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Abstract
Key message Rice breeding programs based on pedigree schemes can use a genomic model trained with data from 
their working collection to predict performances of progenies produced through rapid generation advancement.
Abstract So far, most potential applications of genomic prediction in plant improvement have been explored using cross 
validation approaches. This is the first empirical study to evaluate the accuracy of genomic prediction of the performances 
of progenies in a typical rice breeding program. Using a cross validation approach, we first analyzed the effects of marker 
selection and statistical methods on the accuracy of prediction of three different heritability traits in a reference population 
(RP) of 284 inbred accessions. Next, we investigated the size and the degree of relatedness with the progeny population 
(PP) of sub-sets of the RP that maximize the accuracy of prediction of phenotype across generations, i.e., for 97  F5–F7 lines 
derived from biparental crosses between 31 accessions of the RP. The extent of linkage disequilibrium was high (r2 = 0.2 at 
0.80 Mb in RP and at 1.1 Mb in PP). Consequently, average marker density above one per 22 kb did not improve the accuracy 
of predictions in the RP. The accuracy of progeny prediction varied greatly depending on the composition of the training set, 
the trait, LD and minor allele frequency. The highest accuracy achieved for each trait exceeded 0.50 and was only slightly 
below the accuracy achieved by cross validation in the RP. Our results thus show that relatively high accuracy (0.41–0.54) 
can be achieved using only a rather small share of the RP, most related to the PP, as the training set. The practical implica-
tions of these results for rice breeding programs are discussed.

Introduction

Genomic selection (GS) arose from the conjunction of new 
high-throughput marker technologies and new statistical 
methods (Meuwissen et al. 2001). GS allows analysis of the 
genetic architecture for complex traits in the framework of 
infinitesimal model effects. It consists in (1) using all mark-
ers (often large numbers) simultaneously to build a model 
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of genotype–phenotype relationships in a training popula-
tion (TP), thus accounting also for linkage disequilibrium 
(LD) among markers, and (2) using the model to predict the 
genomic estimate of breeding values (GEBV) of candidates 
in a breeding population (CP) (Meuwissen et al. 2001; Jan-
nink et al. 2010). The effectiveness of GS depends, among 
other factors, on the degree of correlation between the pre-
dicted GEBV and the true genetic value, i.e., the accuracy 
of prediction. In practice, the accuracy of prediction is eval-
uated by the correlation between GEBV and the realized 
phenotype.

Prospects for the applications of GS in plant breed-
ing have given rise to many studies using simulations or 
experimental data. The effect of the statistical method on 
the accuracy of GEBV has been widely analyzed (Heslot 
et al. 2012). The general conclusion is that there is no single 
best statistical method and that the accuracy of the different 
methods depends on other factors, such as the characteristics 
of the target trait, the density and distribution of the mark-
ers, the size and the structure of the TP, and the degree of 
relatedness between TP and CP. The characteristics of the 
target trait reported to influence the accuracy of predictions 
include heritability, the number of QTLs, the distribution of 
their allelic effects and frequencies, and the relative magni-
tude of additive and non-additive genetic variance (Hayes 
et al. 2009a; Jannink et al. 2010; Howard et al. 2014; Burstin 
et al. 2015). Regarding marker density, empirical studies 
have confirmed the theoretical stance that marker density 
should be high enough to ensure strong linkage disequilib-
rium (LD) with at least one marker for each QTL (Lorenzana 
and Bernardo 2009; Lorenz et al. 2011; Heffner et al. 2011; 
Poland et al. 2012; Heslot et al. 2013). Another set of factors 
that strongly influence the accuracy of predictions includes 
the size of the TP, its structure, and its relatedness with the 
CP. Accounting for population structure through stratified 
sampling in the TP can significantly improve the accuracy 
of the predictions (Albrecht et al. 2011; Grenier et al. 2015; 
Isidro et al. 2015). Methods have been developed to optimize 
the composition of the TP (Rincent et al. 2012; Akdemir 
et al. 2015), by maximizing the expected reliabilities for a 
given set of individuals.

GS issues that need more thorough empirical studies 
include the evaluation of accuracy of genomic prediction 
for making selection decisions in pedigree breeding within 
the progeny of biparental crosses (Desta and Ortiz 2014). 
Beyene et al. (2015) compared the genetic gain for grain 
yield realized in eight biparental crosses of maize under GS 
associated with rapid cycling, with conventional pedigree 
breeding and reported that the average genetic gain per year 
under GS was three times higher than that achieved by con-
ventional breeding. However, such a GS breeding approach 
required separate model training for each biparental cross 
and phenotyping of the first generation of progeny, which 

increase the costs and duration of breeding cycles. A second 
approach, recently investigated in a number of crops, is the 
use of a reference set to train the prediction model and the 
use of this model to predict the performance of progenies 
from biparental crosses between members of the panel. For 
instance, Hofheinz et al. (2012) used a reference set of 310 
inbred sugar beet lines to predict the test cross value of 56 
inbred progeny derived from eight crosses between six lines 
of the reference set, and reported average prediction accu-
racy of 0.79 for sugar content. Sallam et al. (2015) used a 
training set of 168 barley lines and five sets of 96 progeny 
lines, representative of the breeding lines developed in five 
consecutive years (the training set included the parents of the 
progeny sets) and reported a prediction accuracy of around 
0.50 for grain yield. Likewise, Gezan et al. (2017) used a 
panel representative of the Florida University strawberry 
breeding program and sets of progenies derived from the 
circular mating of 31 members of the panel and reported a 
prediction accuracy ranging from 0.16 to 0.77 depending 
on the traits and model fitting method used. However, this 
approach faces the challenge of differences in LD and allele 
frequencies between the reference panel and the progenies 
of individual biparental crosses, requiring thorough man-
agement of marker density. It also raises the question of the 
choice of prediction model to capture either markers’ LD 
with QTLs or the marker-based relationship between the 
training set and the progenies sets, both of which require 
knowledge of the genetic architecture of the target traits 
(Zhong et al. 2009; Zhang et al. 2017).

Rice (Oryza sativa) is the world’s most important sta-
ple food and will continue to be so in the coming decades. 
Genetic improvement is one of the major pillars of sustain-
able adaptation of rice production to ongoing global changes 
(Atlin et al. 2017). GS is expected to accelerate genetic gain 
for traits such as yield potential and adaptation to constraints 
related to climate change and the efficient use of resources 
(water, nitrogen, etc.) (Ashikari 2017; Atlin et al. 2017). So 
far, however, GS studies on rice have mainly explored the 
cross validation approach within diversity panels (Table 1).

Here we report the first empirical study that assesses the 
accuracy of genomic prediction among the progeny of rice 
biparental crosses using a reference panel for model train-
ing. It was undertaken in the framework of a rice breed-
ing program conducted according to the most common rice 
breeding scheme, i.e., pedigree breeding within the prog-
enies of biparental crosses, the parents being chosen within 
a working collection of inbred accessions. The reference 
panel was composed of 284 inbred accessions of the breed-
ing program’s working collection. The progeny population 
was composed of 97 inbred lines derived from 36 biparental 
crosses between 31 accessions of the working collection. 
The main objectives of this study were to investigate (1) the 
size and the degree of relatedness of the reference panel that 
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maximize the accuracy of prediction of phenotype of prog-
eny lines from several biparental crosses; (2) the effects of 
marker selection and statistical methods on prediction accu-
racy across generations, for three traits with different herit-
ability; and (3) the accuracy of genomic prediction among 
the progeny of individual biparental crosses.

