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tospovirus R protein from tomato. It was found that the R8 
gene is present in late blight resistant potato varieties from 
Europe (Sarpo Mira), USA (Jacqueline Lee, Missaukee) 
and China (PB-06, S-60). Indeed, when tested under field 
conditions, R8 transgenic potato plants showed broad spec-
trum resistance to the current late blight population in the 
Netherlands, similar to Sarpo Mira.

Keywords Phytophthora infestans · Potato late blight · 
Disease resistance gene · Cisgenesis · NB-LRR

Introduction

Genetic resistance against pests and diseases is the most sus-
tainable crop protection strategy (Michelmore et al. 2013) 
and has already provided durable solutions in many different 
agrosystems. Potato late blight, caused by the oomycete Phy-
tophthora infestans, is still a serious problem for one of the 
major food crops in this world. Despite the fact that genetic 
resistance to late blight is amply available in the potato germ-
plasm (Vleeshouwers et al. 2011; Vossen et al. 2014), it is 
deployed in potato varieties only to a limited extent. Limiting 
factors in late blight resistance breeding are the long breed-
ing cycles and the highly heterozygous tetraploid genome. 
Also, P. infestans is notorious for its short asexual spore 
cycles, allowing mitotic mutations, and sexual generation 
which allows rapid genetic recombination in many regions 
of the world. To achieve durable resistance to late blight, 
multiple resistance (R) genes must be introduced in varie-
ties to provide incremental and insurmountable hurdles for P. 
infestans, thereby further delaying the breeding process. So, 
the rigidity of the potato genome and the flexibility of the P. 
infestans genome have so far prevented the large-scale use of 
resistant varieties. Sarpo Mira is a variety that shows durable 
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resistance to the current P. infestans population (Lees et al. 
2012), but this variety is not widely grown because agricul-
tural and industrial processing characteristics of late blight 
susceptible varieties like Bintje and Russet Burbank are pre-
ferred. Improvement of established varieties through genetic 
modification is therefore an obvious approach; especially the 
introduction of natural genes from crossable species, known 
as cisgenes, is associated with low risks and is preferred by 
consumers (Eurobarometer 2010; Devos et al. 2014). In the 
last 10 years, the cloning of at least eight cisgenic late blight 
R genes has been reported and many more are available from 
the germplasm (Rodewald and Trognitz 2013). The simulta-
neous introduction of multiple cisgenes causing late blight 
resistance has been shown to be a feasible and highly effi-
cient approach (Zhu et al. 2012; Jo et al. 2014). For a viable 
cisgenic late blight breeding approach, many cloned broad-
spectrum R genes must be available. The potato late blight 
differential MaR8 is considered a valuable late blight resist-
ance source, because virulence towards MaR8 is found only 
with low frequency. The gene responsible for MaR8 resist-
ance is referred to as R8 (Jo et al. 2011; Kim et al. 2012). 
R8 has the same map position and recognition specificity as 
Rpi-smira2 (Jo 2013), the main determinant of the resistance 
in the potato variety Sarpo Mira (Rietman et al. 2012) that 
has remained resistant already for several years. Also, the 
late blight R gene from the variety Jacqueline Lee is located 
at a similar genetic position (Massa et al. 2015). Here, we 
report the cloning of the R8 gene through a map-based clon-
ing approach which includes a fine mapping, BAC landing, 
BAC walking, candidate cloning and complementation anal-
ysis. We show that R8 encodes a CC-NB-LRR protein with 
89 % identity to Sw-5, a tomato spotted wilt virus resistance 
R protein.

Materials and methods

Plant material

The potato differential plant MaR8, corresponding to 
plant 2424a(5) described by Black et al. (1953), was used 
for bacterial artificial chromosome (BAC) library con-
struction. MaR8*Concurrent population (code 3020) was 
used for genetic mapping. These plant materials and cv 
Desiree, which was used for transformation, were main-
tained in vitro at Wageningen UR Plant Breeding. Nico-
tiana benthamiana was maintained as seed stock. PB-06 
(387132.2*387170.9), S-60 (393075.54* 391679.7), and 
C-88 (Li et al. 2010) were maintained at Yunan University. 
Jacqueline Lee (Tollocan*Chaleur; Douches et al. 2001) 
and Missaukee (Tollocan*NY88; Douches et al. 2009) 
were maintained at Michigan State University. Isolated 
DNA was analysed in Wageningen.

