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Abstract
Key message  A novel TaGW2-A1 allele was identified from a stable, robust QTL region, which is pleiotropic for 
thousand grain weight, grain number per spike, and grain morphometric parameters in wheat.
Abstract  Thousand grain weight (TGW) and grain number per spike (GNS) are two crucial determinants of wheat spike 
yield, and genetic dissection of their relationships can help to fine-tune these two components and maximize grain yield. 
By evaluating 191 recombinant inbred lines in 11 field trials, we identified five genomic regions on chromosomes 1B, 
3A, 3B, 5B, or 7A that solely influenced either TGW or GNS, and a further region on chromosome 6A that concurrently 
affected TGW and GNS. The QTL of interest on chromosome 6A, which was flanked by wsnp_BE490604A_Ta_2_1 and 
wsnp_RFL_Contig1340_448996 and designated as QTgw/Gns.cau-6A, was finely mapped to a genetic interval shorter than 
0.538 cM using near isogenic lines (NILs). The elite NILs of QTgw/Gns.cau-6A increased TGW by 8.33%, but decreased 
GNS by 3.05% in six field trials. Grain Weight 2 (TaGW2-A1), a well-characterized gene that negatively regulates TGW and 
grain width in wheat, was located within the finely mapped interval of QTgw/Gns.cau-6A. A novel and rare TaGW2-A1 allele 
with a 114-bp deletion in the 5′ flanking region was identified in the parent with higher TGW, and it reduced TaGW2-A1 
promoter activity and expression. In conclusion, these results expand our knowledge of the genetic and molecular basis of 
TGW-GNS trade-offs in wheat. The QTLs and the novel TaGW2-A1 allele are likely useful for the development of cultivars 
with higher TGW and/or higher GNS.

Introduction

Wheat provides approximately 20% of the calories con-
sumed by humankind (Simmonds et al. 2016). Considering 
the continued global population growth and the low rates 
of genetic gain in wheat yield (Zheng et al. 2011; Ray et al. 
2013), there is an urgent need to identify, characterize, and 
incorporate genomic tools that can accelerate wheat yield 
improvement (Simmonds et al. 2016). Wheat yield is con-
trolled by polygenes and affected by environmental factors, 
and it mainly relies on three components: thousand grain 
weight (TGW), grain number per spike (GNS), and spike 
number per hectare (Simmonds et al. 2014). There are nega-
tive correlations among these components (Griffiths et al. 
2015), but the genetic basis underlying individual yield traits 
and their interactions are still largely unknown in wheat.

In rice, it has been shown that grain weight is affected by the 
genes that functioning in several pathways, i.e., proteasomal 
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degradation (GW2 and GW5/qSW5), phytohormone signaling 
(GS6, TGW6, and OsCKX2), and G protein-mediated signal 
transduction (GS3 and RGB1); these genes regulate cell divi-
sion and/or cell expansion in specific grain tissues (reviewed 
by Zuo and Li 2014). Using a homology-based approach, 
several wheat genes have been isolated and suggested to 
be associated with TGW. These include TaCwi (Jiang et al. 
2015b; Ma et al. 2012), TaTGW6 (Hanif et al. 2016; Hu et al. 
2016), TaGW2-A1 (Simmonds et al. 2016; Su et al. 2011; Yang 
et al. 2012), TaGS1a (Guo et al. 2013), TaGS5-3A (Ma et al. 
2016), TaGASR7-A1 (Dong et al. 2014; Ling et al. 2013) and 
TaCYP78A3 (Ma et al. 2015). Research on these genes has 
enhanced our understanding on grain weight determination 
in wheat and has also provided functional markers useful for 
selecting higher TGW through marker-assisted breeding.

Several major QTLs for grain number have also been isolated 
and characterized in rice. Some of these QTLs control inflo-
rescence meristem identity (e.g., LAX1, SPA, and FZP), while 
others influence the rate (e.g., APO1, Gn1a/OsCKX2, LOG, 
SP1, and DEP1) or duration (e.g., RCN1, RCN2, Ghd7, and 
Ghd8) of cell division in the inflorescence meristem (reviewed 
by Xing and Zhang 2010). Although the functions of ortholo-
gous genes are generally conserved in rice and wheat, there 
are several examples of functional divergence between rice 
grain number genes and their wheat homologs. For instance, 
OsCKX2, encoding a cytokinin oxidase, is a negative regulator 
of the number of grains per panicle in rice (Ashikari et al. 2005). 
On the other hand, the two wheat homologs of OsCKX2, i.e., 
TaCKX2.1 and TaCKX2.2, have been suggested to positively 
control GNS (Zhang et al. 2011). Furthermore, while MOC1 
and OsTEF1 are two crucial regulators of rice tillering (Li et al. 
2003; Paul et al. 2012), their wheat homologs (TaMOC1-7A and 
TaTEF-7A) have both been found to be stably associated with 
spikelet number per spike rather than with tiller number (Zhang 
et al. 2015; Zheng et al. 2014). Differences such as these may be 
associated with the contrasting architecture of the inflorescences 
between wheat (spikes) and rice (panicles).

Here, we report mapping of several stable QTLs for TGW 
and/or GNS using 191 recombinant inbred lines (RILs) 
derived from a cross between two wheat lines that differ in 
both TGW and GNS. Of these QTLs, the one on chromo-
some 6A displayed a strong TGW-GNS trade-off. This QTL 
was further validated and precisely mapped using near iso-
genic lines (NILs). A novel allele of TaGW2-A1 was isolated 
from the finely mapped interval, which is likely a candidate.

Materials and methods

Plant materials

A population of 207 RILs was developed from the cross 
between two Chinese hexaploid winter wheat cultivars, i.e., 

Yumai 8679 (Y8679) and Jing 411 (J411), and advanced to 
the F9 generation by single seed descent. Of the 207 RILs, 
191 were genotyped and evaluated in 11 field trials. An F9 
plant of the RIL line (RIL186) with residual heterozygosity 
at the marker locus Xbarc118 was selfed and provided an 
F9:10 family with 163 progeny. Afterwards, selfing of these 
plants was carried out to obtain a population of 163 F10:11 
families. Four sets of NIL pairs (NIL1, NIL2, NIL3, and 
NIL4) were obtained by selfing selected F11 progeny with 
overlapping heterozygous fragments. Each NIL set com-
prised eight to 25 Y8679-type homozygotes and 12–30 
J411-type homozygotes.