Materials and methods

Plant material

The plant material comprised a diversity panel of 284 acces-
sions and 97 advanced  (F5–F7) inbred lines. The diversity 
panel represents the working collection of the rice breeding 
program of Research Centre for Cereal and Industrial Crops 
(CREA), Vercelli, Italy. It is composed of 139 accessions 
of Italian origin and 145 accessions of diverse geographic 
origin (Supplementary Table 1), all belonging to the japon-
ica subspecies of O. sativa and all adapted to cultivation 
in the irrigated rice ecosystem of temperate Mediterranean 
Europe (Faivre-Rampant et al. 2011; Biscarini et al. 2016). 
Hereafter, this diversity panel is referred to as the “reference 
population” (RP). The 97 advanced lines were derived from 
36 biparental crosses (including five backcrosses) involv-
ing 31 accessions of the diversity panel (Supplementary 
Table 1). The number of progenies per cross ranged from 
1 to 20 (Supplementary Table 2; Supplementary Fig. 1). In 
the present study, these 97 lines constituted the “progeny 
population” (PP).

Field trials and phenotyping

Phenotyping of RP and PP took place at the CREA experi-
mental station (45°19′24.00″N; 8°22′26.28″E; 134 m asl.), 
in an irrigated cropping system with standard crop manage-
ment. The RP was phenotyped during the 2012 and 2013 
rice cropping seasons under a complete randomization 
experimental design with three replicates per accession. The 
size of the individual plot was 1.70 m × 0.40 m, each plot 
contained three rows of 60 seeds. The PP was phenotyped 
during the 2014 and 2015 rice cropping seasons under ran-
domized complete block design with three replicates. The 
size of the individual plot was 1.20 m × 0.80 m, each plot 
contained six rows of 40 seeds.

The target traits for both RP and PP were days to flow-
ering (FL), panicle weight (PW), and the nitrogen balance 
index (NI). FL was recorded as the number of days after 
sowing, when 50% of the plants in the plot were in flower. 
In the experiments related to RP, PW (g) was recorded by 
weighing a random sample of 50 panicles in the plot, and, 
in the experiments related to PP, by weighing 100 repre-
sentative panicles. The measurements were harmonized Ta
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to represent the weight of 100 panicles. NI, an indicator 
of the plant nitrogen status (Tremblay et al. 2012), was 
recorded using a Dualex™ instrument (Goulas et al. 2004), 
7 to 10 days after the flowering date, a period during which 
the nitrogen status of the plant is stable. In each plot, three 
measurements were made on the adaxial and the abaxial 
sides of a flag leaf on three plants. The 18 measurements 
were then averaged to obtain a plot level NI.

Analysis of phenotypic data

Phenotypic data for each trait and each population were ana-
lyzed separately using the proc mixed procedure of SAS 9.2 
(SAS Institute, Cary NC, USA). The mixed model used for 
the RP was:

where Yijk is the observed phenotype of genotype i in year j 
and in plot k, �, the overall mean, gi, the genotype effect, yj, 
the year effect, (gy)ij, the interaction between genotype i and 
year j, and eijk the residual. Except for the overall mean, all 
the effects were considered random and the variance com-
ponents were tested using the Wald Z-statistic tests, which 
are appropriate for large sample sizes.

The mixed model used for the PP was:

where Yijk, �, gi, yj, (gy)ij and eijk have the same meaning 
as in the RP model, and r(y)jk, is the replicate within year 
effect. As in the previous model, all the effects except � were 
considered random.

A model-based diagnostic analysis was run for each field 
trial and each trait within the mixed model framework above, 
to detect potential outliers among the individual data points 
(plot level). The restricted likelihood distance (RLD) output 
of the diagnostic procedure was used to identify outliers. 
RLD is a global measure of the influence of the observations 
jointly on all parameters. If � denotes the collection of all 
parameters in the model, i.e., including fixed (�) and random 
(�), then RLD(U) = 2{lR(�̂�) − lR(�̂�(U))} is twice the dif-
ference between the restricted log-likelihood evaluated at 
the full-data estimates �̂� and at the reduced-data estimates 
�̂� (U). The distribution of the RLD values of the accessions 
was inspected visually and when one was considered too 
high, the corresponding plot data were compared, and out-
lier plots were either corrected or discarded. This procedure 
resulted in the elimination of five data points (of PW) in the 
2013 field trial involving the RP. The eliminated data were 
considered as missing in the following steps of data analysis.

In addition to the above-mentioned diagnostic analysis, 
spatial homogeneity of the experimental fields, where RP 

Yijk = � + gi + yj + (gy)ij + eijk (RP model),

Yijk = � + gi + yj + r(y)jk + (gy)ij + eijk (PP model),

phenotyping took place under a complete randomization 
design, was surveyed by visual analysis of the heat-map of 
the residuals (Supplementary Fig. 2). A slight discrepancy 
in the random distribution of the residuals was observed 
for NI only.

Broad sense heritability of accession means, H2, was 
calculated for each trait in each population using the for-
mula of Holland et al. (2003) as follows:

where ny represents the mean number of years in which the 
accessions were tested and nr, the mean number of plots 
per accession across years. The means were calculated as 
harmonic means. Finally, adjusted means of accessions 
(Ŷi = �̂� + ĝi, with g, as random effect) were extracted for 
each trait to be used as phenotypes in the genomic predic-
tion models.

Genotyping and genotypic data

The genotyping procedure is detailed in Biscarini et al. 
(2016). Briefly, genomic DNA was isolated from 3-week-
old leaves using the DNeasy Plant Mini Kit (QIAGEN, 
Milan, Italy) with a TECAN Freedom EVO150 liquid 
handling robot (TECAN Group Ltd, Männedorf, Swit-
zerland). DNA digestion was performed using ApeKI 
restriction enzyme. Digested DNAs were ligated to 12 
of 0.6/adapter pairs (optimized to guarantee good qual-
ity libraries in rice), and the 96-plex library constructed 
according to the genotyping by sequencing (GBS) proto-
col. The libraries were loaded into a Genome Analyzer 
II (Illumina, Inc., San Diego, USA) for sequencing. The 
Tassel GBS pipeline v3.0 (Glaubitz et al. 2014) was used 
to filter the raw data, sequence alignment to the rice refer-
ence genome (Os-Nipponbare-Reference-IRGSP-1.0), and 
for SNP calling. The procedure yielded 246,554 SNPs with 
a call rate ≥ 80%. Filtering of the matrix for missing data 
with a threshold of 20% led to 70,530 SNPs with an aver-
age rate of 9.2% missing data. Missing SNP genotypes 
were then imputed using the FILLIN (Fast, Inbred Line 
Library ImputatioN) algorithm in the Tassel GBS pipe-
line v3.0, with default settings. Filtering of this matrix 
for the rate of heterozygoty (threshold of 5%) and for a 
minor allele frequency (MAF, threshold of 2.5%) among 
the RP accessions and PP lines, considered together, led 
to a final working set of 43,686 SNP loci. The genotypic 
data are available at http://tropgenedb.cirad.fr/tropgene/
JSP/interface.jsp?module=RICE, (Choose Tab Studies) as 
GS-Ruse_CREA_GBSgenotype_RP&PP.
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Genotypic characterization of RP and PP

The genetic structure of the two populations was analyzed 
jointly using a distance-based method. First, a matrix of 
4824 SNPs was extracted from the working genotypic data-
set of 43,686 SNPs, by discarding loci that had imputed 
data and by imposing a minimum distance of 10 kb between 
two adjacent loci. Then an unweighted neighbor-joining tree 
based on a simple matching matrix was constructed using 
DarWin v6 (Perrier and Jacquemoud-Collet 2006).