Bacterial artificial chromosome library construction 
and screening

A first BAC library was produced by mechanical shear-
ing of MaR8 genomic DNA and ligation of high molecular 
weight fragments into pCC1 at RxBiosciences (Gaithers-
burg, MD, USA). This first BAC library consisted of 768 
simple pools of 200 individual BAC clones. Simple pools 
were stored at −80 °C. The average insert size was ~55 kb, 
resulting in a 2.5* coverage of a haploid genome. A sec-
ond BAC library was produced by Bio S&T (Saint-Laurent, 
Montreal, Canada). MaR8 genomic DNA was fragmented 
by partial digestion with HindIII. Size-selected fragments 
were cloned into pIndigoBAC-5. The average insert size 
was ~100 kb (Fig. S1). The 750 simple pools of 400 indi-
vidual BACs, representing a 10* coverage of the haploid 
genome, were stored at −80 °C. Markers described in Table 
S1 were used to screen the BAC libraries. Bacterial suspen-
sions of positive pools were diluted and plated on LB agar 
plates containing chloramphenicol (12.5 μg ml−1). After 
determining the bacterial titre of a positive pool, 2 × 96 
subpools containing 50 individuals each were grown for 
8 h in deepwell blocks. After culture, PCR-positive sub-
pools were plated on LB plates containing chlorampheni-
col and individual colonies were picked into 96 flat-bottom 
microtitre plates. Positive BAC clones were subsequently 
identified by a third round of PCR screening.

DNA sequencing and bioinformatics analysis

BAC clone sequencing was carried out using a shotgun 
strategy. Fragmentation, library production, 454 sequenc-
ing and contig assembly were performed at Macrogen 
(Seoul, Korea). BAC n2A2 was sequenced using PACBIO 
(GATC, Germany). Gene structures were predicted using 
FGENESH2.6 (Softberry) and protein sequences were 
deduced by translation of ORF using the standard genetic 
code. Multiple sequence alignments and phylogenetic anal-
yses were conducted using CLUSTALX 1.81 (Thompson 
et al. 1997) available in the MegAlign Lasergene 9.0 soft-
ware package (DNASTAR Inc., USA).

(Sub)cloning of candidate genes

Primers were designed for subcloning RGA0.20-3.2 
(Fig. 1) using primer select from the Lasergene 9.0 soft-
ware package (DNASTAR Inc., USA) and were extended 
at the 5′ end with recognition sites for eight cutter restric-
tion enzymes (Table S2). Long-range PCR amplifica-
tions were performed using Phusion® High-Fidelity DNA 
Polymerase (New England Biolabs, Ipswich, USA). 
Reaction conditions were 98 °C for 30 s, followed by 24 
cycles of 98 °C for 10 s, 62–65 °C for 30 s, 72 °C for 
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5.5 min and a final extension time of 15 min at 72 °C. 
BAC clones 3E3, 6A5, or n2E2 were used as templates. 
The resulting PCR products were subjected to G50 
Sephadex purification using Illustra MicroSpin columns 
(GE Healthcare) followed by ligation to the PCR-Blun-
tII-Topo vector using the Zero Blunt Topo PCR Cloning 
Kit (Invitrogen). The ligation products were transformed 
to ElectroMAX E. coli DH10B competent cells (Life 
technologies, Paisley, UK). The inserts of PCR-positive 
colonies were sequenced using a primer walking strat-
egy (700 × 700 bp) to confirm that no mutations were 
introduced. The purified PCR-BluntII-Topo clones were 
digested with AscI and SbfI, or with XmaI and SbfI which 
were present in the 5′ extensions of the primer (Table 
S2), Sticky ends were subsequently dephosphorylated 
using TSAP (Pomega) and all enzymes were heat inacti-
vated. The digestion mix was ligated to the AscI and SbfI 
or XmaI and SbfI sites of the binary vector pBINPLUS–
PASSA (Jo et al. 2016), which is a modified version of 
pBINPLUS containing an eight cutter multiple cloning 
site. For R8 allele mining in potato varieties, primers 
R8-AbsI-F and R8-SrfI-R (Table S2) were used accord-
ing to the same procedure as described above. Instead of 
BAC DNA, the genomic DNA of the respective varieties 
was used as a template.