In total, 1113 wheat accessions with varying ploidy 
were used to test the allele frequency of a novel TaGW2-A1 
allele. These included 848 hexaploid wheat accessions (96 
Chinese landraces, 702 Chinese modern cultivars, and 50 
French varieties; Supplementary Table S1), 238 tetraploid 
accessions (181 Triticum dicoccoides, 33 Triticum durum, 
and 24 Triticum dicoccum; Supplementary Table S2), and 27 
diploid accessions (6 Triticum urartu, 6 Triticum boeoticum, 
and 15 Triticum monococcum; Supplementary Table S3).

Field experiments and phenotyping

The RIL population was grown in three replicates following 
randomized complete-block design at the following five 
experimental sites: Anhui (33°48′N, 116°35′E), Beijing 
(40°08′N, 116°10′E), Hebei (37°56′N, 114°42′E), Shaanxi 
(34°17′N, 108°04′E), and Shanxi (36°08′N, 111°34′E) (Sup-
plementary Fig. S1; Supplementary Table S4). The field tri-
als were carried out during two crop seasons (2011–12 and 
2012–13) at Anhui, four crop seasons (2010–11, 2011–12, 
2012–13, and 2014–15) at Beijing, three crop seasons 
(2011–12, 2012–13 and 2013–14) at Shaanxi, and one crop 
season (2013–14 or 2014–15) at the other two sites. For the 
field trials, the seeds were sown in double-row plots (2 m 
long) at a sowing rate of 30 seeds per row. At maturity, 20 
representative spikes (from 20 different plants) were sam-
pled from each plot and threshed together. For the grain 
samples obtained from the first two crop seasons (2010–11 
and 2011–12), GNS, TGW, and grain weight per spike 
(GWS) were manually assessed. For the samples obtained 
from the other three seasons (2012–13, 2013–14, and 
2014–15), seven traits [i.e., GNS, TGW, GWS, grain surface 
area (GA), grain circumference (GC), grain length (GL), and 
grain width (GW)] were recorded using a scaled camera-
assisted phenotyping system (Wanshen Detection Technol-
ogy Co., Ltd., Hangzhou, China). For each RIL line, the 
mean value of each trait was calculated across three repli-
cates for each individual environment. In addition, best lin-
ear unbiased prediction (BLUP) values were predicted for 
each trait using the PROC MIXED procedure in SAS v9.1.3 
(SAS Institute Inc., North Carolina, USA). Pearson’s 
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correlation coefficient was calculated using SPSS v20.0 
(SPSS, Chicago, USA) to assess the correlation among 
TGW, GNS, GWS, and grain morphometric parameters. The 
Shapiro–Wilk test was performed using R v3.2.2 to identify 
departures from normal distribution. Broad sense heritability 
(h2

B
) based on a family mean basis was calculated using the 

PROC GLM procedure in SAS according to the following 
formula: h2

B
= �

2
g
∕(�2

g
+ �

2
ge
∕n + �

2∕nr), where �2
g
 is the 

genotypic effect, �2
ge

 is the genotype by environmental effect, 

σ2 is the residual error, n is the number of environments and 
r is the number of replicates (Liu et al. 2014).

The NIL pairs were evaluated at three sites (Beijing, 
Hebei, and Shanxi) in crop seasons 2014–15 (NIL1) and 
2015–16 (NIL1, NIL2, NIL3, and NIL4). The 163 F10:11 
families were evaluated at Beijing during crop season 
2014–15. These NIL pairs and families were grown in sin-
gle-row plots (2 m long and 30 seeds per row) in randomized 
complete-block designs with three replicates. At maturity, 
20 representative spikes were sampled, and the GWS, GNS, 
TGW, and grain morphometric parameters (GA, GC, GL, 
and GW) were assessed. For the members of NIL1 pair, 
tiller number (TN) and grain weight per plant (GWP) were 
determined for each of ten representative plants. The signifi-
cance of phenotypic variations between NIL1-Y8679 and 
NIL1-J411 was calculated using Student’s t test.

Linkage map and QTL analysis

The Y8679/J411 linkage map used here is the one that was 
described by Zhai et al. (2016). It includes both single-nucle-
otide polymorphism (SNP) markers and simple sequence 
repeat (SSR) markers. QTL analysis was conducted using 
both the within-environment means and the across-envi-
ronment BLUPs for each trait. The methods used for QTL 
analysis were the same as those used by Zhai et al. (2016) 
for other traits in the same population. Briefly, this involved 
the use of WinQTLCart version 2.5 (Wang et al. 2012) for 
composite interval mapping (CIM) using model 6 with for-
ward and backward regression, five markers as cofactors, 
and a 10-cM scanning window. Empirical threshold LOD 
scores estimated with 1000 permutations at P ≤ 0.05 were 
used to declare a significant QTL (Churchill and Doerge 
1994). Detected QTLs with overlapping confidence intervals 
(± 2 LOD away from the peaks of likelihood ratios) were 
considered equivalent and named as suggested by McIntosh 
et al. (2011).

For a QTL of interest on chromosome 6A, the 163 
F10:11 families derived from RIL186 were assigned to three 
genotypic classes (two homozygous families and one seg-
regating families) based on their marker genotypes. This 
classification was used to estimate the additive effect (a), 
dominance effect (d), and dominance degree (d/a) (Falconer 

and Mackay 1996). Multiple comparisons among the mean 
values were estimated by the LSD method. The inherit-
ance mode of an individual QTL can be classified into four 
categories, i.e., additive (d/a ≤ 0.20), partial dominance 
(0.20 < d/a < 0.80), dominance (0.80 ≤ d/a < 1.20), and 
overdominance (d/a ≥ 1.20), as described in the previous 
studies (Jiang et al. 2015a; Li et al. 2017).

The SNPs mapped in the QTL regions of interest were 
positioned onto the newly released reference genome 
sequence of Chinese Spring by blasting their flanking 
sequences against the IWGSC RefSeq v1.0 (https://urgi.
versailles.inra.fr/blast_iwgsc/blast.php).

SSR marker development

Polymorphic SNP markers flanking the QTL region of 
interest were used to perform a BLAST search against 
genomic sequences of Brachypodium, rice, and Aegilops 
tauschii, to identify orthologous genomic regions (Sup-
plementary Table S5) using the methods described by Zhai 
et al. (2016). The genes within the corresponding regions 
were used to search the hexaploid wheat cv. Chinese Spring 
IWGSC survey sequences (http://www.wheatgenome.org) 
to find homologous contig sequences for marker develop-
ment (Lu et al. 2016). These contig sequences were further 
used to search for SSR motifs (with at least 15 dinucleo-
tide or trinucleotide repeats) and design PCR primers using 
BatchPrimer3 (http://probes.pw.usda.gov/batchprimer3). For 
polymorphism detection, PCR products were separated on 
8% non-denaturing PAGE gels and visualized with silver 
staining. The primer pairs of 14 co-dominant SSR markers 
are listed in Supplementary Table S6.