Pairwise LD between SNP loci was calculated separately 
in RP and PP at the level of the individual chromosome, 
using the working genotypic dataset of 43,686 SNPs and 
the r2 estimator proposed by Rogers and Huff (2009) for 
non-phased genotypic data.

Genomic prediction methods

Three statistical methods were tested: genomic best linear 
unbiased prediction (GBLUP), reproducing kernel Hil-
bert spaces regressions (RKHS) and BayesB (Meuwissen 
et al. 2001). The GBLUP method (VanRaden 2008) was 
implemented using the Expectation–Maximization conver-
gence algorithm and the genomic matrix G = XX′, X being 
the centered genotype matrix containing values of − 1, 0 
and 1, with N × P dimension, where N is the number of 
entries and P the number of markers. For the RKHS regres-
sion (Gianola and van Kaam 2008), the Gaussian kernel 
K
(
xi, xj

)
= exp

(
−h||xi − xj||2

)
 was used to build the kernel 

matrix (or the Gram matrix) between the marker genotype 
vectors xi and xj, where (i, j) ∈ {1,… ,N}2. The rate of decay 
parameter h, also known as the bandwidth parameter, was 
estimated using the k-folds cross validation method imple-
mented in the Tune_kernel_Ridge_MM function of the R 
package KRMM. The R package kernlab (Karatzoglou et al. 
2004) was used to compute the kernel matrix. Both GBLUP 
and RKHS methods were implemented using the KRMM 
package (https://cran.r-project.org/web/packages/KRMM/
index.html) described by Jacquin et al. (2016). For BayesB, 
the model that specified two component mixtures prior with 
a point of mass at zero and a scaled-t slab for marker effect 
(Meuwissen et al. 2001) was implemented using the BGLR 
statistical package (Pérez and de los Campos 2014). The 
default parameters for prior specification were used and 
the number of iterations for the Markov chain Monte Carlo 
(MCMC) algorithm was set to 12,000 with a burn-in period 
of 2000.

Construction of the incidence matrices

Twenty-one incidence matrices were constructed to inves-
tigate the effect of LD (7 threshold levels) and MAF (3 
threshold levels), on the accuracy of genomic predictions 

within the RP. The seven LD thresholds, r2 ≤ 0.25, ≤ 0.3
6, ≤ 0.49, ≤ 0.64, ≤ 0.81, ≤ 0.98 and ≤ 1, were chosen so 
as to correspond to the square of seven thresholds of Pear-
son correlation between genotype at each pair of loci of a 
given chromosome (− 0.5 ≤ r ≤ + 0.5, − 0.6 ≤ r ≤ + 0.6, 
− 0.7 ≤  r  ≤ +0.7, − 0.8 ≤ r ≤ + 0.8, − 0.9 ≤ r ≤ + 0.9, 
− 0.99 ≤ r ≤ + 0.99, − 1 ≤ r ≤ + 1). The choice of the 
three MAF thresholds (≥ 5, ≥ 10, and ≥ 20%) was intended 
to represent its distribution (first quartile, median and third 
quartile) within RP and PP.

The incidence matrices were constructed as follows: (1) 
using the genotypic dataset (N = 289 entries and P = 43,686 
SNPs), markers were selected based on the three MAF 
thresholds (≥ 5, ≥ 10, and ≥ 20%); (2) for each of the three 
resulting matrices, the pairwise LD between markers was 
calculated for each chromosome; (3) for each marker and for 
each LD threshold, redundancy information was computed 
as the number of times the pairwise LD with other markers 
was above the LD threshold; (4) markers with a redundancy 
level above an empirical threshold of 30 were discarded. 
This empirical threshold of redundancy represented a good 
compromise between our two objectives, one to reduce 
redundancy, which varied widely between SNPs, the other 
to dispose of an ample range of marker density among the 21 
incidence matrices. As a result, marker density ranged from 
8.7 to 83.5 SNP per Mb for the seven LD thresholds under 
MAF ≥ 5%, from 5.0 to 69.9 under MAF ≥ 10% and from 
3.1 to 52.4 under MAF ≥ 20% (Table 2).

Cross validation experiments

The cross validation experiments used 189 (2/3) of the 284 
accessions of the RP as the training set and the remaining 95 
(1/3) accessions as the validation set. Each cross validation 
experiment was repeated 100 times using 100 independent 
partitioning of the accessions into the training set and vali-
dation set. For each independent partitioning, the correla-
tion between the predicted and the observed phenotype was 
calculated, so as to obtain 100 correlations for each cross 
validation experiment. The accuracy of each cross valida-
tion experiment was computed as the mean value of the 100 
correlations.

A total of 189 cross validation experiments were under-
taken combining the above-described seven LD threshold 
levels, three MAF threshold levels, three prediction meth-
ods, and the three phenotypic traits. The same 100 independ-
ent partitioning of the training and validation sets was used 
for all 189 cross validation experiments.

Genomic prediction across generations

Six scenarios, representing different degrees of relatedness 
between the training set and the progeny set and different 

https://cran.r-project.org/web/packages/KRMM/index.html
https://cran.r-project.org/web/packages/KRMM/index.html
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sizes of the training set, were considered (Table 3). To 
this end, first, using pairwise Euclidian distances between 
each parental line and other accessions of the RP, the three 
closest accessions to each of the 31 parental accessions 
were identified. These accessions were then pooled to form 
the most related subset. Pooling led to a total of 58 acces-
sions, because the closest accessions for some parents also 
happened to be the closest for other parents. Finally, this 
subset was combined, or not, with the parental lines and 
with the other accessions of RP to constitute the six train-
ing sets of the six prediction scenarios. For each scenario, 
the correlation between the predicted and the observed 
phenotypes of the 97 progeny lines was calculated, and 
represents the accuracy of the prediction experiment. In 
the case of scenario S6, in which the 31 accessions of the 
training set were randomly sampled 100 times from the RP 
excluding the parents, prediction accuracy was computed 
as the mean value of the 100 correlations between the pre-
dicted and the actual phenotypes of the 97 progeny lines. 
The objective of this random sampling was to reduce the 
risk of over-/under-estimation of prediction accuracy in 
this scenario. Comparisons between scenarios were conse-
quently based on progeny prediction accuracy (PPA) data 
for the non-replicated prediction experiments, and on the 
average PPA for the replicated experiments in scenario S6.

The six scenarios were implemented with seven inci-
dence matrices corresponding to the seven thresholds of 
LD used in the cross validation experiments, a unique 
MAF threshold of ≥ 5%, and three prediction methods 
(GBLUP, RKHS and BayesB). The accuracy observed 
under scenarios S1, S2 and S3 was also compared with 
the accuracy obtained by three training sets of equivalent 
sizes selected using the dedicated CDmean optimization 
method (Rincent et al. 2012).