Late blight resistance tests

Phytophthora infestans isolate IPO-C (race 1, 2, 3, 4, 5, 6, 
7, 10, 11) was used for all late blight assays in this report. 
The only exception was the late blight field trial in 2014, 
which was a result of natural P. infestans infection. Field 
trials for the transgenic Desiree plants and non-trans-
genic recombinant plants from the extended 3020 popu-
lation were performed in four replicates per genotype as 
described earlier (Jo et al. 2011) in the growing season of 
2013 and 2014 in Wageningen, The Netherlands. Disease 
assessments were made by observing late blight lesions in 
the leaves at weekly intervals after inoculation (July 1st 
2013) or after the first late blight symptoms were visible 
(June 23rd 2014). The observations were stopped in the 
second week of August. For whole plant climate chamber 
assays, in vitro plantlets of transgenic Desiree plants or 
recombinants from population 3020 were planted in pots 
and grown in the greenhouse at 22 °C with a 10 h day/14 h 
night photoperiod and a relative humidity of 70–80 %. One 
month after potting the plants, they were transferred into 
a growth chamber and inoculated. The inoculum was pre-
pared essentially as described (Vleeshouwers et al. 1999) 
and plants were inoculated by placing four 10 µl droplets 
of inoculum (5 × 104 zoospores/ml) on the adaxial side 
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Fig. 1  Genetic and physical map of R8 on the bottom end of chro-
mosome 9. The upper part of this figure represents a genetic map. 
Markers of different origin were mapped in an F1 recombinant pop-
ulation of 1670 individuals and their relative positions are indicated 
by vertical lines. The number of recombinants between the markers 
is indicated by numbers between the vertical lines. The horizontal 
line marked by R8 indicates the genetic mapping interval for R8. The 

lower part of this figure represents a physical map. Using molecu-
lar markers, BAC clones were identified from BAC libraries derived 
from MaR8. The grey bars represent the individual BAC clones. Ver-
tical lines indicate the connection between the physical and genetic 
maps. Arrows indicate the position and orientations of resistance gene 
analogues (RGA0.10-RGA3.3) on the physical map. RGA0.20 is the 
functional R8 gene
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of the leaf. Three leaves per plant and two replicate plants 
per genotype were inoculated. The inoculated plants were 
kept for 7 days in a cooled climate chamber at 15 °C and 
100 % humidity with a photoperiod of 16 h/8 h day/night. 
Late blight levels could be classified into three groups, 
resistant [no symptoms, limited hypersensitive response 
(HR)], intermediate resistance (large HR lesions or spread-
ing HR lesions without sporulation) or susceptible (sporu-
lating lesions). Genotypes classified in the resistant group 
or intermediate resistant group in climate chamber assays 
did not show significant late blight lesions until the end of 
the field trial experiments and could easily be distinguished 
from the susceptible group.

Agrobacterium‑mediated transient co‑expression in N. 
benthamiana

Binary plasmids harbouring RGAs or Avr8 (Jo 2013) 
were transformed to A. tumefaciens strain AGL1 with 
an additional plasmid-borne copy of VirG (van der Fits 
et al. 2000). Two leaves per plant and three replicates of 
4-week-old N. benthamiana seedlings were agroinfiltrated. 
A mixture of R3b and Avr3b (Li et al. 2011) was used as 
the positive control and empty pBINPLUS was used as a 
negative control. A. tumefaciens strains from frozen glyc-
erol stocks were grown overnight at 28 °C in 3 ml of LB 
medium supplemented with appropriate antibiotics. The 
next day, these cultures were used to inoculate 15 ml of 
YEB medium (5 g beef extract, 5 g bacteriological pep-
tone, 5 g sucrose, 1 g yeast extract, 2 ml 1 M MgSO4 in 
1 l of milliQ water) supplemented with antibiotics, 10 µl/l 
of 200 mM acetosyringone and 1000 µl/l of 1 M MES. On 
the third day, the cells were harvested and resuspended to 
a final OD600 of 0.2 in MMA (20 g sucrose, 5 g MS salts 
and 1.95 g MES in 1 l of distilled water, adjusted to pH 5.6 
with KOH) supplemented with 1 ml/l of 200 mM acetosy-
ringone in DMSO. Responses were scored 3–4 days after 
infiltration.

