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component traits and their interactions can dissect individ-
ual quantitative trait loci (QTL) effects more effectively and 
improve yield predictions. Using a segregating rapeseed (Bras-
sica napus) population, we analyzed a large set of trait data 
generated in 19 independent experiments to investigate correla-
tions between seed yield and other complex traits, and further 
identified QTL in this population with a SNP-based genetic bin 
map. A total of 1904 consensus QTL accounting for 22 traits, 
including 80 QTL directly affecting seed yield, were anchored 
to the B. napus reference sequence. Through trait association 
analysis and QTL meta-analysis, we identified a total of 525 
indivisible QTL that either directly or indirectly contributed 
to seed yield, of which 295 QTL were detected across multi-
ple environments. A majority (81.5%) of the 525 QTL were 
pleiotropic. By considering associations between traits, we 
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identified 25 yield-related QTL previously ignored due to con-
trasting genetic effects, as well as 31 QTL with minor comple-
mentary effects. Implementation of the 525 QTL in genomic 
prediction models improved seed yield prediction accuracy. 
Dissecting the genetic and phenotypic interrelationships under-
lying complex quantitative traits using this method will provide 
valuable insights for genomics-based crop improvement.

Introduction

Crop production environments are subject to many abi-
otic and biotic factors affecting plant growth. In addition, 
networks of important agronomic traits interact with each 
other and with the environment in a very complex manner. 
Seed yield, one of the most important agronomic traits, is 
both extremely complex and strongly affected by the envi-
ronment. Furthermore, yield performance depends on fac-
tors such as plant growth conditions, plant resistance to 
biotic and abiotic stresses, and interactions with other phys-
iological and genetic processes through the entire crop life 
cycle. Yield itself is affected by many underlying traits and 
thousands of different genes (Bernardo 2008).

In the past few decades, many quantitative trait loci (QTL) 
analyses have been done using different statistical methods to 
dissect the genetic architecture of complex quantitative traits 
such as seed yield (Dargahi et al. 2014; Groos et al. 2003; 
Lacape et al. 2013; Li et al. 2014; Liu et al. 2015; Shi et al. 
2009; Song et al. 2007; Xiao et al. 1996; Zhang et al. 2004). 
Nevertheless, understanding of such complex traits is still 
rudimentary, and this knowledge is insufficient to contribute 
substantially to further crop genetic improvement (Bernardo 
2008). Theoretically, several hundred genes or QTL may 
account for differences in seed yield between two diverse par-
ents, but it is difficult to detect such a large number of QTL in 
a single mapping study by conventional methods. Difficulties 
in detecting QTL arise for a number of reasons. Firstly, exper-
imental variables such as soil fertility and time of crop emer-
gence are difficult to control in standard field experiments. 
Secondly, genes with opposite contributions to seed yield 
may be located in the same QTL region, offsetting their con-
tributions to yield. Thirdly, genotype-by-environment interac-
tions are relatively poorly understood (Cowling and Balazs 
2010; El-Soda et al. 2014). Finally, QTL mapping methods 
are often also statistically incapable of detecting genes with 
minor effects (Mackay et al. 2009; Würschum 2012).

More QTL can be detected by increasing the number 
of detectable recombination events in the segregating 
population. This usually involves enlarging the size of 
the population (and hence the number of recombinants) 
while maintaining genetic marker saturation such that all 
recombination events are detected (Mackay et al. 2009; 
Vales et al. 2005; Zeng 1994). However, larger population 

sizes and greater marker densities make experiments 
more difficult and costly, and often the trade-off is that 
fewer replicates are possible, hindering detection of field-
scale environmental variation. To address this issue, a 
number of statistical or methodological approaches have 
been suggested to improve QTL detection efficiency. 
Long et al. (2007) proposed inclusion of minor-effect 
“micro-real” QTL, which do not meet QTL detection 
thresholds, but nevertheless are either detected repeatedly 
in different environments or which overlap with QTL 
for related traits. For the latter, where QTL overlap with 
loci for related traits, Shi et al. (2009) coined the term 
“indicator QTL”. In previous studies, indicator QTL with 
positive or negative effects on traits related to seed yield 
were often ignored. However, such loci may be very use-
ful to further increase seed yield under selection in differ-
ent genetic backgrounds and environments.

Multiple single trait interactions are likely to underlie 
all complex traits such as seed yield. We hypothesize that 
by considering these component traits and their interac-
tions we can more effectively dissect individual QTL and 
more accurately predict the trait performance. To test this 
hypothesis, we investigated a large resource of phenotypic 
data generated in large-scale field trials: a total of 19 inde-
pendent experiments in a doubled-haploid (DH) B. napus 
mapping population (BnaTNDH), with accompanying sin-
gle nucleotide polymorphism (SNP) genotype data. Multi-
environment phenotype data was available for seed yield 
and its components (Shi et al. 2009), flowering time (Long 
et al. 2007); seed quality traits (Jiang et al. 2014; Shi et al. 
2009), glucosinolate content (Feng et al. 2012), nutrient 
use efficiency (Shi et al. 2013), tocopherol content (unpub-
lished data), and disease resistance (unpublished data). 
Firstly, we analyzed multi-trait phenotypic and genetic 
correlations using this large trait data set in B. napus, and 
related this to expression of seed yield via path analysis. 
Secondly, we identified and integrated QTL regions asso-
ciated with important traits (in particular seed yield) in B. 
napus, using a dense genetic map based on the Brassica 
Illumina Infinium 60 K SNP array. Thirdly, we analyzed 
the direct genetic effects and plasticity of QTL as well as 
indirect contributions to seed yield across environments, 
taking trait correlations into consideration. Finally, we 
tested the impact of yield-associated SNP markers on the 
accuracy of genomic prediction of seed yield.

Materials and methods

Plant material and available phenotype data

A doubled-haploid population (named “BnaTNDH”) 
derived from an  F1 hybrid between “Tapidor” (a 
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European winter-type rapeseed cultivar) and “Ningyou7” 
(a Chinese semi-winter type rapeseed cultivar) was used 
for this study (Qiu et al. 2006). From this population, 182 
DH lines with genotyping data generated by the Brassica 
Illumina Infinium 60 K SNP array (Clarke et al. 2016) 
were recently used for genetic map construction (Zhang 
et al. 2016). Therefore, these 182 DH lines and this new 
map were used for QTL mapping in the present study 
with collected published phenotypic data (including seed 
yield and yield component traits, flowering time, glu-
cosinolate presence in different tissues, seed erucic acid 
and oil content) and unpublished phenotype data (resist-
ance to Leptosphaeria maculans, resistance to Sclerotinia 
sclerotiorum, and Vitamin E content) (see Tables 1, 2 for 
details of traits investigated and phenotyping locations). 

The field locations were classified into three macro-envi-
ronments: semi-winter, winter and spring. The harvest year 
combined with the location was set as an “experiment” and 
all experiments used a randomized complete block design 
with three replications, as described in Shi et al. (2009). In 
addition, three experiments were conducted under green-
house conditions (Table 2).

Collection of phenotype data on disease resistance

Resistance to Sclerotinia sclerotiorum (stem rot) was 
assessed at the seedling stage on the sixth leaf of each 
plant. The inoculation was performed in a plastic con-
tainer, where mycelial agar disks of S. sclerotiorum were 
placed on the upper surfaces of leaves. Plants were kept 
in the dark for 16 h, then provided with 12 h photoperiod 
(12 h light at 32 °C/12 h darkness at 22 °C, light intensity 
at 210 µmol m−2 s−1). Diameters of S. sclerotiorum leaf 
lesions were recorded at three different time points to pro-
vide an index of resistance to S. sclerotiorum. This index 
was used as quantitative data for identification of QTL.

The phoma stem canker pathogen (Leptosphaeria mac-
ulans) isolate 99-79 was sourced from the AAFC Sas-
katoon Research Centre collection, kindly provided by 
Dr. H. R. Kutcher. This isolate produced distinct resist-
ant (Tapidor) and susceptible (Ningyou7) phenotypes 
on parental lines and therefore was used to inoculate the 
BnaTNDH population lines to map the resistance gene.

Conidial suspension of isolate 99-79 was prepared 
from 12-day-old cultures on V8 agar and spore concen-
tration was adjusted to  107 spores per ml. Seedlings of 
the 200 DH lines were grown in 40-well trays in a con-
trolled environment room (20 °C day/20 °C night, 12 h 
light/12 h darkness, light intensity 210 µmol m−2 s−1). 
Cotyledons of 14-day-old seedlings were wounded and a 
10 µl drop of conidial suspension was placed over each 
wound. Each seedling had four inoculation sites (one 

on each cotyledon lobe). Five seedlings of each DH line 
were inoculated (i.e. 20 inoculation sites). Symptoms 
were assessed at 16–18 days after inoculation using a 0–9 
scale (0: no symptoms; 9: large gray lesions with pyc-
nidia); where 0–4 were classified as a resistant response, 
5 as an intermediate resistant response and 6–9 as a sus-
ceptible response. The disease scores were used as quan-
titative data for QTL identification.