To explore the accuracy of progeny prediction within 
the progenies of individual crosses, the correlation 
between the predicted and the observed phenotypes of 
the progeny lines of two crosses represented by a reason-
ably high number of advanced lines (Eurosis × Handao-11 
and Giano × Vialone-Nano, represented by 20 lines and 9 
lines, respectively) were also computed separately.

Analysis of sources of variation in the accuracy 
of genomic prediction

The accuracy data (r) of all prediction experiments 
were transformed into a Z-statistic using the equation: 
Z = 0.5{ln[1 + r]−ln[1 − r]} and analyzed as a dependent 
variable in an analysis of variance. After estimation of 
confidence limits and means for Z, these were transformed 
back to r variable. For each trait, a separate ANOVA was 
performed for the correlations of all the PPA and of the 
average PPA in the progeny prediction experiments. In 
each case, ANOVA was performed to partition the vari-
ance of accuracy into different sources, with all effects 
declared as fixed, and following two models. The first 
model compared the effects of LD, MAF and prediction 
method in the cross validation experiments, and the effect 
of LD, scenario and prediction method in the progeny 
prediction experiments, with no interaction. The second 
model accounted for all the principal effects as well as for 
all possible first-order interactions.

Table 2  Size of the incidence 
matrices used in the cross 
validation experiments in the 
reference population

N total number of SNPs, D SNP density per Mb

LD (r2) Minor allele frequency (MAF)

≥ 5% ≥ 10% ≥ 20%

N D N D N D

≤ 0.25 3322 8.7 1927 5.0 1173 3.1
≤ 0.36 5365 14.0 3450 9.0 2270 5.9
≤ 0.49 8324 21.7 5738 14.9 4013 10.5
≤ 0.64 12,099 31.5 8744 22.8 6095 15.9
≤ 0.81 16,923 44.1 12,652 34.2 8917 23.2
≤ 0.98 28,164 73.3 23,119 60.2 16,750 43.6
≤ 1 32,066 83.5 26,845 69.9 20,104 52.4

Table 3  Scenarios for genomic prediction across generations

Scenario Training set Validation set

S1 31 parents 97 progeny
S2 58 related accessions 97 progeny
S3 31 parents + 58 related accessions 97 progeny
S4 31 parents + 252 accessions 97 progeny
S5 252 accessions, excluding the parents 97 progeny
S6 100 random sampling of 31 accessions, 

excluding the parents
97 progeny
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Results

Phenotypic diversity of the three traits investigated

The three traits investigated in the RP and PP populations 
exhibited a Gaussian distribution (Fig. 1). For all three 
traits, the extent of phenotypic diversity was broader in 
the RP than in the PP. Moreover, the distribution of NI 
and PW in the PP remained among the lowest values for 
these traits, leading to lower mean values. The narrower 
phenotypic diversity of PP is probably linked to its nar-
rower genetic diversity (see below).

Separate ANOVA conducted in the RP and in the PP 
revealed a very highly significant effect of entry or geno-
type for the three traits (Table 4). The year effect was not 
significant, whereas the effects of genotype by year inter-
action were significant.

H2 was rather high for FL or PW, with H2 > 0.8 and 
moderate for NI (H2 = 0.56), in the RP. For the PP, H2 was 
high for all traits (H2 ≥ 0.8). The precision of the H2 esti-
mates was reasonably high, as the standard errors ranged 
between 0.007 and 0.052.

Genotypic data and genetic diversity

The 43,686 SNP markers were unevenly distributed along 
the chromosomes. While the average marker density was 
1 SNP per 8.8 kb, it ranged from one SNP every 5.1 kb on 
chromosome 11 to one SNP every 12.6 kb on chromosome 
3 (Supplementary Table 3; Supplementary Fig. 3). The dis-
tance between a pair of adjacent SNPs ranged from 0.001 to 
644 kb, with a median of 1.20 kb. The distance was < 20 kb 
in almost 90% of the pairs of adjacent markers and < 100 kb 
in 98.8%. The distance was > 100 kb in 500 pairs of adjacent 
SNPs, > 200 kb in 114 pairs and > 500 kb in only one pair.

Even though the markers whose MAF was below 2.5% 
had been discarded, the distribution of MAF was still 
skewed toward low frequencies. The proportion of loci with 
a MAF < 10% was 38.5% in the RP and 30% in the PP. The 
differences in allele frequency between the two populations 
were mainly quantitative, not qualitative: for 93% of loci, 
the minor allele in RP was also the minor allele in PP, and 
the average MAF for these loci was 24.6 in RP and 22.7 in 
PP. Conversely, for 7% of loci, the minor allele in RP (aver-
age frequency of 42.7%) become a major allele in PP with 
an average frequency of 56.4%, suggesting the accentua-
tion of allele frequency disequilibrium observed in RP. This 
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the progeny populations
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tendency was confirmed by the allele frequencies in loci 
with the lowest MAF (< 10%) in RP. In these loci, which 
represented 16% of the total, only one minor allele in RP 
became a major allele in PP, while 951 minor alleles in RP 
were lost in PP and the corresponding loci became mono-
morphic with the major allele of RP. The MAF differences 
between RP and PP were even more pronounced for the 
smallest incidence matrix of 3322 SNPs, with a MAF < 5% 
for 25.7% of the loci and 9.2% of monomorphic loci.

The decay of LD along physical distance is presented 
in Fig. 2 and Supplementary Table 4. For between-marker 
distances of 0 to 25 kb, the r2 value reached 0.62 and 0.66 
in the RP and in the PP, respectively. In the RP, the r2 value 
dropped to half its initial level at around 350 kb and reached 
0.2 at 800 kb and 0.1 at 2.9 Mb. As expected, the decay of 
LD was slower in the PP, reaching an r2 of 0.2 at 1.1 Mb and 
0.1 at 3.9 Mb. Some differences in the speed of LD decay 
were observed between chromosomes, with the highest 

speed in chromosome 11 (r2 = 0.21) reached between 200 
and 225 kb in the RP and an r2 of 0.20 reached between 300 
and 350 kb, and the lowest in chromosome 5, with an r2 of 
0.2 at 1–1.5 Mb in both populations.

The genetic diversity analysis of the RP led to two major 
clusters corresponding to the well-known temperate japon-
ica (217 accessions) and tropical japonica (67 accessions) 
sub-groups (Fig. 3). The majority of the temperate japonica 
accessions are of European origin. The majority of tropical 
japonica accessions originate from the American continent. 
Interestingly, the average values for the three phenotypic 
traits investigated differed significantly in the two groups: 
92 and 98 days for FL, 24.5 and 21.8 for NI and 354 and 
305 g for PW in the temperate and the tropical japonica 
groups, respectively. Among the 31 accessions involved in 
biparental crosses for the development of the PP lines, 24 
belonged to the temperate japonica group and seven to the 
tropical japonica group. Including the PP in the diversity 

Table 4  Variance components 
of three phenotypic traits in 
the reference and progeny 
populations

FL days to flowering, NI nitrogen balance index, PW 100 panicle weight, H2 broad sense heritability, NS 
not significant
***Significant at p = 0.001

Population Factors FL NI PW

Reference population Genotype 47.78*** 6.17*** 5023.13***
Year 16.82NS 2.96NS 222.18NS
Year × genotype 4.36*** 4.08*** 889.8***
Residual 5.95 16.74 2378.04
H2 (SE) 0.937 (0.007) 0.558 (0.052) 0.852 (0.018)

Progeny population Genotype 23.2*** 4.12*** 2698.61***
Year 55.47NS 4.99NS 16.19NS
Year × genotype 7.38*** 0.7*** 415.03***
Residual 2.27 3.72 554.11
H2 (SE) 0.849 (0.031) 0.798 (0.041) 0.899 (0.021)

Fig. 2  Patterns of decay in link-
age disequilibrium in the refer-
ence population (red) and in the 
progeny population (gray). The 
curve represents the average r2 
among the 12 chromosomes and 
the bars represent the associated 
standard deviation (color figure 
online)



426 Theoretical and Applied Genetics (2018) 131:417–435

1 3

analysis did not modify the clustering into two groups, but 
only six progeny lines clustered with the tropical japonica 
group, while out of the 97 lines, a total of 43 derived from 
11 crosses involving a tropical japonica donor. The remain-
ing 37 PP lines derived from crosses involving a tropical 
japonica donor clustered with the temperate japonica group 
(Fig. 3; Supplementary Table 2).