Transformation of potato

Binary plasmids harbouring RGAs were transferred to A. 
tumefaciens strain AGL1 containing the helper plasmid 
pVirG (van der Fits et al. 2000). The stability of these 
clones in Agrobacterium was tested and overnight cultures 
of the transformed A. tumefaciens strain were used to trans-
form the susceptible cultivar Desiree (Heeres et al. 2002). 
The kanamycin-resistant regenerants (transgenic events) 
were analysed by PCR to determine the presence of the 
desired R8 gene. Two or four plants per transgenic event 
were transferred to the greenhouse for climate chamber 
assays or for planting in the field, respectively.

Results

R8 fine mapping

To fine map R8, molecular markers were required to per-
form a recombinant screen in the F1 population 3020 
(MaR8*Concurrent). R8 is located at the bottom end of 
chromosome 9, flanked by Tm-22-like CDP markers at 
the proximal side and by Sw-5 CDP markers on the dis-
tal side (Jo et al. 2011). The CDP markers were not suit-
able for high-throughput recombinant screens and simple 
PCR markers needed to be developed. On the proximal 
side, marker 184_81-RsaI had been described before but a 
marker on the distal side of R8 remained to be developed. 
Screening of the tomato marker database revealed marker 
C2_At5g06360, which is located near the telomere of Chr9. 
MaR8 and cv concurrent derived amplicons of this marker 
were screened for cleaved amplified polymorphisms linked 
to resistance and this resulted in marker At5g06360_2-
FspBI. Population 3020 was expanded to 1720 individuals, 
and recombinants between markers At5g06360_2-FspBI 
and 184_81-RsaI (Fig. 1) were screened for. In total, 36 
recombinants were found and their resistance phenotype 
was determined in a whole plant late blight assay in a cli-
mate chamber. Marker CDPHero3, which was identified 
previously (Jo et al. 2011), was still fully linked to resist-
ance in this expanded population. Two recombinants were 
found between At5g06360_2-FspBI and CDPHero3, while 
34 recombinants were found between 184_81-RsaI and 
CDPHero3 (Fig. 1).

BAC landing and BAC walking

A first, the BAC library was constructed from the genomic 
DNA of MaR8 plants. The library was screened using 
marker CDPHero3, and BAC clones 1A6, 3E3 and 6G9 were 
identified. The insert of 3E3 was sequenced and revealed 
the presence of four complete (RGA1.1, 1.2, 3.1 and 3.2) 
and one truncated R gene analogue (RGA3.3). The newly 
obtained sequences were used for new marker develop-
ment. A screen for markers in the intergenic regions suc-
cessfully identified two polymorphic markers named 
3E3_5-HRM and 3E3_10-SCAR. Mapping of the new 
markers revealed no recombinants at the left end of the 
BAC, indicating that RGAs 1.0, 1.1, 3.1, 3.2 and so far 
unidentified additional RGAs could be R8 candidates. The 
right end of BAC 3E3 fell outside the mapping interval, 
excluding RGA3.3 as an R8 candidate (Fig. 1). To close 
the genetic window, marker 3E3_10-SCAR was used for 
screening the BAC library which resulted in the isolation 
of the BAC clone 6A5 (Fig. 1). Sequence analysis revealed 
one additional complete RGA (RGA1.0). A marker 
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developed on the 6A5 BAC end (6A5F_3-HpyCH4IV) still 
did not show any recombinants with R8 resistance, so the 
genetic window was not closed yet. Marker 6A5F_3-Hpy-
CH4IV was used to screen the BAC library, but unfortu-
nately no new positive BACs were identified. A new BAC 
library was generated using a different genome fragmenta-
tion method (partial restriction enzyme digestion instead 
of mechanical shearing that was used in constructing the 
first BAC library). Screening of the new library identified 
the BAC clone n2E2. Sequence analysis revealed the pres-
ence of four additional complete RGAs (0.10, 0.11, 0.20, 
and 0.21.). A screen for markers in the intergenic regions 
revealed marker 2E2_1-Hin1II. One recombinant was 
found between this marker and the late blight resistance 
and it was concluded that the genetic interval was now 
closed between markers 2E2_1-Hin1II and 3E3_5-HRM. 
All together, a genomic region of 170 kb (GenBank acces-
sion number KU530153) containing a cluster of ten paralo-
gous RGA sequences was found. All sequences had high 
homology to Sw-5, an R gene from tomato that provides 
resistance to tomato spotted wilt virus (Brommonschenkel 
et al. 2000).