RNA extraction, cDNA synthesis, and qRT‑PCR

For cDNA cloning analysis, the seedling leaves of Y8679 
and J411 were collected for total RNA extraction at 7 days 
after germination (dag). For expression analysis, the imma-
ture grains of NIL1-Y8679 and NIL1-J411 were collected 
for total RNA extraction at 11 days after pollination (dap) 
using the TransZol Plant Kit (TransGen Biotech). First-
strand cDNA was synthesized using M-MLV Reverse Tran-
scriptase (Promega, WI, USA) according to the manufac-
turer’s instructions.

qRT-PCR was performed to quantify the TaGW2-A1 
transcripts in three independent biological repeats using the 
homoeolog-specific primer pair TaGW2A-Q (Hong et al. 
2014) (Supplementary Table S6). qRT-PCR cycling was 
conducted using SYBR Green PCR master mix (TaKaRa, 
Japan) on a BioRad CFX96 system (CA, USA) using the fol-
lowing thermal profile: 95 °C for 7 min, 40 cycles at 95 °C 
for 10 s, 56 °C for 20 s, and 72 °C for 20 s. For each bio-
logical sample, three technical replicates were performed 

https://urgi.versailles.inra.fr/blast_iwgsc/blast.php
https://urgi.versailles.inra.fr/blast_iwgsc/blast.php
http://www.wheatgenome.org
http://probes.pw.usda.gov/batchprimer3
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for TaGW2-A1 and Actin (Supplementary Table S6). After 
normalizing to the endogenous control, the transcript levels 
were determined using the 2−ΔCt method.

Isolation of full‑length TaGW2‑A1 cDNA

The complete coding sequences (CDS) of TaGW2 genes 
were obtained from the cDNA of Y8679 and J411 using 
the primer pair TaGW2-1 (Su et al. 2011) (Supplementary 
Table S6). PCR products were gel-purified and cloned into 
the pGEM-T Easy Vector (Promega). The identities of three 
homoeologous coding sequences were determined by blast-
ing against the wheat database (http://plants.ensembl.org/
common/Tools/Blast?db=core; Bolser et al. 2015) (Supple-
mentary Fig. S2). The upstream and downstream regions of 
TaGW2-A1 in J411 were obtained using a rapid amplification 
of the cDNA ends (RACE) with the GeneRacer Kit (Invitro-
gen). The gene specific primers for 5′-RACE and 3′-RACE 
are listed in Supplementary Table S6.

Promoter isolation and activity analysis 
of TaGW2‑A1

Three A-genome-specific primer pairs, including Hap-6A-P1 
(Su et al. 2011), TaGW2-A1_InDel, and TaGW2-A1_ProF3 
(Supplementary Table S6), were used to amplify a region 
of approximately 2.0-kb upstream from the initiation codon 
(ATG) in the TaGW2-A1 gene by PCR. The promoters of 
1927 and 2041 bp length were obtained from Y8679 and 
J411, respectively, with a 114-bp deletion existing in the 
promoter obtained from Y8679.

To assess the effects of this 114-bp deletion on the pro-
moter activity, promoter fragments from Y8679 (1121 bp) 
and J411 (1235 bp) were amplified (Supplementary Fig. S3) 
and fused with the β-glucuronidase (GUS) reporter gene 
sequence in the pBGWFS7.0 vector using the Gateway® 

system following the manufacturer’s instructions (Invit-
rogen, CA, USA). The plasmids were transferred into the 
Agrobacterium tumefaciens strain GV3101. The leaves of 
7-week-old tobacco (Nicotiana benthamiana) plants were 
infiltrated with the Agrobacterium clones. After 3 days, the 
total protein was extracted from 1.0-cm leaf discs (without 
the central veins), and the specific GUS activity of these 
extracts was determined using a colorimetric assay accord-
ing to Leborgne-Castel et al. (1999). Briefly, the protein 
extracts were incubated with p-nitrophenyl β-d-glucuronide 
(PNPG) substrate at 37 °C and absorbance of the p-nitro-
phenol (PNP) product was measured at 410 nm (Pawar et al. 
2017). Leaves infiltrated with the empty vector were used as 
controls. Total protein content in the extracts was quantified 
using the Bradford protein assay.

Results

Phenotypic performance of the RIL population

The population means and ranges of the seven investigated 
traits are listed in Table 1. Compared with J411, Y8679 had 
higher TGW and GWS, larger grain size (GA, GC, GL, and 
GW), and lower GNS (Supplementary Fig. S4). TGW dis-
played an obvious shift towards higher values in the Y8679/
J411 RIL population, whereas the other six traits exhibited 
normal distributions (Supplementary Fig. S5). All traits had 
broad sense heritabilities over 0.80. Pearson’s correlation 
coefficients among the seven traits were calculated based 
on the BLUP values across seven shared environments (i.e., 
E5, E6, E7, E8, E9, E10, and E11), which showed that GNS 
was strongly and negatively correlated with TGW, GA, GC, 
GL, and GW (Supplementary Table S7).

Table 1   Parental and population 
means, ranges, and broad 
sense heritabilities for TGW, 
GNS, GWS, and four grain 
morphometric parameters

The traits include thousand grain weight (TGW), grain number per spike (GNS), grain weight per spike 
(GWS), grain surface area (GA), grain circumference (GC), grain length (GL), and grain width (GW). 
Delta refers to the difference between Y8679 and J411 phenotypes as a percentage of J411. Broad sense 
heritability based on a family mean basis was estimated across all evaluated environments for each trait. 
TGW and GNS were evaluated in 11 environments (from E1 to E11), whereas the four grain morphometric 
parameters were evaluated in seven environments (from E5 to E11)

Trait Parental lines RIL population

J411 Y8679 Delta (%) Min Max Mean ± SD h
2

B

TGW 47.56 64.95 36.54 42.36 65.23 55.73 ± 4.21 0.95
GNS 50.22 43.26 − 13.87 36.42 51.70 43.84 ± 2.95 0.90
GWS 2.41 2.74 13.69 2.00 2.89 2.47 ± 0.17 0.87
GA 17.49 22.80 30.39 16.68 22.53 19.82 ± 1.09 0.93
GC 16.89 20.05 18.67 16.95 19.89 18.41 ± 0.59 0.96
GL 6.54 7.95 21.66 6.53 7.88 7.22 ± 0.27 0.97
GW 3.37 3.62 7.58 3.14 3.71 3.47 ± 0.11 0.90

http://plants.ensembl.org/common/Tools/Blast?db=core
http://plants.ensembl.org/common/Tools/Blast?db=core
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Identification of genomic regions harboring stable 
QTLs for TGW, GNS, GA, GC, GL, and GW

QTLs repeatedly detected in ≥ 3 individual environments and in 
the analysis of BLUPs were considered to be stable. According 
to this criterion, 34 stable QTLs for TGW, GNS, GA, GC, GL, 
and GW were mapped within eight genomic regions (Table 2; 
Supplementary Table S8). The corresponding physical intervals 
of these genomic regions in the Chinese Spring RefSeq v1.0 

sequence are listed in Table 2 and Supplementary Table S9. 
Further 123 putative QTLs for TGW, GNS, GA, GC, GL, and 
GW that did not meet this criterion are listed in Supplementary 
Table S10. Of the 29 QTLs for GWS, two were detected in three 
(QGws.cau-1B.3) or four (QGws.cau-4D.1) environments, but 
not in the analysis of BLUPs (Supplementary Table S10).