Accuracy of genomic prediction in the diversity 
reference panel

The 189 cross validation experiments involving seven lev-
els of LD, three levels of MAF, three prediction methods 
and the three phenotypic traits yielded average prediction 
accuracies (APA) ranging from 0.42 to 0.65 (Fig. 4; Sup-
plementary Table 5). The overall APA for the FL trait (the 
average prediction accuracy over 7 LD levels × 3 MAF 

levels × 3 prediction methods = 63 cross validation experi-
ments) was 0.63. The overall APA was 0.50 for NI and 
0.59 for PW. Given the notable difference between traits, 
a model per trait was fitted to assess the effects of LD, 
MAF and statistical method. LD had significant effects on 
the APA of each trait. The MAF and method effects were 
significant only for FL and NI (Table 5). The LD threshold 
leading to the highest APA (0.60), considering the three 
traits, was r2 ≤ 0.64 and r2 ≤ 0.81. The LD threshold lead-
ing to the lowest APA (0.53 and 0.55) among the three 
traits was r2 ≤ 0.25 and r2 ≤ 0.36. NI was the trait most 
affected by variations in the LD threshold, with a gain in 
APA of 0.12 (21.6%) between LD levels (r2 = 0.25 and 
r2 = 0.64) giving the lowest, and the highest APA, respec-
tively. The MAF threshold leading to the overall highest 
APA (0.58) was MAF ≥ 5%. The higher MAF thresholds 
tested led to the same lower APA (0.57). Finally, the 

Fig. 3  Unweighted neighbor-joining tree based on simple matching 
distances constructed from the genotype of 284 accessions of the ref-
erence population (RP) and 97 lines of the progeny population (PP), 

using 4824 SNP markers. Red: parental lines (PL); Black and blue: 
RP accessions belonging to tropical japonica and temperate japonica, 
respectively; Green: PP (color figure online)
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performances of the BayesB and RKHS methods were the 
same (0.58) and that of GBLUP was 0.56.

All first rank interactions between the three factors affect-
ing APA were significant except MAF × Method for NI and 
PW traits (Table 5). Among the three prediction methods, 
GBLUP was the most affected by the level of LD (Sup-
plementary Fig. 4A). Indeed, for the LD threshold higher 
than 0.64, RKHS and BayesB performed significantly bet-
ter than GBLUP with an increase in accuracy of up to 0.04. 
In particular, this was the case of the FL and NI traits. The 
MAF × LD interaction led to diverging accuracies between 
MAF thresholds under the most stringent LD thresholds of 
r2 ≤ 0.49 (Supplementary Fig. 4B).

Given these results, we decided to consider only one 
MAF threshold (≥ 5%) in the following steps of the study 
(progeny prediction) and to focus on the analysis of the 
effect of LD and prediction method.

Accuracy of genomic prediction across generations

The 360 non-replicated experiments of genomic prediction 
of the progenies’ phenotype, involving the first five scenarios 
(S1 – S5) of the relationship between the training set and the 

progeny set, seven LD thresholds, and three prediction meth-
ods led to progeny prediction accuracies (PPA) ranging from 
0.23 to 0.51 (mean PPA 0.35) for the FL trait, 0.09 to 0.52 
(mean PPA 0.33) for NI and 0.17 to 0.54 (mean PPA 0.38) 
for PW. The 72 replicated prediction experiments in scenario 
S6 led to an average PPA ranging from 0.05 to 0.22 (mean 
PPA 0.15) for the FL trait, 0.12 to 0.26 (mean PPA 0.21) 
for NI and 0.21 to 0.36 (mean PPA 0.30) for PW. The fol-
lowing comparisons of factors affecting PPA, especially the 
scenario factor, are based on PPA data for the non-replicated 
prediction experiments and on the average PPA for the rep-
licated experiments of S6 (Fig. 5; Supplementary Table 6).

Variation in the scenario and in the LD factors signifi-
cantly affected PPA for all traits. The effect of the prediction 
method was not significant (Table 6). The effects of interac-
tions between scenario and LD and scenario and method 
were significant for the three traits. The interaction between 
LD and method was significant only for the FL trait. These 
interactions limit the interpretation of the individual main 
effects. Nevertheless, it is noteworthy that of the three fac-
tors, the scenario effect showed the greatest variances for 
the three phenotypic traits under the two ANOVA models, 
and, as expected, the trend of variations in PPA was related 
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Table 5  ANOVA of factors affecting the transformed accuracy (Z) of the 63 cross validation experiments per trait in the reference population

R2 coefficient of determination, CV coefficient of variation, RMSE root mean square error, Mean intercept value of the transformed accuracy 
(Z), FL days to flowering, NI nitrogen balance index, PW 100 panicle weight, LD linkage disequilibrium with 7 levels (LD ≤ 0.25, LD ≤ 0.36, 
LD ≤ 0.49, LD ≤ 0.64, LD ≤ 0.81, LD ≤ 0.98, LD ≤ 1, MAF minor allele frequency with 3 levels (MAF ≥ 5%, MAF ≥ 10%, MAF ≥ 20%), 
Method BayesB, GBLUP, RKHS

Model Trait R2 CV RMSE Mean Source df SS MS F value Prob F

Main effects only FL 0.5650 3.27 0.024 0.74 Model 10 0.0393 0.0039 6.75 < .0001
Error 52 0.0302 0.0006
Corrected total 62 0.0695
LD 6 0.0127 0.0021 3.63 0.0044
MAF 2 0.0068 0.0034 5.85 0.0051
Method 2 0.0198 0.0099 17.02 < .0001

NI 0.9404 2.82 0.016 0.56 Model 10 0.2014 0.0201 82.02 < .0001
Error 52 0.0128 0.0002
Corrected total 62 0.2142
LD 6 0.1780 0.0297 120.8 < .0001
MAF 2 0.0055 0.0028 11.22 < .0001
Method 2 0.0179 0.0090 36.47 < .0001

PW 0.8849 1.96 0.013 0.67 Model 10 0.0692 0.0069 39.99 < .0001
Error 52 0.0090 0.0002
Corrected total 62 0.0782
LD 6 0.0679 0.0113 65.34 < .0001
MAF 2 0.0009 0.0005 2.61 0.0834
Method 2 0.0005 0.0002 1.31 0.2792