R8 candidate cloning and complementation analysis

The seven RGAs in the genetic window were subcloned in 
the binary vector pBINPLUS–PASSA for Agrobacterium-
mediated transformation of plants. Stable transgenic plants 
of the susceptible potato variety Desiree were produced 
and 10–47 events per construct were selected (Table 1). 
Six out of seven constructs produced only transforma-
tion events that were susceptible to P. infestans isolate 
IPO-C. Eight out of 47 events transformed with RGA0.20 

were susceptible, while 39 events showed intermediate to 
strong late blight resistance in a whole plant assay in cli-
mate chambers (Fig. 2a). PCR analysis revealed that the 
eight susceptible events contained only partial inserts of 
the T-DNA. RGA0.20 was therefore denoted as a strong 
R8 candidate. This idea was confirmed when the RGAs 
were co-expressed with Avr8 in the N. benthamiana. Only 
RGA0.20 induced a hypersensitive response (HR) when 
co-infiltrated with Avr8 (Fig. 2b). The observed HR was a 
result of specific recognition, since co-infiltration of Avr3b 
with RGA0.20 did not result in an HR. Co-expression of 
RGA0.20 with other known Avr genes (Avr2, Avr3a and 
Avrvnt1) also did not result in an HR (data not shown). 
From these results, we conclude that RGA0.20 is R8.

Not only the molecular recognition pattern of R8 was 
matched, but also the broad resistance spectrum of R8 
against the current P. infestans population was main-
tained. 39 transgenic events provided excellent late blight 
resistance to natural late blight infection in 2014 in a field 
trial in Wageningen (Table 1; Fig. 3). Events that showed 
resistance in 2014 were planted again in the field in 2015. 
Fourteen events were propagated in vitro (referred to as ex 
vitro) and 13 of these events were also propagated using 
seed tubers. All plants were fully resistant, showing that 
events can be selected that stably express the resistance 
after clonal propagation.

R8 sequence annotation

The binary vector containing R8 that was used for comple-
mentation studies had an insert of 7011 bp. The 5′ untrans-
lated region of 1680 bp encompasses a functional promotor 
and is followed by a single open reading frame of 3738 bp, 

Table 1  Complementation analysis of R8 resistance in Desiree

“−” no hypersensitive response observed upon co-agroinfiltration in N. benthamiana. “+” a hypersensitive response observed upon co-agroinfil-
tration in N. benthamiana

nd not determined
a Number S(usceptible), I(ntermediate) R(esistant), or R(esistant) events over the number of tested events
b Number of resistant events over the number of tested events

Construct Avr8 response Climate chamber whole 
plant assaya

Field trial 2014b Field trial 2015b Field trial 2015b

S IR R (ex vitro) (ex vitro) (tuber)