Linkage map and marker alignment to the B. napus 
“Darmor‑bzh” reference genome

A genetic linkage map of the BnaTNDH population (182 
lines) with a total of 2041 genetic bins was constructed 
from 12960 SNP markers detected with the Brassica 60 K 
Illumina Infinium array (Zhang et al. 2016; Supplementary 
Table 1). We aligned all the SNP markers included in the 
genetic loci of the BnaTNDH genetic linkage map to the 
reference B. napus genome of “Darmor-bzh 4.1” (Chal-
houb et al. 2014) by BLAST (Altschul et al. 1990) as per-
formed in Zou et al. (2016). For those representative bin 
markers with no hits or uncertain hits, we used the physical 
location of other markers in the same genetic bin. All infor-
mation related to the physical alignment of the SNP mark-
ers in the genetic map to the reference genome is listed in 
Supplementary Table 1.

Phenotype and QTL analyses

Phenotypic correlation between all traits in a single envi-
ronment was estimated using Spearman’s rank correla-
tion coefficient (Myers et al. 2010). Genetic correlation 
between traits investigated in multi-environments was 
estimated using multivariate restricted maximum likeli-
hood estimation (REML) in SAS Proc MIXED (Holland 
et al. 2002). Heritability was calculated using the equation: 
h2 = σg

2/(σg
2 + σ2

ge/n + σe
2/nr), where σg

2 is the genetic vari-
ance, σ2

ge is the variance representing genotype-by-environ-
ment interactions and σe

2 is the error variance, n is the num-
ber of environments and r is the number of replications. 
The variance of the components was estimated by SAS 
using a general linear model (GLM). Path analysis (Wright 
1934) was also done for each environment to further inves-
tigate links between traits and their effects on seed yield. 
Seed yield (SY) was set as the dependent variable while 
other traits investigated in corresponding experiments were 
set as independent variables. The direct or indirect effects 
of the independent variables on the dependent variable 
were estimated. The variables were initially standardized 
and the following path analysis model was established:

y − ȳ

Sy
= α1

x1−x̄1

S1
+ · · · + αm

xm−x̄m

Sm
+ ε,
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Table 1  Abbreviations and measurements of investigated traits in the BnaTNDH population

Trait ID Traits name Trait abbreviation Trait unit Classification Trait measurement

1 Seed yield per plant SY Gram Yield and its 
components

Average dry weight of seeds of the harvested 
individuals in a plot

2 Seed number per pod SN NA Average number of well-filled seeds from 
100 well-developed pods, sampled from the 
primary branch in the middle of the harvested 
individuals in a plot

3 Seed weight SW Gram Average dry weight of 1000 well-filled seeds 
from three replicate samples, from the mixed 
seeds of the harvested individuals in a plot

4 Pod number PN NA Number of well-filled, normally developed 
pods on each harvested individual in a plot

5 Seed yield per pod PW % Dry weight of seed of each pod

6 Biomass yield per plant BY Gram Average total above-ground (except the seeds) 
dry weight of the harvested individuals in a 
plot

7 Branch number BN NA Developmental 
traits

Number of branches arising from the main 
shoot of each harvested individual in a plot

8 Development time of seeds DT Day Interval between the date of flowering time and 
the date when harvest

9 First branch height FBH cM Measured from the base of the stem to the first 
primary branch

10 Ratio of FBH to PH RBH NA Relative first primary branch height

11 Flowering time FT Day Interval between the date of sowing and the 
date when the first flowers emerged on 50% 
of the plants in a plot

12 Maturity time MT Day Interval between the date of sowing and the 
date when pods on most of the plants in a 
plot were yellow

13 Plant height PH cM Measured from the base of the stem to the tip 
of the main shoot

14 Pod number of main inflorescence PNM NA Pod number of main inflorescence

15 Resistance against Leptosphaeria 
Maculans (blackleg)

BR Number Resistance to 
stress

Symptoms were assessed at 16-18 days after 
inoculation using a 0–9 scale (0: no symp-
toms; 9: large grey lesions with pycnidia) 
(Koch et al. 1991); where 0-4 are classified as 
resistant, 5 as intermediate resistant and 6-9 
as susceptible. The disease scores were used 
as quantitative data for QTL identification

16 Resistance against Sclerotinia 
sclerotiorum

SR % Radius of Sclerotinia sclrotiorum disease 
spots (oval) on the leaf (Trait abbriviation 
RA,RB,RC RD and RE represent the radius 
measured in different independent experi-
ment)

17 Erucic acid content ERU % Seed quality Erucic acid content of seed

18 Linolenic acid LEN % Linolenic acid content

19 Oil content OC % Oil content of seed

20 Protein content PRO % Protein content in seeds

21 Glucosinolates

 1-Methoxy-3-indolylmethyl-GSL Ind-NEO μmol  g−1 Neoglucobrassicin content

 2-Hydroxy-3-butenyl-GSL Ali-4C-PRO μmol  g−1 Progoitrin content

 2-Hydroxy-4-pentenyl-GSL Ali-5C-GNL μmol  g−1 Gluconapoleiferin content

 3-Butenyl-GSL Ali-4C-GNA μmol  g−1 Gluconapin content

 3-Indolyl-methyl-GSL Ind-GBS μmol  g−1 Glucobrassicin content

 4C-Aliphatic glucosinolate Ali-4C μmol  g−1 Sum of Ali-4C-GRA,Ali-4C-GNA and Ali-4C-
PRO
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where Si was the standard deviation of x, Sy was the 
standard deviation of y, and α1, α2, …αm were the direct 
effects of independent variables on SY. A system of nor-
mal equations X ′

SXSα = X ′
SYS was used to estimate the 

direct and indirect effects of each explanatory variable on 
SY:

The indirect effect of independent variable xj on inde-
pendent variable xi was calculated as rijαjy. Statistical 
analysis was conducted in Microsoft Office  Excel® and R 
(R Core Team 2015).

WinQTLcart v2.5 (http://statgen.ncsu.edu/qtlcart/
WQTLCart.htm) was used for QTL detection by compos-
ite interval mapping (Silva Lda et al. 2012; Wang et al. 
2012). The number of control markers, window size, 
and walking speed were set to 5, 10, and 1 cM, respec-
tively. Permutation analysis with 1000 repetitions was 
performed to obtain the LOD threshold (Churchill and 
Doerge 1994). A significance level of (P = 0.05) was 
adopted as the LOD threshold, and QTL with LOD scores 
greater than the LOD threshold were accepted as sig-
nificant QTL. To avoid elimination of minor effect QTL 
with small LOD scores, a smaller LOD (P = 0.5) was 
adopted to determine suggestive QTL. Suggestive QTL 
that were repeatedly detected in multiple experiments 
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were accepted for further analysis. Finally, significant 
QTL overlapping with suggestive QTL were admitted as 
authentic QTL and named as identified QTL according to 
the method reported by Long et al. (2007) and Shi et al. 
(2009). The identified QTL with R2 ≥ 20% were accepted 
as major QTL and those with R2 < 20% were accepted as 
minor QTL.

A meta-analysis algorithm (Goffinet and Gerber 2000) 
was developed to determine the number of “real” QTL 
within a region containing many independently identi-
fied QTL. The BioMercator v4.2 (http://moulon.inra.fr/
index.php/fr/seminairedoc/cat_view/21-logiciels/101-
abi-project-and-software/104-biomercator) was used to 
perform this meta-analysis: an adjusted Akaike criterion 
was adopted to determine the probable QTL numbers 
from the five given models (1-, 2-, 3-, 4- and N-QTL 
model, corresponding to the number of predicted true 
QTL). The software also provided a method to estimate 
the confidence interval of the predicted QTL position, 

C.I . = 3.92
√

∑i=k
i=1

(

1/S2i

)

, where Si
2 was the variance of the 

position of the  QTLi and k was the number of selected 
QTL selected for the meta-analysis (Chardon et al. 2004; 
Khatkar et al. 2004; Shi et al. 2009).