The stable QTL regions on chromosomes 1B, 3A, and 7A 
were found to have an effect on GNS, but with no significant 
effect on TGW (Fig. 1; Table 2). The region on chromosome 

Table 2   Eight genomic regions harboring stable QTLs for TGW, GNS, GA, GC, GL, and GW in the Y8679/J411 population

a Additional details regarding the SNP markers within each QTL region can be found in Zhai et al. (2016)
b The corresponding physical intervals (Mb) of the QTL regions on chromosomes 2B, 3A, 3B, 5B, 6A or 7A were obtained by blasting the flank-
ing sequences of SNP markers to the Chinese Spring RefSeq v1.0 sequence (Supplementary Table S9)
c The traits include thousand grain weight (TGW), grain number per spike (GNS), grain surface area (GA), grain circumference (GC), grain 
length (GL) and grain width (GW). The letters within the brackets indicate the origin of the increasing alleles, with ‘Y’ and ‘J’ representing 
Y8679 and J411, respectively
d QTLs shown in bold are stable QTLs that were detected in ≥ 3 individual environments and in the analysis of BLUPs
e C indicates the combined QTL analysis based on BLUP values

Chromo-
some

Interval (cM)a Interval (Mb)b Associated traitc Included QTLd Detected environmente References

1B 0.0–7.7 GNS (Y) QGns.cau-1B.1 E3/E7/E10/E11/C Griffiths et al. 
(2015)

GWS (Y) QGws.cau-1B.3
GW (Y) QGw.cau-1B.1 E6/E9/E11/C

2B 117.0–129.6 691.78–727.21 GA (Y) QGa.cau-2B.1; QGa.cau-2B.2 E6/E7/E8/C
GC (Y) QGc.cau-2B.1; QGc.cau-2B.2 E5/E7/E8/E9/E11/C
GL (Y) QGl.cau-2B.2; QGl.cau-2B.3 E5/E6/E7/E8/E9/E10/

E11/C
Sun et al. (2009)

3A 30.7–34.9 639.09–650.43 GNS (J) QGns.cau-3A.1 E1/E7/E11/C Cui et al. (2014)
3B 113.8–139.8 698.62–760.71 TGW (Y) QTgw.cau-3B.1; QTgw.cau-3B.1 E1/E4/E6/E8/E9/E11/C Cui et al. (2014)
5B 6.0–28.4 35.29–395.63 TGW (Y) QTgw.cau-5B.2; QTgw.cau-5B.3 E2/E3/E5/E6/E7/C Cui et al. (2014)

GA (Y) QGa.cau-5B.2 E6/E7/E11/C
GC (Y) QGc.cau-5B.1; QGc.cau-5B.3; 

QGc.cau-5B.5
E6/E7/E8/E9/E11/C

6A 62.5–94.2 52.40–585.43 GL (Y) QGl.cau-5B.1; QGl.cau-5B.3; 
QGl.cau-5B.4

E5/E6/E7/E8/E9/E10/
E11/C

Cui et al. (2014)

GNS (J) QGns.cau-6A.2; QGns.cau-
6A.3; QGns.cau-6A.4

E1/E2/E3/E4/E5/E6/E7/
E8/E9/E10/E11/C

Jia et al. (2013)

GNS (J) QGns.cau-6A.2; QGns.cau-
6A.3; QGns.cau-6A.4

E1/E2/E3/E4/E5/E6/E7/
E8/E9/E10/E11/C

Jia et al. (2013)

TGW (Y) QTgw.cau-6A.1; QTgw.cau-
6A.2; QTgw.cau-6A.3

E1/E2/E3/E4/E5/E6/E7/
E9/E10/E11/C

Cui et al. (2014); 
Simmonds et al. 
(2014)

GA (Y) QGa.cau-6A.1; QGa.cau-6A.2; 
QGa.cau-6A.3

E5/E6/E7/E8/E9/E10/
E11/C

GC (Y) QGc.cau-6A.2; QGc.cau-6A.3; 
QGc.cau-6A.4

E5/E6/E7/E8/E9/E11/C

GL (Y) QGl.cau-6A.1; QGl.cau-6A.2 E5/E6/E7/E8/E9/E11/C
GW (Y) QGw.cau-6A.1; QGw.cau-6A.2; 

QGw.cau-6A.3
E5/E6/E7/E8/E9/E11/C Cui et al. (2014)

6B 1.3–31.9 GL (Y) QGl.cau-6B.2; QGl.cau-6B.3 E5/E6/E9/E11/C
7A 53.9–85.2 76.98–275.92 GNS (J) QGns.cau-7A.2; QGns.cau-7A.3 E3/E5/E6/E7/E9/E10/C Kumar et al. (2007)

GL (Y) QGl.cau-7A.1 E5/E7/E11/C
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Fig. 1   Chromosomal locations of eight genomic regions associated 
with TGW, GNS, and four grain morphometric parameters in the 
Y8679/J411 population. Three centiMorgan (cM) scales are shown 
on the left. Information regarding the omitted SNP and SSR markers 
(represented as horizontal black lines) can be accessed in Zhai et al. 
(2016). Solid black ellipses indicate the centromeres. Double-headed 
arrows specify the interval of a genomic region harboring QTLs or 

QTL clusters. Vertical bars represent the LOD-2 confidence intervals 
of each QTL, with triangles or arrows indicating the QTL peaks in 
individual environments. Stable QTLs are shown in bold black or 
bold red, with superior alleles coming from Y8679 or J411, respec-
tively. Putative QTLs are displayed in gray and pink, with Y8679 or 
J411 contributing the increasing alleles, respectively
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1B co-localized with the 1RS/1BL translocation, which is 
present in Y8679 and has a strong positive effect on spikelet 
number per spike (Zhai et al. 2016). QGns.cau-1B.1 was the 
only GNS QTL at which Y8679 contributed the increasing 
allele. In detected environments, QGns.cau-1B.1 explained 
8.49–15.25% of the total variation of GNS. The region on 
chromosome 3A contained another stable QTL for GNS 
(QGns.cau-3A.1) with a relatively minor effect. The region 
on chromosome 7A contained two adjacent major GNS QTLs 
(QGns.cau-7A.2 and QGns.cau-7A.3) that together explained 
29.63% of the observed variation of GNS. For both regions on 
chromosomes 3A and 7A, the alleles from J411 were found to 
have significant positive effects on GNS. The RILs carrying 
positive alleles at all three of the stable QTL regions for GNS 
(YJJ) exhibited significantly higher GNS (by 4.87 grains, 
P < 0.0001) and GWS (by 0.28 g, P < 0.0001) (Fig. 2a) than 
those possessing the three opposite alleles (JYY). The two 
groups did not differ significantly (P = 0.36) in TGW. 