RGA3.2 − 12/12 0/12 0/12 nd nd nd

RGA3.1 − 10/10 0/10 0/10 nd nd nd

RGA1.2 − 10/10 0/10 0/10 nd nd nd

RGA1.1 − 10/10 0/10 0/10 nd nd nd

RGA1.0 − 10/10 0/10 0/10 nd nd nd

RGA0.20 + 8/47 14/47 25/47 39/47 14/14 13/13

RGA0.21 − 15/15 0/15 0/15 nd nd nd

Vector only − 12/12 0/15 0/15 0/12 0/4 nd
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encoding a 1245 aa R8 protein and a stop codon, which is 
followed by a 1594 bp 3′ untranslated region that encom-
passes a functional transcriptional terminator. The encoded 
R8 protein showed a tripartite domain structure, which is 
typical for intracellular plant disease resistance proteins. 
An N-terminus with predicted coiled coil (CC) structures, 
a central nucleotide binding (NB) and a set of 13 C-termi-
nal leucine-rich repeats (LRR) were found (Fig. 4). When 
the R8 protein sequence was aligned with known R pro-
teins from Solanaceae and phylogenetic analysis was per-
formed, it was found that R8 constitutes a distinct clade 
with the tomato Sw-5 protein (Brommonschenkel et al. 
2000), which provides resistance to tomato spotted wilt 
virus (Fig. 5). This clade matches the CC-NB-LRR group 
10 (CNL10) as defined by Andolfo et al. (2014). Sw-5 and 
R8 shared 83.3 % identity over the entire protein (81.9, 
89.8 and 77.5 % of identity in the CC, NB-ARC and LRR 
regions, respectively), while identity over the entire pro-
tein to other R proteins (NRC1, R1, Rpi-blb2, Prf, Rpi-
chc1, Rpi-ber, Rpi-vnt1.1, Rpi-blb1, Bs2, Bs4, Gro1.4, R2, 
R3a, R3b, Tm2^2, R9a, Rpi-mcq1 and N) ranged between 

26.1 %, in the case of Rpi-blb2, and 15 % in the case of 
Gro1.4 (Table S3).

R8 in breeding germplasm

Two reports are available that show the presence of late 
blight R genes at the same genetic location as R8 in com-
mercial varieties (Jo 2013; Massa et al. 2015). To test 
if these R genes were related to R8, we pursued an allele 
mining approach. Genomic DNA samples of Sarpo Mira, 
Jacqueline Lee and its half-sib Missaukee, and also from 
Chinese varieties (C-88, PB-06, and S-60) with reported 
late blight resistance, were used as template in a long-range 
PCR using primers encompassing the complete R8 gene. 
The susceptible variety Desiree was used as a negative con-
trol. Sarpo Mira, Jacqueline Lee, Missaukee, PB-06 and 
S-60, but not C-88 and Desiree, produced a fragment of the 
expected size (7 kb). Also nontemplate controls showed no 
amplicon, ruling out that contamination with the same tem-
plate had occurred. The PCR fragments were cloned and 
the inserts of at least three independent E. coli clones per 

Fig. 2  R8 complementation 
analysis. a C. Non-transgenic 
Desiree, after inoculation with 
IPO-C in a whole plant assay, 
was fully susceptible as appar-
ent by the sporulating lesions 
(white appearance in the left 
image). Transgenic Desiree 
events containing RGA0.20 
were no longer susceptible, 
as phenotypes ranged from 
intermediate resistance (like in 
event A74.8-2 where huge HR 
lesions are observed without 
any spores), to full resist-
ance (like in event A74.8-12 
where no or only very small 
HR lesions were found). b 
Co-expression of RGA0.20 and 
Avr8 in N. benthamiana results 
in a hypersensitive response. 1:1 
mixing ratios of RGA0.20 and 
Avr8 were diluted to OD600 = 1, 
0.5, or 0.25. 1:1 mixes of R3b 
and Avr3b were used as positive 
controls. HR was not observed 
upon co-expression of Avr8 and 
any of the other candidate genes 
(RGA0.21 is here provided as 
an example). As the HR could 
not be visualised with high con-
trast, we dried out the leaves. 
As shown in the right image, 
specific discoloration at the site 
of co-expression of R8 and Avr8 
is now clearly visible
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variety were sequenced. The coding sequences of all Sarpo 
Mira, Jacqueline Lee, Missaukee, PB-06 and S-60 ampli-
cons were identical to the R8 sequence. Outside the coding 
sequence, only one single nucleotide polymorphism was 
found in the 5′UTR of the Sarpo Mira allele, suggesting 
that the R8 haplotypes had been recently derived from the 
same ancestor. The Rpi-smira2 gene was previously shown 
to locate at the same position as R8 and to cause AVR8 
recognition. Now, we have found that Sarpo Mira contains 
a sequence identical to R8; we conclude that R8 and Rpi-
smira2 are allelic.