Firstly, all QTL identified for each trait were integrated 
using meta-analysis to get consensus QTL, using the 
methods of Shi et al. (2009). Consensus QTL that could 
be detected in more than one experiment were classi-
fied as reproducible QTL, while others were classified as 

Table 1  continued

Trait ID Traits name Trait abbreviation Trait unit Classification Trait measurement

 4-Hydroxy-3-indolyl-methyl-GSL Ind-4OH μmol  g−1 4-Hydroxyglucobrassicin content

 4-Methoxy-3-indolylmethyl-GSL Ind-4ME μmol  g−1 4-Methoxyglucobrassicin content

 4-Methylsulfinylbutyl-GSL Ali-4C-GRA μmol  g−1 Glucoraphanin content

 4-Pentenyl-GSL Ali-5C-GBN μmol  g−1 Glucobrassicanapin content

 5C-Aliphatic glucosinolate Ali-5C μmol  g−1 Sum of Ali-5C-GAL,Ali-5C-GBN and Ali-5C-
GNL

 5-Methylsulfinylamyl-GSL Ali-5C-GAL μmol  g−1 Glucoalyssin content

 Aliphatic glucosinolate Ali μmol  g−1 Sum of Ali-4C and Ali-5C

 Total Glucosinolate TGS μmol  g−1 Total glucosinolate content

 Glucosinolate GLU μmol  g−1 Total glucosinolate content by NIRS

 2-Phenylethyl GSL GST μmol  g−1 Gluconasturtiin content

 Indolyl glucosinolate Ind μmol  g−1 Sum of Ind-GBS,Ind-4OH,Ind-4ME and Ind-
NEO

22 Vitamin E

 Tocopherol composition TCO NA Ratio of the α-tocopherol content and 
γ-tocopherol content

 Total tocopherol content TTC ppm Total tocopherol content of the seed

 α-Tocopherol content αTC ppm α-Tocopherol content of the seed

 γ-Tocopherol content γTC ppm γ-Tocopherol content of the seed

http://statgen.ncsu.edu/qtlcart/WQTLCart.htm
http://statgen.ncsu.edu/qtlcart/WQTLCart.htm
http://moulon.inra.fr/index.php/fr/seminairedoc/cat_view/21-logiciels/101-abi-project-and-software/104-biomercator
http://moulon.inra.fr/index.php/fr/seminairedoc/cat_view/21-logiciels/101-abi-project-and-software/104-biomercator
http://moulon.inra.fr/index.php/fr/seminairedoc/cat_view/21-logiciels/101-abi-project-and-software/104-biomercator
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non-reproducible. As glucosinolate and tocopherol con-
tent include a large number of components, meta-analysis 
was done for these two traits and their components as 
described in Feng et al. (2012). Secondly, based on the 
phenotypic analysis and complex QTL distribution, a sec-
ond round of meta-analysis was done for all consensus 
QTL for different traits to obtain indivisible QTL related 
to seed yield across the whole genome.

Accuracy of genomic prediction on seed yield

Ridge regression best linear unbiased prediction (RR-
BLUP) was applied with different sets of markers for 
genomic prediction of seed yield using R software 
package “rrBLUP” (Endelman 2011). Considering that 
the seed yield and related trait phenotypes for the QTL 
detection were mostly detected in the semi-winter envi-
ronments (9) rather than in the winter environments (4), 
phenotype data of seed yield from semi-winter environ-
ments was processed for testing the prediction. The envi-
ronmental effects were estimated according to Zhao et al. 
(2013, 2015). In total, 100 runs of fivefold cross-vali-
dation were performed for the model, and the genomic 
selection accuracy was evaluated by the R2 value divided 
by the square root of the heritability and predicted seed 
yield performance (Zhao et al. 2015; Zou et al. 2016).

Results

Correlations between agronomic traits and their 
contributions to seed yield in the BnaTNDH population

Phenotype data for a total of 22 traits in the BnaTNDH 
population were collected over eight growing seasons, eight 
locations, and three greenhouse experiments (Tables 1, 2). 
The glucosinolate and tocopherol content measurements 
included different components as shown in Table 1. We cal-
culated the heritability of the 17 traits which had phenotype 
data collected over multiple environments (Fig. 1; Sup-
plementary Table 2). Biomass yield (straw weight + seed 
yield) showed the lowest heritability (0.48), while heritabil-
ity of all seed quality traits (erucic acid, oil content, glu-
cosinolate content, linolenic acid) and developmental traits 
(flowering time, time to maturity) was >0.8 and seed yield 
showed heritability of 0.72.

Genetic correlations and phenotypic correlations were 
calculated between the investigated traits across environ-
ments and within single environment. Significant corre-
lations with seed yield were observed for all traits across 
the different environments with the exception of glucosi-
nolate content (GLU) and pod number per main branch 
(PNM) (Fig. 1; Supplementary Table 3). These two traits B
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were not significantly correlated with seed yield across all 
experiments, but showed significant correlations in a single 
experiment and hence were also considered as associated 
traits for the subsequent analyses. Disease resistance traits 
were investigated separately in different experiments, and 
hence only phenotypic correlation was calculated for these 
traits. However, disease resistance traits also showed sig-
nificant correlation with yield in several experiments (Sup-
plementary Table 3).

Path analysis was undertaken to identify complex con-
nections between seed yield and other traits. The results 
demonstrated that although some specific traits did not 
affect seed yield directly, these traits affected seed yield 
indirectly via interactions with other traits (Fig. 2). For 
instance, in the N6 experiment, the direct path coefficient 
for plant height was −0.02, but its indirect path coeffi-
cient through pod number was 0.39. This suggests that 
a taller plant would usually have more pods, and there-
fore increased yield. In the S6 experiment, the direct 
path coefficient of seed development time was −0.1, but 
its indirect coefficients through flowering time and seed 
weight were 0.09 and 0.09, respectively, which explains 
its positive correlation of 0.15 with seed yield (Sup-
plementary Table 4). Associated traits like oil content, 
seed weight, pod number and branch number showed a 
relatively consistent effect (positive correlation) on seed 
yield. Some traits also had differing impacts on seed 
yield in different environments. For example, flowering 
time showed a positive correlation with seed yield in win-
ter environments, but was negatively correlated with seed 
yield in the semi-winter environments.

Detection of consensus QTL accounting for all 
investigated traits using the high‑density SNP genetic 
map of the BnaTNDH population

QTL accounting for seed yield and 21 additional traits 
collected from up to 19 experiments were analyzed using 
a newly constructed high-density SNP genetic map of the 
BnaTNDH population (Zhang et al. 2016). The newly 
constructed genetic map spanned a total of 2077.9 cM 
with an average of one locus per cM, covering 94.92% of 
the “Darmor-bzh” assembled reference genome as calcu-
lated by the physical position of the loci on each chromo-
some (Supplementary Tables 1, 5).

A total of 2569 identified QTL accounting for the 22 
traits were detected with the new map: the average LOD 
value, R2 and confidence interval were 4.92, 7.60% and 
6.25 cM, respectively (Table 3; Supplementary Table 6). 
After integrating redundant QTL that were either repeat-
edly detected from different environments or re-counted 
by totals versus components of glucosinolate and 

tocopherol content traits, a total of 1904 consensus QTL 
were integrated for the 22 traits, with an average confi-
dence interval reduced from 6.25 to 5.67 cM, in which 
there were 42 major QTL (R2 > 20%), included seed 
yield, glucosinolate, erucic acid, disease resistance, seed 
number per pod, branch number, pod number, relative 
first primary branch height (Supplementary Tables 6, 7, 
8). For those traits investigated in both semi-winter and 
winter macro-environments, a total of 155 QTL could 
be detected in both of the micro-environments. For the 
traits investigated in more than one experiment, 22.18% 
(420 out of 1894) of the QTL were repeatedly detected, 
and these were considered to be reproducible QTL. Fur-
thermore, the proportion of reproducible QTL was sig-
nificantly associated with the heritability of the traits 
(r = 0.63, P < 0.05).

After the meta-analysis, most consensus QTL for a sin-
gle trait overlapped with QTL for other traits, illustrating 
a complex genetic regulatory network. The additive effects 
of some QTL also corresponded to the genetic correla-
tions between traits. For example, qPN.A3-1 and qSY.A3-2 
overlapping on linkage group A3 were responsible for the 
increase in pod number and seed yield, respectively (Sup-
plementary Table 7), suggesting a pleiotropic effect or 
close linkage of the genes for the two traits. The two traits 

Fig. 1  The abbreviations SY, SN, SW, PN, PW, BN, FT, PH, MT, 
BY, DT, PNM, OC, PRO, LEN, ERU and GLU represent seed yield, 
seed number per pod, seed weight, pod number, pod weight, branch 
number, flowering time, plant height, maturity time, biomass yield, 
development time for seeds, pod number on main inflorescence, oil 
content, protein content, linolenic acid content, erucic acid content 
and glucosinolate content, respectively (Table 1). The values for cor-
relation significance “0”, “1”, “2”, “3” represent the significance lev-
els “no significant correlation”, “significant in a single environment 
(i.e., single experiment) with P < 0.01”, “significant in several envi-
ronments (i.e., several experiments) with P < 0.05” and “significant in 
several environments with P < 0.01”, respectively
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were also significantly correlated (r = 0.25, P < 0.001). A 
total of 12 QTL clusters distributed in linkage group A2, 
A3, A4, A7, A9, A10, C4, C5 and C6 were observed (Sup-
plementary Table 7). For instance, in linkage group C6, 
there were 16 consensus QTL clustered in the region cov-
ering 13.9 cM, accounting for seed yield, branch number, 
pod number, plant height, flowering time, glucosinolates, 
and erucic acid, and these traits were significantly corre-
lated (Supplementary Tables 3,  7).

