
gated, determination of root enzyme activity was more prone 
to sample to sample variation, mainly because, unlike the 
leaf where the same position could be sampled from each 
plant, root lengths were more variable, as reflected in final 
samples. Performance of assays on six replications per geno-
type ensured that the repeatability measures are quite similar 
between the root and leaf enzymes (Fig. 5).

A few of the QTL identified in this study were found 
to be in analogous positions as in previous detected NUE-
related QTL on leaf tissues (Trucillo Silva et al. 2017). For 
instance, a root QTL associated with ASN located on chro-
mosome 5, corresponds to leaf QTL for PEPC, nitrate and 
GOGAT (LOD peak values identified 2, 4 and 7 adjusted cM 
apart, respectively). In agreement with Zhang et al. (2010), 
a QTL for AlaAT was detected on chromosomes 4, about 
5 cM away from the detected position in this study. None-
theless, most of the QTL reported in other maize studies 
(Agrama et al. 1999; Hirel et al. 2001; Canas et al. 2012), 
which failed to co-locate, were greater than 20 cM away 
or even on different chromosomes compared to the QTL 
identified in this investigation. For example, QTL for GS 
activity were determined on chromosomes 7 and 9 in this 
study, whereas on chromosomes 4 and 5 in a previous study 
(Canas et al. 2012).

A lower number of QTL was identified per trait com-
pared to previous investigations on leaf tissues (Zhang et al. 
2010; Trucillo Silva et al. 2017). This suggests that similar 
traits are differentially regulated in roots and leaf tissues. 
The power to identify a QTL depends on the magnitude of 
the QTL effect and the size of the segregating population 
(Beavis 1998). Because a large number of small-effect QTL 
segregating in the genome were expected, and due to the 
size of the segregating population (176 individuals), only a 
subset of the total number of QTL was expected to be iden-
tified. Moreover, in comparison to Zhang et al. (2010), the 
number of QTL detected were most likely affected by the six 
additional rounds of random mating before fixing the lines 
that constituted the IBMsyn10-DH population. It is possible 

that the QTL previously detected in large linkage blocks, 
might have been separated into several smaller-effect QTL 
after further recombination events occurred. Therefore, the 
power to detect a QTL, each with a very small effect, would 
be expected to be lower. Another difference between the two 
studies is the use of inbred versus hybrids for mapping QTL. 
Little evidence of common QTL detection between inbred 
per se and TC progeny has been found in previous investiga-
tions (Beavis et al. 1994; Schon et al. 1994). It is possible 
also that some of the QTL identified in the inbred lines could 
have been masked in heterozygous form.

As previously reported by Trucillo Silva et al. (2017), the 
MIM results across traits suggest that there might be several 
undetected small effect QTL responsible for the rest of the 
genetic variation, for example, for PEPC and ASN, two QTL 
explained 42.5 and 8.1% of the variance, respectively. The 
sum of the effect of numerous QTL, each with small mar-
ginal effect, plus any type of epistasis which they might be 
involved in, should account for all the unexplained genetic 
variance in the MIM QTL models. It has been established 
that epistasis can make a large contribution to the genetic 
regulation of complex traits (Carlborg and Haley 2004). 
However, statistically significant first order epistasis between 
identified QTL was not detected. Likewise, no significant 
epistasis between QTL was detected in a recent study based 
on the maize nested association mapping (NAM) popula-
tion, which included the parents of this population (B73 and 
Mo73) (Zhang et al. 2015).

From a total of 60,000 annotated genes across the maize 
genome, a limited number was identified under 1-LOD QTL 
intervals. One of the genes, GRMZM2G368398, an oligo-
peptide transporter, was also identified in a previous meta-
QTL investigation of candidate genes for NUE in maize (Liu 
et al. 2012). An additional gene (GRMZM2G053958), which 
codes for NAD(P)-binding Rossmann-fold superfamily pro-
tein was proposed as a candidate gene in a recent investiga-
tion based on C and N metabolism in the NAM population 
(Zhang et al. 2015). In this study, 13 candidate genes asso-
ciated with N-metabolism are suggested for further stud-
ies. GRMZM2G028574 and GRMZM2G473001 are anno-
tated as PEPC genes. GRMZM2G111225 is annotated as a 
nitrilase enzyme, which catalyzes the hydrolysis of nitriles 
to carboxylic acids and ammonia, and is implicated in auxin 
biosynthesis in maize (Park et al. 2003). GRMZM2G166366 
and GRMZM2G136712, code for aspartate kinases, which 
catalyze the phosphorylation of aspartate to for β-aspartyl 
phosphate, and is responsible for the first step in the bio-
synthesis of the amino acids lysine, methionine, and threo-
nine (Azevedo et al. 1992). GRMZM2G155974 catalyzes 
the addition of glycine to γ-glutamyl-cysteine, generating 
glutathione. Glutathione is a key water-soluble antioxi-
dant, which represents the storage form and long-distance 
transport form of reduced sulfur (Zagorchev et al. 2013). 
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GRMZM2G374302 codes for arginine decarboxylase, a key 
enzyme involved in polyamine biosynthesis that decreases 
in concentration under N-deficiency conditions (Amiour 
et  al. 2012). In addition, GRMZM2G409131 catalyzes 
the phosphorylation of d-fructose 6-phosphate to fructose 
1,6-biphosphate, the entry point into glycolysis (Plaxton 
and Podesta 2006). GRMZM2G466543 codes for arogen-
ate dehydratase, a gene that functions in the final steps of 
the aromatic amino acid pathway that produces two essen-
tial amino acids, tyrosine and phenylalanine, which initi-
ate lignin formation, releasing ammonium as a byproduct 
that is again absorbed by the GS/GOGAT cycle (Holding 
et al. 2010). GRMZM2G481529 is a cytosolic enolase or 
phosphopyruvate hydratase and is described as a metalloen-
zyme responsible for the conversion of 2-phosphoglycerate 
to PEP, necessary for sucrose synthesis from pyruvate in C4 
plants (Karpilov et al. 1978). GRMZM5G817058 is a phos-
phoribosyltransferase and acts in amino acid metabolism 
by catalyzing the first step in the biosynthesis of histidine 
(Morot-Gaudry et al. 2001). Finally, GRMZM2G575696 
and GRMZM2G580894, both S-adenosyl-l-methionine 
(SAM)-dependent methyltransferases, are responsible for 
transferring methyl groups from the methyl donor SAM to 
N, oxygen, sulfur, and C atoms of several biomolecules, such 
as DNA, RNA, histones, and other proteins. These modifica-
tions may affect the expression of a wide variety of genes 
involved in signaling, nuclear division, and metabolism 
(Bobenchik et al. 2011).

Conclusions

Enzymes for N metabolism exhibit relatively low repeat-
abilities as compared to dry mass, suggesting they might be 
overexpressed in the cells under normal N possibly to main-
tain biomass accumulation through metabolic homeostasis. 
Poor or no correlation between the root and leaf enzymes 
and metabolites signifies the importance of studying these 
two tissues separately. Mildly negative correlations between 
dry mass and tissue N concentration as well as between the 
enzymes and dry mass appear to arise from a lack of dilution 
of cellular contents because of constraints on cell expansion, 
which, in turn, might arise from factors other than N that 
limit dry matter formation. Glutamate synthase and alanine 
aminotransferase were the key enzymes in regulating the cel-
lular levels of glutamate. Our high-throughput assays pave 
the way to study the enzymes and metabolites of N utiliza-
tion at field scale.
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