Main effects + first-
order interactions

FL 0.9742 1.17 0.009 0.74 Model 38 0.0677 0.0018 23.82 < .0001
Error 24 0.0018 0.0001
Corrected total 62 0.0695
LD 6 0.0127 0.0021 28.25 < .0001
MAF 2 0.0068 0.0034 45.44 < .0001
Method 2 0.0198 0.0099 132.28 < .0001
LD × method 12 0.0126 0.0010 14.01 < .0001
LD × MAF 12 0.0139 0.0012 15.43 < .0001
MAF × method 4 0.0020 0.0005 6.74 0.0009

NI 0.9938 1.34 0.007 0.56 Model 38 0.2129 0.0056 100.89 < .0001
Error 24 0.0013 0.0001
Corrected total 62 0.2142
LD 6 0.1780 0.0297 534.32 < .0001
MAF 2 0.0055 0.0028 49.62 < .0001
Method 2 0.0179 0.0090 161.3 < .0001
LD × method 12 0.0087 0.0007 13.04 < .0001
LD × MAF 12 0.0024 0.0002 3.55 0.004
MAF × method 4 0.0004 0.0001 1.72 0.178

PW 0.9998 0.13 0.001 0.67 Model 38 0.0782 0.0021 2610.91 < .0001
Error 24 0.0000 0.0000
Corrected total 62 0.0782
LD 6 0.0679 0.0113 14,349.8 < .0001
MAF 2 0.0009 0.0005 572.6 < .0001
Method 2 0.0005 0.0002 287.19 < .0001
LD × method 12 0.0001 0.0000 13.55 < .0001
LD × MAF 12 0.0088 0.0007 935.42 < .0001
MAF × method 4 0.0000 0.0000 2.13 0.1078
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to both the size and the degree of relatedness of the training 
set with the progeny set. Consequently, for each trait, the 
mean PAA obtained with the medium size training sets S3 
(0.34, 0.36 and 0.43, for FL, NI and PW, respectively) was 
not much below the one obtained with the largest training set 
S4 (0.35, 0.44 and 0.40, for FL, NI and PW, respectively). 
The presence of the parental line in the training set improved 
the PPA for NI and PW, as illustrated by the lower mean PPA 
of NI and PW in S2 (0.31), compared to the mean PPA of 
NI and PW in S3 (0.40), and the mean PPA of NI and PW 
in S5 (0.32), compared to S4 (0.42). This was not the case 
for FL (mean PPA of 0.37 in S2 and 0.34 in S3; mean PPA 
of 0.35 in S4 and 0.41 in S5), probably because the three 
prediction models we used could not capture the transgres-
sive distribution of this trait observed in the progeny of the 
same crosses. Likewise, when the size of the training set was 
too small, like in S1 (training set = 31 parental lines; mean 
PPA = 0.31), good relatedness was not sufficient to obtain a 
similar PPA to that obtained with a larger training set.

To further explore the effect of relatedness between the 
training and the candidate set, we used the CDmean method 
(Rincent et al. 2012) to select the accessions to be included 

in the training set. Three training sets (n = 31, n = 58 and 
n = 89, equivalent in size to scenarios S1, S2 and S3, respec-
tively) were selected using the CDmean method, and used to 
predict progeny. The results (Supplementary Fig. 5) showed 
almost no gain in accuracy for FL and PW with the CDmean 
method, and an almost systematic gain in accuracy of about 
0.1 for NI.

The magnitude of variation in PPA in relation with LD 
was much narrower. The highest mean PPA (0.36) was 
achieved with LD thresholds of r2 ≤ 0.49 to r2 ≤ 0.81, when 
interactions with other factors were left aside. The PPA 
decreased smoothly with both lower and higher LD thresh-
olds, and reached 0.28 for r2 ≤ 0.25, and 0.31 for r2 ≤ 1. The 
inclusion of additional markers under r2 ≤ 1, by lowering the 
MAF threshold to 2.5%, neither deteriorated nor improved 
the PPA (Supplementary Table 6).

As expected, the accuracy of progeny prediction within 
two individual crosses showed much larger variation 
(− 0.310 to 0.731) depending on the trait, the scenario and 
the size of the incidence matrix (Supplementary Figs. 6 
and 7). Given the small number of progenies for each of 
the two crosses used for this analysis (20 and 9), drawing 
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Fig. 5  Accuracy of genomic prediction of progeny phenotype for 
days to flowering (FL), nitrogen balance index (NI) and 100 pani-
cle weight (PW), obtained with three statistical methods, BayesB, 
GBLUP and RKHS. The six scenarios are described in Table  3. 

For scenario S6 that includes random sampling, the average and the 
95% confidence interval are shown. 1-a and 1-b, represent incidence 
matrices with no selection on r2, but filtered with MAF  >  5% and 
MAF > 2.5%, respectively
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Table 6  ANOVA of factors influencing the transformed accuracy (Z) of 126 progeny prediction experiments for three phenotypic traits

R2 coefficient of determination, CV coefficient of variation, RMSE root mean square error, Mean intercept value of the transformed accuracy 
(Z), FL days to flowering, NI nitrogen balance index, PW 100 panicle weight, LD linkage disequilibrium with 7 levels (LD ≤ 0.25, LD ≤ 0.36, 
LD ≤ 0.49, LD ≤ 0.64, LD ≤ 0.81, LD ≤ 0.98, LD ≤ 1), MAF minor allele frequency with 3 levels (MAF ≥ 5%, MAF ≥ 10%, MAF ≥ 20%, 
Method BayesB, GBLUP, RKHS

Model Trait R2 CV RMSE Mean Source df SS MS F value Prob F

Main effects only FL 0.855 14.64 0.036 0.25 Model 13 0.862 0.066 50.77 < .0001
Error 112 0.146 0.001
Corrected total 125 1.008
LD 6 0.188 0.031 24 < .0001
Method 2 0.003 0.002 1.22 0.2999
Scenario 5 0.671 0.134 102.72 < .0001

NI 0.848 12.48 0.045 0.36 Model 13 1.277 0.098 48.19 < .0001
Error 112 0.228 0.002
Corrected total 125 1.505
LD 6 0.237 0.040 19.41 < .0001
Method 2 0.000 0.000 0.03 0.968
Scenario 5 1.039 0.208 102 < .0001

PW 0.876 12.17 0.047 0.39 Model 13 1.791 0.138 61.11 < .0001
Error 112 0.252 0.002
Corrected total 125 2.043
LD 6 0.035 0.006 2.6 0.0213
Method 2 0.003 0.001 0.6 0.5497
Scenario 5 1.753 0.351 155.53 < .0001

Main effects + first-
order interactions

FL 0.978 7.79 0.019 0.25 Model 65 0.986 0.015 40.99 < .0001
Error 60 0.022 0.000
Corrected total 125 1.008
LD 6 0.188 0.031 84.68 < .0001
Method 2 0.003 0.002 4.3 0.018
Scenario 5 0.671 0.134 362.49 < .0001
LD × method 12 0.014 0.001 3.06 0.002
LD × scenario 30 0.102 0.003 9.15 < .0001
Method × scenario 10 0.009 0.001 2.4 0.0181

NI 0.980 6.18 0.022 0.36 Model 65 1.475 0.023 45.45 < .0001
Error 60 0.030 0.000
Corrected total 125 1.505
LD 6 0.237 0.040 79.21 < .0001
Method 2 0.000 0.000 0.13 0.8761
Scenario 5 1.039 0.208 416.31 < .0001
LD × method 12 0.006 0.001 1.01 0.4507
LD × scenario 30 0.173 0.006 11.57 < .0001
Method × scenario 10 0.019 0.002 3.78 0.0006

PW 0.972 7.93 0.031 0.39 Model 65 1.986 0.031 31.97 < .0001
Error 60 0.057 0.001
Corrected total 125 2.043
LD 6 0.035 0.006 6.14 < .0001
Method 2 0.003 0.001 1.42 0.2499
Scenario 5 1.753 0.351 366.83 < .0001
LD × method 12 0.012 0.001 1.04 0.4256
LD × scenario 30 0.120 0.004 4.18 < .0001
Method × scenario 10 0.063 0.006 6.62 < .0001
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any conclusion regarding the effect of one individual fac-
tor (scenario, trait, LD) would be risky. However, the fact 
that accuracy above 0.7 was obtained in some conditions 
strongly suggests the feasibility of intra-cross progeny pre-
diction using a diversity panel.