Detection of “essential QTL” for seed yield 
with consideration of trait associations

A total of 80 consensus QTL responsible for seed yield 
were detected using the seed yield phenotype value: of 
these, 78 overlapped with QTL for other correlated traits. 
Correlation and path analysis also showed that seed yield 
was directly or indirectly correlated with almost every 
trait investigated. Therefore, meta-analysis was con-
ducted to integrate the QTL for the traits correlated with 
seed yield (Supplementary Table 9). As the genetic cor-
relation between seed yield and seed quality traits would 

be affected by the path correlation among the seed qual-
ity component traits, seed quality trait-related QTL that 
did not overlap with yield and yield-component trait QTL 
after meta-analysis were removed. As a result, 525 insep-
arable QTL involving 1266 markers across the whole 
genome were obtained, with an average QTL confidence 
interval of only 2.48 cM, and denoted as “essential QTL” 
contributing to the trait of seed yield (Table 4; Fig. 3; 
Supplementary Tables 9, 10; Supplementary Fig. 1). SNP 
alleles of the 1266 markers that positively contributed to 
seed yield are provided in Supplementary Table 10, and 
the candidate genes in the interval of the essential QTL 
are provided in Supplementary Table 11. Among the 525 
essential QTL, 428 were integrated from QTL for multi-
ple traits and were defined as pleiotropic, while the other 
97 QTL were trait-specific. For the trait-specific essen-
tial QTL, two were seed yield-specific and 11 were seed 
yield component-specific. Most trait-specific essential 
QTL were responsible for developmental traits such as 
plant height, flowering time and branch number. There 
were also several seed quality trait QTL controlling, for 
example, glucosinolate components, seed oil and erucic 

Table 3  Numbers of identified 
and consensus QTL for 22 traits 
investigated in the BnaTNDH 
rapeseed mapping population

* The number represents the number of traits classified into this category

Trait classification QTL type A genome C genome Whole genome

Seed yield and its components (4)* Identified QTL

 Total 241 125 366

 R2 0.07 0.06 0.07

Consensus QTL

 Total 174 101 275

Developmental trait (10) Identified QTL

 Total 376 324 700

 R2 0.06 0.06 0.07

Consensus QTL

 Total 271 220 491

Seed quality trait (25) Identified QTL

 Total 659 576 1235

 R2 0.07 0.06 0.08

Consensus QTL

 Total 507 419 926

Stress resistance (2) Identified QTL

 Total 176 92 268

 R2 0.08 0.06 0.07

Consensus QTL

 Total 133 79 212

Total Identified QTL

 Total 1452 1117 2569

 R2 0.08 0.07 0.08

Consensus QTL

 Total 1085 819 1904
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acid content, which may affect seed yield in specific 
environments (Supplementary Table 9). 

Some of the essential QTL (75) were directly comprised 
of consensus QTL for seed yield and other consensus QTL 
for yield-related traits. For example, seed yield QTL qSY.C9-
2 on linkage group C9 overlapped with QTL for seed number 
(qSN.C9-2), pod number (qPN.C9-1), and plant height (qPH-
LP.C9-2) (Supplementary Table 9, Fig. 4a). Some of the 
essential QTL (31) did not directly involve consensus QTL 
for seed yield, but contained at least two consensus QTL for 
seed yield-related traits with consistent effects (either positive 
or negative contribution to the traits). Although consensus 
QTL for seed yield could not be detected from such loci, the 
accumulated effects from these yield-component QTL could 
contribute substantially to seed yield. For instance, the allele 
of QTL qSN.C3-3 associated with increasing seed number 
overlapped with QTL qPN.C3-1 for increasing pod number 
(77–86 cM on linkage group C3; Fig. 4b). A number of the 
essential QTL (25) did not contain consensus QTL for seed 
yield, but contained consensus QTL for seed yield-related 

trait components with opposite phenotypic contributions 
(both positive and negative in relation to seed yield). For 
example, at 60.9–66.2 cM on linkage group A2, the Tapidor 
allele of QTL qSW.A2-1 was responsible for reducing seed 
weight, whilst the overlapping qPN.A2-1 was responsible for 
increasing pod number (Fig. 4c).

For indirect QTL with consistent effects, 26 showed environ-
ment-specific contribution to seed yield, as they overlapped with 
several seed yield component QTL detected in the same macro-
environment. Meanwhile, five indirect QTL affected the seed 
yield through different yield components in different macro-
environments. For instance, es.C3-22 included QTL for pod 
number (qPN.C3-3, detected in the winter environment) and 
QTL for seed number (qSN.C3-5, detected in the semi-winter 
environment). This suggested that this essential QTL for seed 
yield could affect yield performance through different paths in 
different environments. Of the indirect QTL with mixed effects, 
21 had opposite contributions to yield components, offsetting 
the yield improvement in the same macro-environment. How-
ever, four indirect QTL showed such a contribution in differ-
ent macro-environments. These QTL showed an environment-
specific potential for yield improvement, and mostly showed a 
positive contribution in the semi-winter environment. Only es.
C9-17 showed a positive contribution to seed yield in the winter 
environment (through increased pod number).

Prediction accuracy for seed yield based on “essential 
QTL”

To test the prediction accuracy for seed yield based on pre-
dictions implementing essential QTL, we used the 2041 
marker bins in the TN linkage map to perform prediction 
on seed yield in semi-winter environments using the predic-
tion model RR-BLUP. Of these 2041 markers, 1266 mark-
ers were located within the confidence intervals of essential 
QTL (Supplementary Table 10) and 775 markers were not 
located within the confidence intervals of essential QTL. To 
avoid confounding effects from shared markers between the 
two datasets, two additional sets of 1266 and 775 markers 
were also randomly selected from the linkage map to assess 
prediction accuracy. The highest prediction accuracy of 
0.5211 was achieved when the markers used only involved 
the 525 essential QTL. This prediction accuracy was supe-
rior to using the set of markers out of the QTL interval, 
using the same number of markers randomly chosen from 
the whole set of markers, or even to using the whole set of 
2041 markers for prediction (accuracy of 0.5068) (Fig. 5).

Discussion

Most agronomic traits of interest in crop breeding are 
complex quantitative traits, controlled by many genes 

Fig. 2  The abbreviations SY, SN, SW, PN, PW, BN, FT, PH, MT, 
BY, DT, PNM, OC, PRO, LEN, ERU and GLU represent seed yield, 
seed number per pod, seed weight, pod number, pod weight, branch 
number, flowering time, plant height, maturity time, biomass yield, 
development time for seeds, pod number on main inflorescence, oil 
content, protein content, linolenic acid content, erucic acid content 
and glucosinolate content, respectively (Table 1). Path analysis for 
the traits investigated in the environment S6 (experiment done in a 
semi-winter environment in 2006). Traits that have a relatively high 
path coefficient for seed yield are shown. For some traits not inves-
tigated in the environment S6, data from other environments (S4 and 
S5, experiments done in semi-winter in 2004 and 2005, respectively) 
were used and are indicated with blue and yellow lines. These traits 
include seed yield and its components (diamond), developmental 
traits (circle) and seed quality traits (square), linked by three different 
colors of lines. More results for the trait correlation and path analy-
sis under other environments can be found in Supplementary Tables 3 
and 4
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with minor effects (Chesler et al. 2005). Detecting these 
minor-effect genes and biologically and statistically vali-
dating their effects on crop phenotypes is challenging. As 
a result of crop domestication, a considerable number of 
traits are associated, either by co-selection, or through co-
regulation of underlying genes (Balasubramanian et al. 
2007; Bernardo 2008). When estimating and attempt-
ing to improve seed yield, breeders always consider not 
only the trait of seed yield itself, but also traits associated 
with seed yield, such as plant height, branching, flower-
ing time and pod number. However, these interrelation-
ships between traits are rarely considered in QTL predic-
tion. This may limit prediction accuracy as well as our 
understanding of how different phenotypes and underly-
ing genetic loci interact to control complex traits. In this 
study, we propose the concept of “essential QTL”: com-
bined multi-trait or multi-environment QTL that contrib-
ute either directly or indirectly (via interactions between 
related traits) to seed yield. Our results provide a model 
for predicting and understanding complex traits in crops.

Our analysis of correlations between traits and QTL 
locations in the large BnaTNDH data set (Figs. 1, 2, 3; 
Supplementary Table 8) revealed a complex genetic 
architecture for seed yield. A total of 525 essential 
QTL for seed yield were identified, spanning 2.48 cM 

on average (about 731.56 kb; Table 4), anchored by at 
least one unique SNP-bin marker. Most of the essential 
QTL showed pleiotropic effects, as well as environment 
effects. Finally, a total of 1266 essential QTL markers (or 
representative markers for genetic bins) were identified 
for reference in future studies (Supplementary Table 10).

Using essential QTL significantly improved predic-
tion accuracy for seed yield under a genomic selection 
model relative to other marker datasets used in our study 
(Fig. 5). Although there are a few reports on the pre-
diction accuracy for seed yield with GS models as 0.45 
(Jan et al. 2016; Würschum et al. 2014), little research 
related to prediction accuracy of seed yield has been done 
in rapeseed. In this study, the genomic prediction accu-
racy for seed yield in semi-winter environment using the 
whole marker dataset was 0.5068, but the accuracy was 
improved (to 0.5211) by using markers located in QTL 
regions (Fig. 5), which highlights the potential use of 
these markers in increasing prediction accuracy. With the 
implementation of essential QTL on the whole genome 
selection model for seed yield, the prediction accuracy 
would be further improved. Therefore, combining pre-
viously acquired QTL information with our proposed 
prediction strategy could facilitate the process of whole 
genome selection for complex traits in future.