The stable QTL regions on chromosomes 3B and 5B 
mainly influenced TGW, with the superior alleles coming 

from Y8679 (Fig. 1; Table 2). In the analysis of BLUPs, 
QTgw.cau-3B.1 and QTgw.cau-3B.2 explained 7.35 and 
6.44% of the variation observed for TGW, respectively. A 
QTL for GW (QGw.cau-3B.2) coincided with QTgw.cau-
3B.1, suggesting possible pleiotropy at this locus. The region 
on chromosome 5B covered two stable QTLs for TGW, 
i.e., QTgw.cau-5B.2 and QTgw.cau-5B.3, which together 
explained 12.36% of the total variation of TGW. This region 
also possessed stable QTLs for GA (QGa.cau-5B.2), GC 
(QGc.cau-5B.3), and GL (QGl.cau-5B.3 and QGl.cau-5B.4), 
indicating that the positive effect on TGW was most likely 
conferred by increasing GL. The RILs carrying positive 
alleles in both the 3B and 5B regions (YY) had higher TGW 
(by 4.53 g, P < 0.0001) and GWS (by 0.12 g, P < 0.001) and 
slightly lower GNS (by 0.12 grains, P < 0.05) than those 
possessing the two opposite alleles (JJ) (Fig. 2b).

In the stable QTL region on chromosome 6A, the allele 
from Y8679 increased TGW but decreased GNS (Fig. 3a; 
Table 2). This region contained three major QTLs for TGW, 
i.e., QTgw.cau-6A.1, QTgw.cau-6A.2, and QTgw.cau-6A.3, 

Fig. 2   Pyramiding effects of several stable QTL regions on chromo-
somes 1B, 3A, 3B, 5B, 6A, or 7A. The phenotypic data used here 
were the BLUP estimates of each recombinant inbred line (RIL) 
across 11 environments. The genotypic data used here were col-
lected from the allelic information at specific markers within the sta-
ble QTL regions as follows: pSc20H (Chr. 1B), Ra_c1619_432 (Chr. 
3A), RAC875_c15109_510 (Chr. 3B), Excalibur_rep_c102702_495 

(Chr. 5B), Ra_c29420_237 (Chr. 6A), and BobWhite_c41815_145 
(Chr. 7A). ‘Y’ and ‘J’ indicate alleles contributed by Y8679 and J411, 
respectively. For a specific pyramiding pattern, the number of RILs 
is shown in the bracket, and the mean value of these RILs (± SE) is 
shown in a histogram. *, ***, and **** indicate significant differ-
ences at the 0.05, 0.001, and 0.0001 levels (Student’s t test), respec-
tively
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which together explained 49.20% of the total variation of 
TGW. Moreover, several major QTLs for GA (QGa.cau-
6A.1, QGa.cau-6A.2, and QGa.cau-6A.3) and GC (QGc.
cau-6A.2 and QGc.cau-6A.4) were also detected in this 
region. Together, these QTLs explained 50.14 and 27.08% 
of the total variation of GA and GC, respectively. Y8679 
contributed increasing alleles for all of these loci. Two major 
QTLs for GNS (QGns.cau-6A.2 and QGns.cau-6A.3) with 
superior alleles coming from J411 were also detected in 
this region. Together, these QTLs explained 38.60% of the 
observed GNS variation. Even in the presence of high-GNS 
alleles on chromosomes 3A and 7A or high-TGW alleles on 
chromosomes 3B and 5B, the RILs with Y8679 allele at the 
6A region had higher TGW (by 3.92–5.90 g, P < 0.0001) 
and lower GNS (by 3.16–3.24 grains, P < 0.0001) than those 
possessing J411 allele (Fig. 2c, d).

For GL, there were also additional stable QTLs in 
regions on chromosomes 2B and 6B, but these QTLs did 
not significantly influence TGW (Figs. 1, 2). The region 
on chromosome 2B harbored the two most stable QTLs 
for GL, i.e., QGl.cau-2B.2 and QGl.cau-2B.3, which were 
found in nearly all evaluated environments (Supplementary 
Table S8). These two loci together explained 19.02% of the 
detected GL variation. QGl.cau-2B.2 co-localized with two 
stable QTLs for GA (QGa.cau-2B.1) and GC (QGc.cau-
2B.1), which explained 4.92 and 8.81% of the total variation 
of GA and GC, respectively. The region on chromosome 6B 
contained two QTLs for GL, i.e., QGl.cau-6B.2 and QGl.
cau-6B.3, which together explained 13.81% of the observed 
GL variation.

Use of NILs to verify and precisely map a QTL 
on chromosome 6A

RIL186 was selected from the population, because this RIL 
exhibited residual heterozygosity at locus Xbarc118. Two of 
its selfed progeny, which possessed alternative haplotypes 
and were homozygous, were genotyped using the Affymetrix 
wheat 660 K SNP array (http://wheat.pw.usda.gov/ggpages/
topics/

Wheat660_SNP_array_developed_by_CAAS.pdf). The 
results showed that they were 99.82% similar, only differ-
ing in 1094 SNPs (Supplementary Table S11). Of these 
1094 polymorphic SNPs, 895 were located in an interval 
between 28.22 and 445.78 Mb on chromosome 6A. The 
flanking sequences of these 895 SNP markers and their 
physical locations in the Chinese Spring RefSeq v1.0 
sequence are listed in Supplementary Table S12. Consid-
ering that the corresponding physical interval of the 6A 
region spanned from 52.40 to 585.43 Mb, we chose to focus 
on the region from 52.40 to 445.78 Mb (Table 2), i.e., an 
8.908 cM interval between wsnp_BE490604A_Ta_2_1 and 

wsnp_RFL_Contig1340_448996 and designated as QTgw/
Gns.cau-6A, for the development of NILs (Fig. 3a, b).