Discussion

The main objectives of this work were to assess the perfor-
mance of genomic prediction among the progeny of biparen-
tal crosses, using a reference panel to train the model in rice, 
and to investigate the effect of the size of the reference panel 
and of the degree of relatedness with the progeny popula-
tion on the accuracy of predictions, as well as the effect of 
LD and the training model. To set a base line for prediction 
accuracy and to reduce the number of possible options to 
be tested regarding LD and other characteristics of the inci-
dence matrix, we started our study by evaluating the accu-
racy of genomic prediction within the reference population 
using a cross validation approach.

Accuracy of genomic prediction in the reference 
population

The average genomic prediction accuracies within the refer-
ence population ranged from 0.51 for NI to 0.63 for FL, in 
line with their degree of broad sense heritability. The high-
est accuracies were 0.65 for FL, 0.57 for NI, and 0.62 for 
PW. Beyond the high heritability, the rather narrow genetic 
diversity of our RP assembling temperate and tropical japon-
ica adapted to the irrigated lowland ecosystem of Europe, 
has probably contributed to the relatively high accuracy of 
genomic prediction for complex traits such as NI and PW.

The accuracy of genomic prediction was affected in a 
complex way by interactions between LD, MAF and pheno-
typic traits, but did not question the well-established rule of 
balance between the number and the distribution of markers 
along the chromosome, and the LD within the population 
(Jannink et al. 2010). However, the GBS genotyping method 
resulted in heterogeneous marker distribution, with distances 
between adjacent marker varying from one base to more than 
one Mb. The pruning of SNP markers based on LD infor-
mation enabled us to improve accuracy with non-redundant 
SNP matrices. Our interpretation of the increase in pre-
diction accuracy when marker redundancy was reduced is 
that: (1) the higher the number of redundant markers, the 
smaller the contribution of individual markers in the pre-
diction model, including those tightly linked to the QTL 
or the most determining one for the calculation of genomic 
distance between individuals; (2) prediction models based 
on a high number of redundant markers are less accurate, as 

they capture numerous false genotype–phenotype relation-
ships or build less discriminant genomic distances.

The trend towards an increase in prediction accuracy with 
a reduction in marker redundancy was best captured with 
GBLUP, raising the question of its origin, model formula-
tion per se or method of implementation. Using the BGLR 
package (Pérez and de los Campos 2014) to fit GBLUP in 
a Bayesian framework with MCMC sampling (GBLUP_B), 
we explored the hypothesis of method of implementation. 
Our results revealed (Supplementary Fig. 8) a difference 
between the two methods with a plateau of accuracy for 
GBLUP_B for matrices with medium to high marker den-
sity, suggesting that the implementation of the GBLUP 
method was responsible of the decrease of accuracy rather 
than the method itself. This difference is probably related to 
a better convergence of the MCMC algorithm compared to 
the EM algorithm.

In the present study, we used a simple procedure based 
on pairwise LD to eliminate the most redundant markers. 
Other procedures have been developed: selection of tag 
SNPs based on LD, diversity or hot spots of recombination 
(Carlson et al. 2004; Zhang et al. 2004; Halperin et al. 2005), 
measuring the contribution of each marker with a statistic 
called ‘degree of tagging’, that includes both pairwise LD 
and base-pair distance (Speed et al. 2012; Ramstein et al. 
2016). The practical lesson that can be drawn from our pro-
cedure is that the accuracy of prediction can be significantly 
improved by not including markers that constitute the largest 
high redundancy clusters.

Compared to LD, the MAF and the prediction method 
had much more limited effects on prediction accuracy, 
although the effects were significant. The rather small MAF 
effect suggests that low MAF mainly results from random 
genetic drift (Edriss et al. 2012) and/or that markers closely 
linked with genes which affect our target traits, have not 
yet reached a high level of fixation within our population. 
Regarding the method effect, the lower performances of 
GBLUP for predicting FL and NI suggests the existence of 
QTLs with a rather large effect that could be better captured 
using methods based on marker effect than using informa-
tion on genomic relationships.

Accuracy of genomic prediction of progeny 
performances

Our genomic prediction experiments on the line value of 
 F5-F7 progenies of biparental crosses, each involving two 
accessions belonging to the reference population, mim-
icked a rice breeding scheme in which the breeding cycle 
is shortened by rapid generation advancement (RGA) of 
the early generations, and where the phenotypic evaluation 
starts with the advanced  F5 or  F6 generation. RGA consists 
in the fixation of  F2 progenies through 2–3 generations of 
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single seed descent per year in the greenhouse, until  F5 or 
 F6. However, our experiments diverged from this scheme 
by the very pronounced imbalance in the number of prog-
eny per cross, which varied from 1 to 20.

The accuracy of our progeny predictions among the 97 
advanced lines of PP derived from 36 biparental crosses, 
involving 31 accessions of RP, varied greatly for each trait, 
depending on the composition of the training set and the 
LD. However, for each trait, the highest degree of accu-
racy achieved was only slightly below the highest accuracy 
achieved in the cross validation experiments in the RP: 
0.51 versus 0.65 for FL, 0.52 versus 0.57 for NI and 0.54 
versus 0.62 for PW. Similar results have been obtained in 
sugar beet (Hofheinz et al. 2012), in barley (Sallam et al. 
2015), in wheat (Michel et al. 2016) and in strawberry 
(Gezan et al. 2017). What is more, in our case, rather high 
accuracies (up to 0.7) were obtained in progeny prediction 
among the full-sib lines of individual crosses. However, 
the number of progeny per cross and the number crosses 
analyzed were too small to draw general conclusions.