Table 4  Distribution of essential QTL for seed yield and informative markers in the BnaTNDH rapeseed mapping population

Genome No. essential QTL Trait-specific Pleiotropic Average interval 
(cM)

Total covered 
distance (cM)

No. markers within 
confidence intervals

A01 41 11 30 1.54 63.06 103

A02 34 3 31 2.49 84.64 59

A03 43 4 39 1.73 74.41 102

A04 29 7 22 2.2 63.8 81

A05 24 5 19 3.24 77.73 69

A06 25 9 16 2.35 58.64 78

A07 29 5 24 2.37 68.69 92

A08 14 6 8 2.57 35.98 35

A09 45 7 38 1.83 82.24 100

A10 23 2 21 1.88 43.35 53

A genome 307 59 248 2.22 681.23 772

C01 21 5 16 2.52 52.85 56

C02 19 5 14 2.21 42.06 48

C03 33 6 27 2.83 93.31 80

C04 14 4 10 4.8 67.22 42

C05 20 3 17 4.12 82.3 40

C06 34 3 31 2.63 89.47 60

C07 23 3 20 2.96 68.16 52

C08 26 5 21 3.04 79.07 70

C09 28 4 24 2.73 76.5 46

C genome 218 38 180 3.09 674.49 494

Total (A + C) 525 97 428 2.48 1303.58 1266
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Of the essential QTL we have identified, nearly one-
fifth had a direct effect on seed yield, but the majority had 
an indirect effect on seed yield through the contribution of 
yield-related traits. These latter essential QTL had either a 
direct effect (all QTL positive or all negative with respect 
to effect on seed yield) or contained a mixture of posi-
tive and negative QTL affecting seed yield in the essen-
tial QTL region. In common practice, only direct QTL 
are detected via the final value of seed yield (Chen et al. 
2010; Maccaferri et al. 2008; Moncada et al. 2001; Peng 
et al. 2011; Radoev et al. 2008). Using the essential QTL 
approach, we detected an additional 56 QTL that influ-
enced seed yield indirectly through control of other traits. 
Nearly half (25) of these essential QTL were composed of 
QTL with opposite effects, offsetting each other in their 
final contribution to seed yield. The effect of co-localized 
QTL has also been reported in other studies (Sun et al. 
2012; Zhao et al. 2016). In rice, gene OsPTR9 was found 
to increase seed yield by 16.7–24.5% compared with 
wild-type lines by improving the nitrogen utilization effi-
ciency (Fang et al. 2013). Recently, Fan et al. (2016) also 
identified a protein controlling nitrogen uptake efficiency 
which could increase rice yield by fifty percent. These 

results provide evidence that yield-related traits such as 
nutrient uptake efficiency can affect seed yield. The detec-
tion of “essential QTL” provides a means of identifying 
the genetic basis of complex traits under a dynamic grow-
ing system with sophisticated trait associations. Our anal-
ysis of seed yield comprises an effective approach to dis-
sect complex traits, which would be also used for similar 
investigation of other traits in other crops.

Comprehensive QTL analysis to discover trait-asso-
ciated markers is necessary for molecular marker-based 
selection in rapeseed pre-breeding and breeding. The 
high-density genetic map newly constructed with the 
assistance of the Illumina Infinium Brassica 60 K SNP 
array (Zhang et al. 2016), combined with eight years of 
phenotype data across different environments for up to 22 
traits (including seed yield and yield components, plant 
development, seed quality, and biotic stresses), allowed 
us detect a total of 1904 consensus QTL accounting for 
22 traits with an average confidence interval of 5.67 cM 
(Supplementary Table 7). Furthermore, the available 
“Darmor-bzh” B. napus reference genome sequence 
(Chalhoub et al. 2014) allowed us to align 60 K SNP 
markers to physical positions genome-widely.

From the QTL analysis of BnaTNDH population across 
multiple-environments, a majority of the QTL were envi-
ronment-specific, presenting in one macro-environment 
or single experiment. It indicated significant environment 
effects on complex traits, and these QTL would provide 
reference for understanding the environment interac-
tions with genes (Li et al. 2003; Yang et al. 2007). While 
there were also considerable QTL detected in both macro-
environments (155 QTL) and multiple experiments (420), 
introgression of the favorable alleles of these QTL would 
be useful for improving the adaptation of B. napus. Quite 
a lot of QTL clusters and major QTL were also identified 
(Supplementary Table 7). These QTL clusters would also 
provide references for further understanding of the co-
selection or linkage drags in rapeseed for trait improve-
ment. The major QTL as well as the minor QTL would 
also provide references for gene cloning. For example, the 
resistance QTL qBR.A10-1 against L. maculans identified 
on A10 was found to be the major resistance gene Rlm2, 
which has now been cloned (Larkan et al. 2014). Two small 
QTL for resistance against L. maculans were also detected 
on A4 and C3 of the BnaTNDH population, which suggests 
that these two QTL may contribute to quantitative resist-
ance. Previous studies also provided evidence that there 
were several QTL on A4 and C3 contributing to resistance 
against L. maculans (Jestin et al. 2015; Huang et al. 2016). 
Candidate genes FLOWERING LOCUS T, FAE1, Rlm2 for 
flower time, erucic acid content, resistance against L. mac-
ulans, were consistently detected in the QTL regions for 
these traits (Supplementary Table 11).

Fig. 3  The outer circle is the BnaTNDH linkage map, the short black 
lines indicate the positions of map markers. The red triangles, green 
triangles and black triangles under the linkage groups indicate the 
essential QTL for seed yield, seed yield components and other traits, 
respectively. The red wave in the middle circle indicates the LOD 
scores for corresponding composite QTL, while the yellow wave in 
the inner circle indicates the R2 values for corresponding essential 
QTL. The details of LOD scores and the R2 values for correspond-
ing essential QTL are shown in Supplementary Table 9 (color figure 
online)
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The BnaTNDH genetic mapping population of B. napus 
was derived from the cross between the typical European 
winter-type cultivar “Tapidor” and typical Chinese semi-
winter cultivar “Ningyou7”, and hence contains genomic 
diversity between the two major gene pools of B. napus 

growing in Europe and Asia (Qiu et al. 2006). More QTL 
were discovered in the A genome than in the C genome in 
our study (Table 3), supporting previous results (Shi et al. 
2009). This may have been due to richer allelic variation 
in the A genome than in the C genome in the rapeseed 

Fig. 4  Horizontal lines indicate 
the QTL intervals while the 
short vertical lines indicate the 
positions of peaks. A downward 
peak position line indicates that 
the value of the genetic effect 
of the QTL is negative, and an 
upward line indicates that QTL 
has a positive genetic effect on 
the trait. a On the C9 linkage 
group, the seed yield QTL (qSY.
C9-2) that overlapped with 
seed yield component QTL 
were integrated into es.C9-13; 
b On the C3 linkage group, 
QTL for seed yield components 
with positive contribution were 
integrated into es.C3-17; c On 
the A2 linkage group, QTL for 
seed yield components with 
opposite contributions were 
integrated via meta-analysis into 
one essential QTL named as es.
A2-14. SN seed number per pod, 
SY seed yield, SW seed weight, 
PN pod number, ERU erucic 
acid content, PH-LP plant 
height under low phosphorus 
condition, PW seed yield per 
pod, VE vitamin E content, DT 
development time for seeds, 
PRO protein content, GLU 
glucosinolate content

b

c

a

es.A2-14

qPN.A2-1

qSW.A2-1
uniGlu.A2-9

qPRO.A2-3

A2 
60.35 cM66.25 cM

C3
93.22cM 72.76cM

qDT.C3-2
uniVE.C3-2
qERU.C3-1
qSN.C3-3
qPW.C3-2
qPN.C3-1
es.C3-17

es.C9-13

C9
74.94cM

qPH-LP.C9-2
qPN.C9-1
qSY.C9-2
qSN.C9-2
qERU.C9-1

62.40cM
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germplasm pool, and this may particularly be the case for 
the two parents of the BnaTNDH mapping population, as 
the parent cultivar Ningyou7 is known to carry introgres-
sions from the more diverse A-genome progenitor species 
B. rapa (Bancroft et al. 2011).

In future, as data will be continually obtained through 
QTL mapping and genome wide association analy-
sis (e.g. Chen et al. 2007; Huang et al. 2016; Lee et al. 
2015; Raman et al. 2014; Ramchiary et al. 2015; Xu 
et al. 2009), it would be possible to integrate the data 
from this study into further meta-analyses using this 
approach with consideration of trait association to pro-
vide better understanding of complex traits for crop 
improvement. These data and the integration of genetic 
and physical maps will provide an important theoretical 
and applied resource for studies in rapeseed genetics and 
genomics.