Fourteen co-dominant polymorphic SSR markers (Sup-
plementary Table S6) were developed using a collinearity-
based strategy and used to genotype the F9:10 family with 
163 individuals derived from RIL186. The resultant genetic 
linkage map spanned 12.18 cM in length, covering an inter-
val from 31.39 to 237.76 Mb in the Chinese Spring RefSeq 
v1.0 sequence (Supplementary Table S13). Based on geno-
type of these markers, four sets of NIL pairs (NIL1, NIL2, 
NIL3, and NIL4) with overlapping recombinant segments 
were developed (Fig. 3c). The first NIL pair, with no recom-
bination in the concern region, was used to verify the effects 
of QTgw/Gns.cau-6A.

Across six replicated field trials, the TGW of NIL1-
Y8679 (with Y8679 haplotype) was from 6.68 to 11.90% 
(mean 8.33%, P < 0.001) higher than that of NIL1-J411 
(Fig. 4; Supplementary Table S14). This variation in TGW 
was associated with average differences of 4.95, 1.87, 1.19, 
and 3.30% (P < 0.001) in GA, GC, GL, and GW, respec-
tively, with NIL1-Y8679 having the higher values. A differ-
ence in GNS (mean 3.05%, P < 0.001) was also observed, 
with NIL1-Y8679 exhibiting the lower value. This effect 
varied across six trials with NIL1-Y8679 associated with 
significant GNS reductions (P < 0.05) from 2.71 to 8.20% in 
five of them. Overall, NIL1-Y8679 had 3.35% higher GWS 
(P < 0.001) and 4.29% higher GWP (P < 0.001) than NIL1-
J411. In most trials, no significant differences were observed 
for tiller number (Supplementary Table S14). Collectively, 
these results demonstrate that the Y8679 haplotype in QTgw/
Gns.cau-6A has a consistent positive effect on GWS and 
GWP, which is conferred by a large positive effect on TGW, 
but counterbalanced by a small negative effect on GNS.

Subsequently, we used NIL2, NIL3, and NIL4 to map 
the high-TGW, low-GNS region into a smaller genetic inter-
val. When these NIL pairs were evaluated for TGW and 
GNS in three field trials, significant differences in TGW 
and GNS were found only between the members of the 
NIL4 pair (Fig. 3d), but not between the members of the 
NIL2 or NIL3 pairs. Based on these results, QTgw/Gns.
cau-6A was narrowed to an interval of 208.80 Mb, which 
is flanked by marker 6AS-165 (236.98 Mb) and the distal 
margin of the region of interest (445.78 Mb; Supplementary 
Table S12). This represents a genetic interval shorter than 
0.538 cM on the Y8679/J411 map, a segment flanked by 
BS00027313_51 (70.873 cM; 151.49 Mb) and wsnp_RFL_
Contig1340_448996 (71.411 cM; 445.25 Mb) (Fig. 3a).

To estimate the additive and dominance effects of QTgw/
Gns.cau-6A, we evaluated the 163 F10:11 families for TGW, 
GNS, and GWS in one field trial (Beijing, 2014–15 crop 
season) in three replicates. Eighty segregating families and 
36–41 homozygous families with alternative haplotypes 

http://wheat.pw.usda.gov/ggpages/topics/
http://wheat.pw.usda.gov/ggpages/topics/
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across the interval from 6AS-165 to 6AS-1 were used for 
variation analysis. The Y8679 haplotype of QTgw/Gns.cau-
6A showed overdominance (d/a = 1.76) for higher TGW, 
with the mean values of segregating families (43.51 g) and 
Y8679-type homozygous families (43.75 g) being signifi-
cantly higher (P < 0.001) than that of J411-type homozy-
gous families (39.78 g). Likewisely, the J411 haplotype of 
QTgw/Gns.cau-6A exhibited overdominance (d/a = 2.16) for 
higher GNS, with the segregating families and J411-type 
homozygous families bearing 2.80 and 2.69 more grains 
(P < 0.001) than the Y8679-type homozygous families, 
respectively. We also observed an overdominance effect 
(d/a = 11.04) of QTgw/Gns.cau-6A on spike yield, with the 
mean GWS values of segregating families being 0.11–0.16 g 
higher (P < 0.01) than those of the two types of homozygous 
families (Table 3).

Isolation of candidate gene TaGW2‑A1

TaGW2-A1, a wheat homolog of rice OsGW2 (Song et al. 
2007), was previously reported to negatively affect TGW 
in wheat (Du et al. 2016; Simmonds et al. 2016; Yang et al. 
2012). It was mapped to the short arm of chromosome 6A, 
near the centromere (Su et al. 2011). As this position cor-
responds with that of QTgw/Gns.cau-6A, we obtained the 
complete coding sequence and the promoter sequence (about 
2.0 kb upstream from ATG) for TaGW2-A1 from Y8679 
to J411, and analyzed their polymorphisms. No differences 
were observed in the coding sequence, but a 114-bp Inser-
tion/Deletion (InDel) was detected in the promoter region 
(− 230 to − 117-bp upstream from ATG; Fig.  5a). No 
other variations were detected in the rest of the promoter 
sequence. The allele from Y8679 has the 114-bp deletion as 

Fig. 3   Fine mapping of QTgw/Gns.cau-6A. a Distributions of major 
QTLs for TGW, GNS, and four grain morphometric parameters 
within the stable QTL region on chromosome 6A. The interval 
colored in light blue represents QTgw/Gns.cau-6A, which possessed 
whole QTgw.cau-6A.1 and partial QGns.cau-6A.2. Descriptions 
regarding the QTL confidence intervals and the peak regions are con-
sistent with those introduced in Fig. 1. The solid black ellipse indi-
cates the centromere. b Corresponding physical interval of the stable 

QTL region on chromosome 6A in the Chinese Spring RefSeq v1.0 
sequence. The solid black ellipse indicates the centromere. c Graphi-
cal genotypes of four NIL pairs (derived from RIL186) with overlap-
ping recombinant segments. The solid black ellipse indicates the cen-
tromere. d Performance of the members of the four NIL pairs in three 
field trials. *, **, and *** indicate significant differences at the 0.05, 
0.01, and 0.001 levels (Student’s t test), respectively
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compared to those of J411 and Chinese Spring (Supplemen-
tary Fig. S6). The primer pair TaGW2-A1_InDel targeting 
this InDel was used to genotype the F9:10 family with 163 
progeny derived from RIL186. TaGW2-A1 was mapped to 
chromosome 6A near marker 6AS-1 (Fig. 3c), within the 
finely mapped interval of QTgw/Gns.cau-6A.