Population parameters that affect the accuracy of 
progeny prediction include differences in LD and allele 
frequency between RP and PP, as well as the parental 
contributions to PP and the genetic distance, or number 
of generations, between the two populations (Daetwyler 
et al. 2010; Lorenz et al. 2012). Recombination in breed-
ing populations reduces LD between markers and QTLs 
over time, while selection increases LD (Pfaffelhuber 
et al. 2008). In our case, only one cycle of recombina-
tion separated RP and PP and the two populations did not 
differ much in either long distance LD or short distance 
LD, i.e., LD between markers and QTLs (Fig. 2). This is 
not particularly surprising given the composition of PP, 
involving a large number of biparental crosses. Moreover, 
the average LD (r2 = 0.2 at 850 and 1100 kb distance 
in RP and PP, respectively) was much higher than that 
reported in the literature for the japonica group (Courtois 
et al. 2013), suggesting narrower genetic diversity of the 
RP compared to the whole japonica group. Regarding the 
genetic distance between RP and PP, and the contribu-
tions of individual parental lines to the final composition 
of PP, marked unbalance was observed, to the advantage 
of the temperate japonica subgroup. Indeed, while the 
tropical japonica subgroup represented 24% of the acces-
sions of RP, only 8% of PP lines clustered with the tropical 
japonica subgroup. Likewise, at the level of individual 
crosses, voluntary or involuntary selection of progenies 
skewed their distribution toward the temperate japonica 
genetic background. Indeed, while 38% of the 36 bipa-
rental crosses involved a tropical japonica accession of 
RP and produced more than 50% of the progeny lines of 
PP, only 15% of these progeny clustered with the tropical 
japonica subgroup. These unbalances raise the question of 

how to choose the individuals that make up the training set 
to maximize the accuracy of progeny predictions.

Selection of the training set to optimize accuracy 
of progeny prediction

Several studies have shown that the accuracy of genomic 
predictions is highly influenced by the degree of related-
ness between TP and CP (Pszczola et al. 2012; Rincent 
et al. 2012; Hayes et al. 2009b). As discussed above, in our 
study, there was marked variation in the degree of related-
ness between the individuals of the two populations. This 
large variation raised the question of the choice of the RP 
individuals to be included in the training set to maximize 
the accuracy of progeny predictions. The results of the six 
compositions of the training set scenarios we tested con-
firmed the complementary effects of relatedness between 
the training set and the PP, and the size of the training set. 
The lower mean PPA observed under scenario S1, compared 
to scenarios S3 and S4 shows that, in addition to related-
ness between the training set and PP, the size of the training 
set also matters, and even distant accessions can positively 
contribute to prediction accuracy. The results of scenario 
S2 demonstrate that high APA can be achieved without the 
presence of the parental lines in the training set provided it is 
composed of individuals closely related to the parental lines. 
The highest APA observed under scenario S4 suggests there 
is still room for optimization of the size and the composition 
of the training set. For instance, by weighting the contribu-
tion of each parental line to the composition of the pools of 
the most closely and most distantly related individuals in the 
RP, based on their actual contribution (ratio of the number 
of progeny to the total number of individuals in the PP) to 
the composition of the PP. The almost equal APA observed 
in S3 and S4 suggests that beyond a certain size threshold 
of the training set composed of accessions closely related 
to the PP, the inclusion of less closely related individuals 
does not improve prediction accuracy. These findings are in 
agreement with those of Pszczola et al. (2012), who showed 
that the relatedness between the reference individuals and 
between the candidates and the reference individuals has a 
strong effect on accuracy. Given the above-mentioned effects 
of selection on PP, one could expect better prediction accu-
racy with optimization methods that directly use information 
on relatedness between the individuals in the training set and 
the individuals in the PP, such as CDmean (Rincent et al. 
2012). Comparison of accuracy obtained under scenarios 
S1, S2 and S3, with the accuracy obtained with the train-
ing set selected using the CDmean method only partially 
confirmed this expectation. This is probably due to the fact 
that our scenario for optimization of the training set was 
also based on relatedness between the training set and the 
parental lines of the PP.
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All our training set optimization experiments targeted 
genomic prediction among the progenies of 36 biparental 
crosses. In general, pedigree breeding programs target the 
progeny of individual biparental crosses. Most of the indi-
vidual biparental populations in our data set were too small 
for such experiments. However, prediction accuracies of 
above 0.5 were observed for NI and WP under some LD 
thresholds and in some scenarios, even though the training 
sets were not specifically optimized for these populations. 
This encouraging result merits confirmation using a more 
appropriate data set.

When predicting GEBVs on progeny, the optimal size of 
the training set depends on the degree of relatedness (num-
ber of generations between the training set and the progeny 
set), the effective size of population Ne, the length of the 
genetic map, and the architecture of the target trait (Jannink 
et al. 2010). Generally speaking, an increase in the size of 
the TP improves prediction accuracy, but in addition to size, 
the genetic structure of the TP and the relationship between 
this structure and the distribution of the target trait, also 
matter. For instance, Technow et al. (2013) observed a 10% 
increase in prediction accuracy, when they combined data 
from two heterotic groups of corn (flint and dent) to predict 
resistance to leaf blight in one of the groups. Conversely, 
Lorenz et al. (2012) observed no significant improvement 
in the prediction of resistance to fusarium head blight and 
its associated resistance to mycotoxins, when they increased 
the size of the TP by combining different barley breeding 
populations. In the present study, the highest average accu-
racies were achieved with the largest training set for PW 
and NI traits that have complex genetic architecture. Predic-
tion accuracy was less responsive to the size of the training 
set for the FL trait, of oligo-genic determinism (Hori et al. 
2016).

Practical implications for rice breeding programs

Pedigree breeding within the progenies of biparental crosses 
extracted from a working collection or reference population 
is the most common scheme for the improvement of complex 
traits in rice, as in many other autogamous crops (Bernardo 
2014). We found that, using phenotypic and genotypic data 
from the RP to train the prediction model made it possible to 
predict performances among the first generation of advanced 
 (F5–F7) progeny of a large set of biparental crosses. Accura-
cies of over 0.5 were obtained, even for complex traits such 
as NI and PW, when the parameters that affect the accu-
racy were optimized. Thus, breeders can use this prediction 
approach in the framework of a pedigree breeding scheme 
associated with RGA of early generations (in off-season 
nurseries or controlled environments), a practice aimed at 
reducing the length of the breeding cycle and hence accel-
erating genetic gain per unit of time (O’Connor et al. 2013). 

However, specific optimization of the training set might be 
needed to obtain the best possible prediction accuracy for 
the progeny of each cross. The scheme can also be applied in 
breeding schemes that use the haplo-diploidization method 
for the rapid generation of homozygous lines from biparen-
tal crosses, at least in the japonica genetic group for which 
a high-throughput haplo-diploidization method is avail-
able (Alemanno and Guiderdoni 1994). As the advanced 
line selected in this way will then go through 2–3 cycles of 
phenotypic evaluation, the data collected will provide an 
opportunity to further refine the training model (Heffner 
et al. 2010).

We also found that (1) an average marker density above 
one per 22 kb (8324 SNPs) did not improve the accuracy 
of prediction in either cross validation within the RP or in 
progeny prediction and (2) relatively high accuracy could 
be achieved using only a rather small share of the RP, most 
related to PP, as the training set. Given the very uneven dis-
tribution of marker density along the chromosomes in our 
RP and PP, one would expect similar levels of prediction 
accuracy with a much smaller number of markers chosen 
based on LD distribution along the chromosomes, as already 
predicted in simulation studies (Habier et al. 2009; Lille-
hammer and Meuwissen 2013; Grattapaglia 2014). These 
findings attest to the feasibility of using the genomic selec-
tion approach in breeding programs with rather limited 
resources. The most efficient and affordable option would 
be rather dense genotyping of the RP accessions and much 
looser (a few hundred), but evenly distributed, genotyping 
of PP that can be densified through imputation, a method 
widely practiced in animal breeding (Marchini and Howie 
2010).
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