Author contribution statement ZLL and MW performed 
the research, analyzed the data and wrote the manuscript; 
YJH and BF provided the unpublished phenotypic data for 
resistance against Leptosphaeria maculans and revised 
the manuscript; JLM, CYZ and XL provided the unpub-
lished phenotypic data for resistance against Sclerotinia 

sclerotiorum and data for tocopherol components; JXX, 
YL, LS and JLM provided the SNP genotypes, genetic 
map and the previous published phenotypic data of 
BnaTNDH population; ASM, RS, PFL and JLM contrib-
uted to the methods; JZ designed the research, analyzed 
the data, and wrote the manuscript. All authors contrib-
uted, read, revised and approved the final manuscript.

Acknowledgments The authors gratefully thank the previous mem-
bers (Dr. Ruiyuan Li, Dr. Jiaqin Shi, Dr. Ji Feng, Dr. Congcong 
Jiang, Dr. Dan Qiu, etc.) from the research group at Huazhong Agri-
cultural University for their previous work on the BnaTNDH popu-
lation. We thank Dr H. R. Kutcher for providing the Leptosphaeria 
maculans isolate. We thank Prof. Jiana Li of Southwest University 
for help with path analysis. This work was supported by the National 
Basic Research Program of China (Grant No. 2015CB150200, 
2011CB109306), National Key Research and Development Pro-
gram of China (No. 2016YFD0100305, 2016YFD0101300) and the 
UK Biotechnology and Biological Sciences Research Council (BB/
E001610/1 & BB/I017585/1). ASM is supported by the DFG Emmy 
Noether Grant MA6473/1-1.

Compliance with ethical standards 

Conflict of interest The authors declare that they have no competing 
interests.

Fig. 5  Prediction of genomic 
selection accuracy was done 
using 2041 representative bin 
markers from the BnaTNDH 
genetic map, 1266 bin mark-
ers located within QTL 
confidence intervals, 775 bin 
markers located outside QTL 
confidence intervals, and by 
comparison 1266 randomly 
selected bin markers and 775 
randomly selected bin markers, 
respectively. The top and bot-
tom of each box represent the 
prediction values of the upper 
25% and the lower 25% of the 
markers; the bold line within 
each box represents the median 
prediction value. The upper and 
lower lines outside the box rep-
resent the largest and smallest 
prediction values

All TN map
markers(2041)

Markers located
in QTL(1266)

Markers outside
of QTL(775)

Random selected
 markers(1266)

Random selected
markers(775)

0.
0

0.
2

0.
4

0.
6

0.
8



1583Theor Appl Genet (2017) 130:1569–1585 

1 3

References

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) 
Basic local alignment search tool. J Mol Biol 215:403–410. 
doi:10.1016/S0022-2836(05)80360-2

Balasubramanian V, Sie M, Hijmans RJ, Otsuka K (2007) Increasing 
rice production in Sub-Saharan Africa: Challenges and oppor-
tunities. In: Sparks DL (ed) Advances in Agronomy, Vol 94, pp 
55–133. doi:10.1016/S0065-2113(06)94002-4

Bancroft I, Morgan C, Fraser F, Higgins J, Wells R, Clissold L, Baker 
D, Long Y, Meng J, Wang X, Liu S, Trick M (2011) Dissect-
ing the genome of the polyploid crop oilseed rape by transcrip-
tome sequencing. Nat Biotechnol 29(8):762–766. doi:10.1038/
nbt.1926

Bernardo R (2008) Molecular markers and selection for com-
plex traits in plants: learning from the last 20 years. Crop Sci 
48:1649–1664. doi:10.2135/cropsci2008.03.0131

Chalhoub B, Denoeud F, Liu S, Parkin IAP, Tang H, Wang X, Chi-
quet J, Belcram H, Tong C, Samans B, Correa M, Da Silva C, 
Just J, Falentin C, Koh CS, Le Clainche I, Bernard M, Bento P, 
Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, 
Daviaud C, Alamery S, Jabbari K, Zhao M, Edger PP, Chelaifa 
H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier M-C, 
Fan G, Renault V, Bayer PE, Golicz AA, Manoli S, Lee T-H, 
Vinh Ha Dinh T, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu 
Y, Battail C, Shen J, Sidebottom CHD, Wang X, Canaguier A, 
Chauveau A, Berard A, Deniot G, Guan M, Liu Z, Sun F, Lim 
YP, Lyons E, Town CD, Bancroft I, Wang X, Meng J, Ma J, 
Pires JC, King GJ, Brunel D, Delourme R, Renard M, Aury 
J-M, Adams KL, Batley J, Snowdon RJ, Tost J, Edwards D, 
Zhou Y, Hua W, Sharpe AG, Paterson AH, Guan C, Wincker 
P (2014) Early allopolyploid evolution in the post-Neolithic 
Brassica napus oilseed genome. Science 345:950–953. 
doi:10.1126/science

Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, 
Murigneux A, Charcosset A (2004) Genetic architecture of flow-
ering time in maize as inferred from quantitative trait loci meta-
analysis and synteny conservation with the rice genome. Genet-
ics 168:2169–2185. doi:10.1534/genetics.104.032375

Chen X, Faris JD, Hu J, Stack RW, Adhikari T, Elias EM, Kianian 
SF, Cai X (2007) Saturation and comparative mapping of a major 
Fusarium head blight resistance QTL in tetraploid wheat. Mol 
Breed 19:113–124. doi:10.1007/s11032-006-9049-7

Chen G, Geng J, Rahman M, Liu X, Tu J, Fu T, Li G, McVetty PBE, 
Tahir M (2010) Identification of QTL for oil content, seed yield, 
and flowering time in oilseed rape (Brassica napus). Euphytica 
175:161–174. doi:10.1007/s10681-010-0144-9

Chesler EJ, Lu L, Shou SM, Qu YH, Gu J, Wang JT, Hsu HC, Mountz 
JD, Baldwin NE, Langston MA, Threadgill DW, Manly KF, 
Williams RW (2005) Complex trait analysis of gene expres-
sion uncovers polygenic and pleiotropic networks that modulate 
nervous system function. Nat Genet 37:233–242. doi:10.1038/
ng1518

Churchill GA, Doerge RW (1994) Empirical threshold values for 
quantitative trait mapping. Genetics 138:963–971

Clarke WE, Higgins EE, Plieske J, Wieseke R, Sidebottom C, Khedi-
kar Y, Batley J, Edwards D, Meng J, Li R, Lawler CT, Bouquet 
J, Laga B, Chung W, Iniguez-Luy F, Dyrszka E, Rae S, Stich 
B, Snowdon RJ, Sharpe AG, Ganal MW, Parkin IAP (2016) A 
high-density SNP genotyping array for Brassica napus and its 
ancestral diploid species based on optimised selection of single-
locus markers in the allotetraploid genome. Theor Appl Genet 
129:1887–1899. doi:10.1007/s00122-016-2746-7

Core Team R (2015) R: a language and environment for statistical 
computing. R Foundation for Statistical Computing, Vienna

Cowling WA, Balazs E (2010) Prospects and challenges for genome-
wide association and genomic selection in oilseed Brassica spe-
cies. Genome 53:1024–1028. doi:10.1139/G10-087

Dargahi H, Tanya P, Somta P, Abe J, Srinives P (2014) Mapping quan-
titative trait loci for yield-related traits in soybean (Glycine max 
L.). Breed Sci 64:282–290. doi:10.1270/jsbbs.64.282

El-Soda M, Malosetti M, Zwaan BJ, Koornneef M, Aarts MG 
(2014) Genotype x environment interaction QTL mapping in 
plants: lessons from Arabidopsis. Trends Plant Sci 19:390–398. 
doi:10.1016/j.tplants.2014.01.001

Endelman JB (2011) Ridge regression and other kernels for genomic 
selection with R package rrBLUP. Plant Genome 4:250–255. 
doi:10.3835/plantgenome2011.08.0024

Fan X, Tang Z, Tan Y, Zhang Y, Luo B, Yang M, Lian X, Shen Q, 
Miller AJ, Xu G (2016) Overexpression of a pH-sensitive nitrate 
transporter in rice increases crop yields. Proc Natl Acad Sci USA 
113(26):7118–7123. doi:10.1073/pnas

Fang Z, Xia K, Yang X, Grotemeyer MS, Meier S, Rentsch D, Xu 
X, Zhang M (2013) Altered expression of the PTR/NRT1 homo-
logue OsPTR9 affects nitrogen utilization efficiency, growth and 
grain yield in rice. Plant Biotechnol J 11:446–458. doi:10.1111/
pbi.12031

Feng J, Long Y, Shi L, Shi J, Barker G, Meng J (2012) Characteri-
zation of metabolite quantitative trait loci and metabolic net-
works that control glucosinolate concentration in the seeds 
and leaves of Brassica napus. New Phytol 193:96–108. 
doi:10.1111/j.1469-8137.2011.03890.x