We obtained the full-length cDNA of TaGW2-A1 by 
5′-RACE and 3′-RACE using RNA isolated from 7-day-
old seedlings of J411. The obtained full-length cDNA 
was 1675 bp in length, including a 176-bp 5′ untranslated 
region (UTR), a 1275-bp ORF, a 3-bp stop codon (TAA), 

and a 221-bp 3′UTR. The transcription start site (− 176-bp 
upstream from ATG) was located within the 114-bp InDel 
(Fig. 5a). We fused the TaGW2-A1 promoter sequences from 
Y8679 (1121 bp) and J411 (1235 bp) with the GUS reporter 
gene (Supplementary Fig. S3), respectively, to assess the 
effects of the 114-bp InDel on promoter activity. The GUS 
activity conferred by Y8679-pTaGW2-A1::GUS was 76.83% 
lower (P < 0.001) than that by J411-pTaGW2-A1::GUS, 
but still 48.96% higher (P  <  0.01) than that detected 
for the empty vector control (Fig. 5b). In the immature 
grains (11 days after pollination), the expression level of 

Fig. 4   Phenotypic comparisons of NIL1-Y8679 and NIL1-J411 in 
six field trials. Percentage increase conferred by the Y8679 haplo-
type on a yield components and b grain morphometric parameters. 

Significant differences are indicated by *P < 0.05, **P < 0.01, and 
***P < 0.001 (Student’s t test). ‘Overall’ represents the BLUP values 
estimated across six evaluated environments
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TaGW2-A1 in NIL1-Y8679 was 63.27% lower (P < 0.001) 
than that in NIL1-J411 (Fig. 5c). Taken together, we propose 
that the 114-bp deletion reduces the promoter activity and 
expression of TaGW2-A1.

To further explore implications of our findings on 
wheat breeding, primer pair TaGW2-A1_InDel was used 

to amplify 848 hexaploid wheat accessions, including 798 
Chinese varieties (96 landraces and 702 modern cultivars) 
and 50 French varieties (Fig. 5d; Supplementary Table S1). 
Nearly all accessions (99.6%) amplified the wild-type 336-
bp J411 fragment, whereas only three (Jinan 13, Jinghua 9 
and Gaoyou 0551) amplified the mutant type 222-bp Y8679 

Table 3   Estimation of the 
additive and dominance effects 
of QTgw/Gns.cau-6A on TGW, 
GNS, and GWS using 163 F10:11 
families

The 163 F10:11 families derived from RIL186 were evaluated at Beijing during the 2014–15 crop season 
with three replicates. Based on the genotypes of 6AS-165 and 6AS-1, 80 segregating families, 41 Y8679-
type homozygous families and 36 J411-type homozygous families were selected and used for phenotypic 
variation analysis. a and d indicate the additive and dominance effects, respectively. d/a indicates the 
degree of dominance. Multiple comparison was based on LSD method. Different letters (A and B) are used 
to indicate the means (± SE) that significantly differ (P < 0.01)

Families TGW GNS GWS

Y8679-type homozygous families 43.75 ± 0.50A 41.36 ± 0.59B 1.82 ± 0.04B

Segregating families 43.51 ± 0.28A 44.16 ± 0.33A 1.93 ± 0.02A

J411-type homozygous families 39.78 ± 0.30B 44.05 ± 0.35A 1.77 ± 0.02B

a 1.98 1.35 0.02
d 3.49 2.91 0.26
d/a 1.76 2.16 11.04

Fig. 5   Isolation of a novel and rare allele of TaGW2-A1. a 114-bp 
Insertion/Deletion (InDel) detected in the promoter region. Red rec-
tangles specify the forward and reverse primers of TaGW2-A1_InDel. 
Blue and green rectangles indicate the transcription start site and the 
predicted translation initiation codon, respectively. b Comparison 
of the GUS expression level in different promoter-GUS constructs. 
Superscripts A, B, and C indicate the means (± SE) that signifi-
cantly differ at the 0.01 level (LSD). c Relative expression levels of 
TaGW2-A1 in immature grains (11 dap) of the NIL1 pair, with Actin 

used as the endogenous control. The results of three biological repli-
cations showed similar trends. The values represent the means (± SE) 
of three biological replicates. *** indicates significance at the 0.001 
level (Student’s t test). d Frequency of the 114-bp deletion among 
1113 wheat accessions with varying ploidy. The two numbers (from 
left to right) within the brackets indicate the number of accessions 
amplifying the 224-bp fragment and the 336-bp fragment, respec-
tively. e PCR products of TaGW2-A1_InDel in several hexaploid 
wheat accessions
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fragment (Fig. 5e; Supplementary Fig. S7). Thus, at least 
within the panel evaluated, the favorable allele of TaGW2-A1 
is very rare. Moreover, 238 tetraploid and 27 diploid wheat 
species were also screened for the 114-bp deletion (Fig. 5d; 
Supplementary Tables 2 and 3), but none of them carried 
the 224-bp fragment like Y8679, again suggesting a rare 
mutation event leading to the 114-bp deletion.

Discussion

Five genomic regions exhibit negligible TGW‑GNS 
trade‑offs

TGW and GNS are two primary yet negatively correlated 
determinants of spike yield in wheat (Jia et al. 2013; Shukla 
et al. 2015). Information about trade-offs between the two 
traits can help to improve the efficiency of wheat breeding. 
Here, we report five genomic regions on chromosomes 1B, 
3A, 3B, 5B, or 7A exhibiting negligible TGW-GNS trade-
offs. These represent attractive targets for marker-assisted 
selection to enhance grain size and/or grain number. The 
region on chromosome 1B can be attributed to the 1RS/1BL 
translocation (carried by Y8679). It increased GNS, corre-
sponding to our previous finding that 1RS/1BL translocation 
enhanced spikelet number per spike across all evaluated tri-
als (Zhai et al. 2016). In the regions on chromosomes 3A and 
7A, alleles from J411 increased the grain number without 
significantly reducing grain weight. The 3A region is prob-
ably within the deletion bin 3AL5-0.78-1.00, which has pre-
viously been reported to harbor QTLs for grain yield, GNS, 
spikelet number per spike, test weight, TGW, and heading 
time (Ali et al. 2011; Cui et al. 2014; Huang et al. 2004; 
Zhai et al. 2016). Similarly, the region detected on chromo-
some 7A has previously been reported to affect GNS, spike-
let number per spike and grain yield (Kumar et al. 2007; 
Ma et al. 2007; Reif et al. 2011; Wu et al. 2012). In the 
regions on chromosomes 3B and 5B, alleles from Y8679 
increased TGW without significantly reducing GNS. These 
two regions coincide with several previously reported QTLs 
for TGW and grain yield (Cui et al. 2014; Reif et al. 2011; 
Sun et al. 2009). Notably, the region on chromosome 3B 
has also been shown to enlarge grain size through enhanc-
ing grain filling rate in the Heshangmai/Y8679 population, 
which shares a common parent with the population used in 
this study (Wang et al. 2009).