Goffinet B, Gerber S (2000) Quantitative trait loci: a meta-analysis. 
Genetics 155:463–473

Groos C, Robert N, Bervas E, Charmet G (2003) Genetic analy-
sis of grain protein-content, grain yield and thousand-kernel 
weight in bread wheat. Theor Appl Genet 106:1032–1040. 
doi:10.1007/s00122-002-1111-1

Holland JB, Portyanko VA, Hoffman DL, Lee M (2002) Genomic 
regions controlling vernalization and photoperiod responses 
in oat. Theor Appl Genet 105:113–126. doi:10.1007/
s00122-001-0845-5

Huang YJ, Jestin C, Welham SJ, King GJ, Manzanares-Dauleux MJ, 
Fitt BDL, Delourme R (2016) Identification of environmentally 
stable QTL for resistance against Leptosphaeria maculans in 
oilseed rape (Brassica napus). Theor Appl Genet 129:169–180. 
doi:10.1007/s00122-015-2620-z

Jan HU, Abbadi A, Lücke S, Nichols RA, Snowdon RJ (2016) 
Genomic prediction of testcross performance in canola (Bras-
sica napus L.). PLoS ONE 11:e0147769. doi:10.1371/journal.
pone.0147769

Jestin C, Bardol N, Lodé M, Duffé P, Domin C, Vallée P, Mangin B, 
Manzanares-Dauleux MJ, Delourme R (2015) Connected popu-
lations for detecting quantitative resistance factors to phoma 
stem canker in oilseed rape (Brassica napus L.). Mol Breed 
35:167. doi:10.1007/s11032-015-0356-8

Jiang C, Shi J, Li R, Long Y, Wang H, Li D, Zhao J, Meng J (2014) 
Quantitative trait loci that control the oil content variation of 
rapeseed (Brassica napus L.). Theor Appl Genet 127:957–968. 
doi:10.1007/s00122-014-2271-5

Khatkar MS, Thomson PC, Tammen I, Raadsma HW (2004) Quanti-
tative trait loci mapping in dairy cattle: review and meta-analy-
sis. Genet Sel Evol 36:163–190. doi:10.1051/gse:2003057

Lacape JM, Gawrysiak G, Cao TV, Viot C, Llewellyn D, Liu SM, 
Jacobs J, Becker D, Barroso PAV, de Assuncao JH, Palai O, 
Georges S, Jean J, Giband M (2013) Mapping QTLs for traits 
related to phenology, morphology and yield components in 
an inter-specific Gossypium hirsutum x G. barbadense cotton 
RIL population. Field Crop Res 144:256–267. doi:10.1016/j.
fcr.2013.01.001

http://dx.doi.org/10.1016/S0022-2836(05)80360-2
http://dx.doi.org/10.1016/S0065-2113(06)94002-4
http://dx.doi.org/10.1038/nbt.1926
http://dx.doi.org/10.1038/nbt.1926
http://dx.doi.org/10.2135/cropsci2008.03.0131
http://dx.doi.org/10.1126/science
http://dx.doi.org/10.1534/genetics.104.032375
http://dx.doi.org/10.1007/s11032-006-9049-7
http://dx.doi.org/10.1007/s10681-010-0144-9
http://dx.doi.org/10.1038/ng1518
http://dx.doi.org/10.1038/ng1518
http://dx.doi.org/10.1007/s00122-016-2746-7
http://dx.doi.org/10.1139/G10-087
http://dx.doi.org/10.1270/jsbbs.64.282
http://dx.doi.org/10.1016/j.tplants.2014.01.001
http://dx.doi.org/10.3835/plantgenome2011.08.0024
http://dx.doi.org/10.1073/pnas
http://dx.doi.org/10.1111/pbi.12031
http://dx.doi.org/10.1111/pbi.12031
http://dx.doi.org/10.1111/j.1469-8137.2011.03890.x
http://dx.doi.org/10.1007/s00122-002-1111-1
http://dx.doi.org/10.1007/s00122-001-0845-5
http://dx.doi.org/10.1007/s00122-001-0845-5
http://dx.doi.org/10.1007/s00122-015-2620-z
http://dx.doi.org/10.1371/journal.pone.0147769
http://dx.doi.org/10.1371/journal.pone.0147769
http://dx.doi.org/10.1007/s11032-015-0356-8
http://dx.doi.org/10.1007/s00122-014-2271-5
http://dx.doi.org/10.1051/gse:2003057
http://dx.doi.org/10.1016/j.fcr.2013.01.001
http://dx.doi.org/10.1016/j.fcr.2013.01.001


1584 Theor Appl Genet (2017) 130:1569–1585

1 3

Larkan NJ, Lydiate DJ, Yu F, Rimmer SR, Borhan MH (2014) Co-
localisation of the blackleg resistance genes Rlm2 and LepR3 
on Brassica napus chromosome A10. BMC Plant Biol 14:387. 
doi:10.1186/s12870-014-0387-z

Lee J, Izzah NK, Jayakodi M, Perumal S, Joh HJ, Lee HJ, Lee S-C, 
Park JY, Yang K-W, Nou I-S, Seo J, Yoo J, Suh Y, Ahn K, Lee 
JH, Choi GJ, Yu Y, Kim H, Yang T-J (2015) Genome-wide SNP 
identification and QTL mapping for black rot resistance in cab-
bage. BMC Plant Biol 15:32. doi:10.1186/s12870-015-0424-6

Li ZK, Yu SB, Lafitte HR, Huang N, Courtois B, Hittalmani S, 
Vijayakumar CH, Liu GF, Wang GC, Shashidhar HE, Zhuang 
JY, Zheng KL, Singh VP, Sidhu JS, Srivantaneeyakul S, Khush 
GS (2003) QTL x environment interactions in rice. I. head-
ing date and plant height. Theor Appl Genet 108(1):141–153. 
doi:10.1007/s00122-003-1401-2

Li N, Shi J, Wang X, Liu G, Wang H (2014) A combined linkage 
and regional association mapping validation and fine map-
ping of two major pleiotropic QTLs for seed weight and silique 
length in rapeseed (Brassica napus L.). BMC Plant Biol 14:114. 
doi:10.1186/1471-2229-14-114

Liu J, Hua W, Hu Z, Yang H, Zhang L, Li R, Deng L, Sun X, Wang 
X, Wang H (2015) Natural variation in ARF18 gene simultane-
ously affects seed weight and silique length in polyploid rape-
seed. Proc Natl Acad Sci USA 112:E5123–E5132. doi:10.1073/
pnas.1502160112

Long Y, Shi J, Qiu D, Li R, Zhang C, Wang J, Hou J, Zhao J, Shi 
L, Park B-S, Choi SR, Lim YP, Meng J (2007) Flowering time 
quantitative trait loci analysis of oilseed Brassica in multiple 
environments and genomewide alignment with Arabidopsis. 
Genetics 177:2433–2444. doi:10.1534/genetics.107.080705

Maccaferri M, Sanguineti MC, Corneti S, Ortega JLA, Ben Salem 
M, Bort J, DeAmbrogio E, Garcia Fernando, del Moral L, 
Demontis A, El-Ahmed A, Maalouf F, Machlab H, Martos V, 
Moragues M, Motawaj J, Nachit M, Nserallah N, Ouabbou 
H, Royo C, Slama A, Tuberosa R (2008) Quantitative trait 
loci for grain yield and adaptation of durum wheat (Triticum 
durum Desf.) across a wide range of water availability. Genet-
ics 178:489–511. doi:10.1534/genetics.107.077297

Mackay TF, Stone EA, Ayroles JF (2009) The genetics of quantita-
tive traits: challenges and prospects. Nat Rev Genet 10:565–
577. doi:10.1038/nrg2612

Moncada P, Martinez CP, Borrero J, Chatel M, Gauch H Jr, Guima-
raes E, Tohme J, McCouch SR (2001) Quantitative trait loci for 
yield and yield components in an Oryza sativa X Oryza rufipo-
gon BC2F2 population evaluated in an upland environment. 
Theor Appl Genet 102:41–52. doi:10.1007/s001220051616

Myers JL, Well A, Lorch RF (2010) Research design and statistical 
analysis. Routledge

Peng B, Li Y, Wang Y, Liu C, Liu Z, Tan W, Zhang Y, Wang D, Shi 
Y, Sun B, Song Y, Wang T, Li Y (2011) QTL analysis for yield 
components and kernel-related traits in maize across multi-
environments. Theor Appl Genet 122:1305–1320. doi:10.1007/
s00122-011-1532-9

Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang 
Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, 
Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt 
R, Li J, Li D, Meng J, Bancroft I (2006) A comparative link-
age map of oilseed rape and its use for QTL analysis of seed 
oil and erucic acid content. Theor Appl Genet 114:67–80. 
doi:10.1007/s00122-006-0411-2

Radoev M, Becker HC, Ecke W (2008) Genetic analysis of hetero-
sis for yield and yield components in rapeseed (Brassica napus 
L.) by quantitative trait locus mapping. Genetics 179:1547–
1558. doi:10.1534/genetics.108.089680

Raman H, Dalton-Morgan J, Diffey S, Raman R, Alamery 
S, Edwards D, Batley J (2014) SNP markers-based map 

construction and genome-wide linkage analysis in Brassica 
napus. Plant Biotechnol J 12:851–860. doi:10.1111/pbi.12186

Ramchiary N, Pang W, Nguyen VD, Li X, Choi SR, Kumar A, 
Kwon M, Song HY, Begum S, Kehie M, Yoon M-K, Na J, 
Kim H, Lim YP (2015) Quantitative trait loci mapping of par-
tial resistance to Diamondback moth in cabbage (Brassica 
oleracea L). Theor Appl Genet 128:1209–1218. doi:10.1007/
s00122-015-2501-5

Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C, Bancroft I, Zhao J, 
Meng J (2009) Unraveling the complex trait of crop yield with 
quantitative trait loci mapping in Brassica napus. Genetics 
182:851–861. doi:10.1534/genetics.109.101642

Shi T, Li R, Zhao Z, Ding G, Long Y, Meng J, Xu F, Shi L (2013) 
QTL for yield traits and their association with functional genes 
in response to phosphorus deficiency in Brassica napus. PLoS 
One 8:e54559. doi:10.1371/journal.pone.0054559

Silva Lda C, Wang S, Zeng ZB (2012) Composite interval mapping 
and multiple interval mapping: procedures and guidelines for 
using Windows QTL Cartographer. Methods Mol Biol (Clifton, 
NJ) 871:75–119. doi:10.1007/978-1-61779-785-9_6

Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice 
grain width and weight encodes a previously unknown RING-
type E3 ubiquitin ligase. Nat Genet 39:623–630. doi:10.1038/
ng2014

Sun F, Liu P, Ye J, Lo LC, Cao S, Li L, Yue GH, Wang CM (2012) An 
approach for jatropha improvement using pleiotropic QTLs reg-
ulating plant growth and seed yield. Biotechnol Biofuels 5:42. 
doi:10.1186/1754-6834-5-42

Vales MI, Schön CC, Capettini F, Chen XM, Corey AE, Mather DE, 
Mundt CC, Richardson KL, Sandoval-Islas JS, Utz HF, Hayes 
PM (2005) Effect of population size on the estimation of QTL: 
a test using resistance to barley stripe rust. Theor Appl Genet 
111:1260–1270

Wang S, Basten CJ, Zeng Z-B (2012) Windows QTL Cartographer 2.5. 
Department of Statistics, North Carolina State University, Raleigh, 
NC (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm). Accessed 12 
Nov 2015

Wright S (1934) The method of path coefficients. Ann Math Stat 
5(3):161–215

Würschum T (2012) Mapping QTL for agronomic traits in breed-
ing populations. Theor Appl Genet 125:201–210. doi:10.1007/
s00122-012-1887-6

Würschum T, Abel S, Zhao Y (2014) Potential of genomic selection in 
rapeseed (Brassica napus L.) breeding. Plant Breed 133:45–51. 
doi:10.1111/pbr.12137

Xiao J, Li J, Yuan L, Tanksley SD (1996) Identification of QTLs 
affecting traits of agronomic importance in a recombinant inbred 
population derived from a subspecific rice cross. Theor Appl 
Genet 92:230–244. doi:10.1007/BF00223380

Xu Y, This D, Pausch RC, Vonhof WM, Coburn JR, Comstock JP, 
McCouch SR (2009) Leaf-level water use efficiency determined 
by carbon isotope discrimination in rice seedlings: genetic varia-
tion associated with population structure and QTL mapping. Theor 
Appl Genet 118:1065–1081. doi:10.1007/s00122-009-0963-z

Yang DL, Jing RL, Chang XP, Li W (2007) Identification of quan-
titative trait loci and environmental interactions for accumu-
lation and remobilization of water-soluble carbohydrates in 
wheat (Triticum aestivum L.) stems. Genetics 176(1):571–584. 
doi:10.1534/genetics.106.068361

Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 
136:1457–1468

Zhang WK, Wang YJ, Luo GZ, Zhang JS, He CY, Wu XL, Gai JY, 
Chen SY (2004) QTL mapping of ten agronomic traits on the 
soybean (Glycine max L. Merr.) genetic map and their asso-
ciation with EST markers. Theor Appl Genet 108:1131–1139. 
doi:10.1007/s00122-003-1527-2

http://dx.doi.org/10.1186/s12870-014-0387-z
http://dx.doi.org/10.1186/s12870-015-0424-6
http://dx.doi.org/10.1007/s00122-003-1401-2
http://dx.doi.org/10.1186/1471-2229-14-114
http://dx.doi.org/10.1073/pnas.1502160112
http://dx.doi.org/10.1073/pnas.1502160112
http://dx.doi.org/10.1534/genetics.107.080705
http://dx.doi.org/10.1534/genetics.107.077297
http://dx.doi.org/10.1038/nrg2612
http://dx.doi.org/10.1007/s001220051616
http://dx.doi.org/10.1007/s00122-011-1532-9
http://dx.doi.org/10.1007/s00122-011-1532-9
http://dx.doi.org/10.1007/s00122-006-0411-2
http://dx.doi.org/10.1534/genetics.108.089680
http://dx.doi.org/10.1111/pbi.12186
http://dx.doi.org/10.1007/s00122-015-2501-5
http://dx.doi.org/10.1007/s00122-015-2501-5
http://dx.doi.org/10.1534/genetics.109.101642
http://dx.doi.org/10.1371/journal.pone.0054559
http://dx.doi.org/10.1007/978-1-61779-785-9_6
http://dx.doi.org/10.1038/ng2014
http://dx.doi.org/10.1038/ng2014
http://dx.doi.org/10.1186/1754-6834-5-42
http://statgen.ncsu.edu/qtlcart/WQTLCart.htm
http://dx.doi.org/10.1007/s00122-012-1887-6
http://dx.doi.org/10.1007/s00122-012-1887-6
http://dx.doi.org/10.1111/pbr.12137
http://dx.doi.org/10.1007/BF00223380
http://dx.doi.org/10.1007/s00122-009-0963-z
http://dx.doi.org/10.1534/genetics.106.068361
http://dx.doi.org/10.1007/s00122-003-1527-2


1585Theor Appl Genet (2017) 130:1569–1585 

1 3

Zhang Y, Thomas CL, Xiang J, Long Y, Wang X, Zou J, Luo Z, Ding 
G, Cai H, Graham NS, Hammond JP, King GJ, White PJ, Xu F, 
Broadley MR, Shi L, Meng J (2016) QTL meta-analysis of root 
traits in Brassica napus under contrasting phosphorus supply in 
two growth systems. Sci Rep 6:33113. doi:10.1038/srep33113

Zhao Y, Zeng J, Fernando R, Reif JC (2013) Genomic prediction of 
hybrid wheat performance. Crop Sci 53:802–810. doi:10.2135/
cropsci2012.08.0463

Zhao Y, Mette MF, Reif JC (2015) Genomic selection in hybrid breed-
ing. Plant Breed 134:1–10. doi:10.1111/pbr.12231

Zhao W, Wang X, Wang H, Tian J, Li B, Chen L, Chao H, Long 
Y, Xiang J, Gan J, Liang W, Li M (2016) Genome-wide iden-
tification of QTL for seed yield and yield-related traits and 
construction of a high-density consensus map for QTL com-
parison in Brassica napus. Front Plant Sci 7:17. doi:10.3389/
fpls.2016.00017

Zou J, Zhao Y, Liu P, Shi L, Wang X, Wang M, Meng J, Reif JC 
(2016) Seed quality traits can be predicted with high accuracy in 
Brassica napus using genomic data. PLoS One 11(11):e0166624. 
doi:10.1371/journal.pone.0166624

http://dx.doi.org/10.1038/srep33113
http://dx.doi.org/10.2135/cropsci2012.08.0463
http://dx.doi.org/10.2135/cropsci2012.08.0463
http://dx.doi.org/10.1111/pbr.12231
http://dx.doi.org/10.3389/fpls.2016.00017
http://dx.doi.org/10.3389/fpls.2016.00017
http://dx.doi.org/10.1371/journal.pone.0166624

	Incorporating pleiotropic quantitative trait loci in dissection of complex traits: seed yield in rapeseed as an example
	Abstract 
	Key message 
	Abstract 

	Introduction
	Materials and methods
	Plant material and available phenotype data
	Collection of phenotype data on disease resistance
	Linkage map and marker alignment to the B. napus “Darmor-bzh” reference genome
	Phenotype and QTL analyses
	Accuracy of genomic prediction on seed yield

	Results
	Correlations between agronomic traits and their contributions to seed yield in the BnaTNDH population
	Detection of consensus QTL accounting for all investigated traits using the high-density SNP genetic map of the BnaTNDH population
	Detection of “essential QTL” for seed yield with consideration of trait associations
	Prediction accuracy for seed yield based on “essential QTL”

	Discussion
	Acknowledgments 
	References