Analysis of the QTLs on chromosome 6A provides 
new insight into TGW‑GNS trade‑off

In recent years, evidence is accumulating that robust QTLs 
for TGW (Cui et al. 2016; Mir et al. 2012; Snape et al. 2007; 
Zanke et al. 2015) and GNS (Jia et al. 2013; Yuan et al. 

2012) exist in the pericentromeric region of chromosome 
6A. Here, we detected stable major QTLs for TGW (QTgw.
cau-6A.1, QTgw.cau-6A.2 and QTgw.cau-6A.3) and GNS 
(QGns.cau-6A.2, and QGns.cau-6A.3) in this region. The 
two QTL clusters on chromosome 6A for TGW and GNS 
were both linked in the coupling phase, but with superior 
alleles coming from opposite parents. Hence, selection for 
the higher TGW haplotype would inevitably be accom-
panied by a reduction of GNS, and vice versa. This is a 
typical selection trade-off problem for higher TGW versus 
higher GNS. Importantly, by evaluating a pair of NILs in 
several field trials, we demonstrated that QTgw/Gns.cau-
6A (covering whole QTgw.cau-6A.1 and partial QGns.cau-
6A.2) affected both TGW and GNS in an opposite manner. 
Through further mapping with another three pairs of NILs, 
we narrowed QTgw/Gns.cau-6A to a small genetic interval 
shorter than 0.538 cM. Consequently, QTgw/Gns.cau-6A and 
the NIL pairs developed here may be a perfect target and 
good materials, respectively, for further studying the molec-
ular genetic basis of TGW–GNS trade-off in common wheat.

From a practical point of view, it is worthy to point out 
that when pyramiding the QTLs identified here, it seems 
advisable to select the Y8679 haplotype in the presence of 
major QTLs for GNS on chromosomes 3A and 7A (Fig. 2c), 
or the J411 haplotype in the presence of major QTLs for 
TGW on chromosomes 3B and 7B (Fig. 2d).

A novel mutation of TaGW2‑A1 is associated 
with increased TGW in wheat

In rice, OsGW2 encodes a RING-type protein with E3 ubiq-
uitin ligase activity that negatively regulates the grain weight 
and width (Song et al. 2007). Its wheat homolog on the short 
arm of chromosome 6A (TaGW2-A1) locates in a region 
near the centromere (Su et al. 2011), in which major QTLs 
for TGW have been mapped (Cui et al. 2016; Simmonds 
et al. 2014; Zanke et al. 2015). Several reports (Su et al. 
2011; Zhang et al. 2013, Jaiswal et al. 2015) have focused 
on the roles of individual SNPs in the promoter region, but 
validations of their associations with TGW are still needed. 
Two mutations in the coding sequence have been reported 
to be associated with TGW: a frame-shift mutation in exon 
8 (Du et al. 2016; Yang et al. 2012) and a splice acceptor 
site mutation in exon 5 (Simmonds et al. 2016). The effects 
of these coding sequence mutations have been tested in 
backcross derived isogenic lines, providing sound evidence 
that TaGW2-A1, indeed, influences TGW in tetraploid and 
hexaploid wheat.

In the present study, we located TaGW2-A1 within the 
finely mapped interval of QTgw/Gns.cau-6A. Furthermore, 
a novel mutation of TaGW2-A1 with a 114-bp deletion in the 
promoter was isolated from the high-TGW parent Y8679. 
Deletion of the wild-type transcription start site reduced 
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promoter activity and decreased expression of TaGW2-A1, 
which might, in turn, enhance TGW according to the previ-
ous finding that TaGW2-A1 is a negative regulator of grain 
weight (Du et al. 2016; Simmonds et al. 2016; Yang et al. 
2012). In a germplasm survey of more than 800 hexaploid 
wheat accessions, the 114-bp deletion was detected only in 
Y8679 and three other cultivars: Jinan 13, Jinghua 9, and 
Gaoyou 0551 (Fig. 5e). These four cultivars could be use-
ful as donors for higher TGW in wheat breeding programs. 
Due to the incomplete pedigree information (Supplemen-
tary Table S15), no clear relationship was observed in these 
accessions. Furthermore, this novel allele was not detected 
in tetraploid and diploid wheat species that were involved in 
the formation of hexaploid wheat (IWGSC 2014). Together, 
these data point to the possibility that the novel TaGW2-
A1 allele identified here may arise during or after the hexa-
ploidization event that yielded hexaploid wheat.

QTgw/Gns.cau‑6A shows possible overdominance 
effect on spike yield

Heterosis has been a main contributor to yield increase in 
many cereal crops (Fu et al. 2014). Despite extensive efforts 
in hybrid wheat breeding, mechanisms of wheat heterosis 
are largely unknown (Ni et al. 2013). Here, we provide the 
first example of overdominance effect on spike yield that 
conferred by a single locus in wheat. Data from a single 
year trial (Beijing; 2014–15) suggest that the combination of 
the Y8679 haplotype and the J411 haplotype of QTgw/Gns.
cau-6A in the heterozygotes will most likely lead to an over-
dominance effect on GWS. Using the NILs developed for 
QTgw/Gns.cau-6A, the consistency of this overdominance 
effect across environments will be further investigated in 
the future.

Previously, Bednarek et al. (2012) found that TaGW2 
knockdown through RNAi caused no significant alternation 
in GNS or in the number of spikelets per spike. Similarly, 
Hong et al. (2014) also found that TaGW2-RNAi had no 
significant impact on grain number per plant, and Sim-
monds et al. (2016) found that a G-to-A transition in the 
splice acceptor site of exon 5, which leads to mis-splicing 
in TaGW2-A1, had no significant impact on GNS or on the 
number of spikelets per spike. Thus, we tend to believe that 
the overdominance effect of QTgw/Gns.cau-6A on GWS was 
most likely caused by two or more different dominant genes 
linked in repulsion phase, with TaGW2-A1 for enlarged grain 
size, while the other for increased grain number. Dissection 
of QTgw/Gns.cau-6A into two distinct QTLs for TGW and 
GNS, respectively, may eliminate linkage drag, but it will 
be a challenging task, since QTgw/Gns.cau-6A is located 
near the centromere. Considering the low recombination 
frequency of the pericentromeric region, utilization of the 
overdominance effect on GWS in the form of heterozygotes 

seems to be a feasible way to combine higher TGW and 
higher GNS phenotypes.
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