Discussion

Map‑based cloning of R8

Using a classical map-based cloning approach, we have 
identified the R8 late blight resistance gene. Three rounds 
of BAC landing and BAC walking were required to capture 
the genetic window within a physical map of 170 kb. The 
process was highly labour intensive, as only two recom-
binants were found at the flanks of the 170 kb region (1 
rec/85 kb). The physical distance between 3E3_5-HRM 
and 184_81-RsaI, as compared to the DM reference 
genome, was only 430 kb, but in this interval 33 recom-
binants were found (1 rec/13 kb). It is remarkable that 

the recombination frequency in the subtelomeric end of 
the chromosome is much more higher than in the telom-
eric end. This might be a result of the introgression of the 
R8 locus from S. demissum, which is less compatible for 
recombination with its sister chromatids from S. tubero-
sum. A recombination block because of segmental inver-
sion is unlikely as the S. phureja and S. lycopersicon refer-
ence genomes carry similar numbers of RGAs in the same 
orientation as we have found (Jupe et al. 2012; Andolfo 
et al. 2014). A second reason for the labour intensity is 
that the first BAC library that was produced did not com-
pletely cover the R8 genomic region and a new BAC library 
needed to be constructed. Next-generation sequencing pro-
tocols could potentially reduce the labour intensity of map-
based cloning, as the tedious BAC walking steps might 
become redundant. Whole genome resequencing is not suf-
ficiently powerful yet for heterozygous polyploid genomes, 
such as potato. The identification of R genes, which are 
notorious for the number of paralogs in a single haplotype, 
from whole genome sequences is a particular challenge. 
Complexity reduction methods such as Renseq (Jupe et al. 
2012) or next gen-profiling (Vossen et al. 2013) linked to 
single molecule sequencing platforms currently provide the 
best opportunity to accelerate R gene cloning.

R8 as a member of the CNL10 group

R8 showed 83.3 % identity to Sw-5 from tomato, which is 
involved in the recognition of a very different pathogen, i.e. 
a negative strand RNA virus. Several other R genes have 
been mapped in this location, among which the potato gene 
Gpa6 confers resistance to the white potato cyst nematode 
Globodera pallida (Rouppe van der Voort et al. 2000) and 
the potato virus Y resistance gene from S. chacoense (Sato 
et al. 2006), but none of them have been reported to be 
cloned and could not be confirmed as CNL10 sequences. 
Interestingly, an effector protein from the golden cyst 
nematode Globodera rostochiensis targets a host protein 
from the CNL10 family (Rehman et al. 2009). However, it 
remains elusive how this protein–protein interaction affects 
plant–pathogen interaction(s).

The finding of highly homologous R genes that confer 
resistance to very diverse pathogens is not unique. Rx1, 
Gpa2 and Bs-2 from the CNL2/12 group on chromosome 
12 recognise bacteria, nematodes or viruses, respectively 
(Bendahmane et al. 1999; Tai et al. 1999; van der Vossen 
et al. 2000). The guard hypothesis assumes that pathogen 
effectors interact with virulence targets in the plant host. 
Perturbations of these virulence targets are sensed by NB-
LRR receptors (De Wit et al. 2009). It has been speculated 
that R genes have evolved around a limited set of viru-
lence targets or decoys that are shared by many different 

Desiree:R8 

Desiree

Bintje Bintje

Fig. 3  R8-mediated broad-spectrum resistance in field trials. Bintje 
spreader rows were derived from seed tubers. Desiree and Desiree 
transgenics were planted from in vitro culture. For this reason, at the 
onset of the natural late blight epidemic, the Bintje plants were much 
taller than the Desiree and R8 transgenics (Desiree:R8). This explains 
the difference in the height of the deceased Bintje and Desiree plants, 
while the R8 transgenics kept growing
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pathogens, thereby limiting the number of receptor mole-
cules needed to detect the multitude of pathogen effectors 
(van der Hoorn and Kamoun 2008). Another explanation 
for the high level of homology among CNL10 mem-
bers as opposed to the highly diverse recognition spec-
tra may be found in the recognition of pathogen-derived 
ligands through R protein pairs (Bonardi et al. 2011; Sohn 
et al. 2014; Wu et al. 2016). The combination of differ-
ent R protein pairs could drastically alter the recognition 
specificity.

The cloning of R8 and the identification of Avr8 (Jo 
2013) now provide the tools for the comparative study of 
CNL10 members at the molecular and functional level. 
Also, it will be interesting to study how the different 
CNL10 proteins signal to evoke a resistance reaction and 
how host resistance reactions or pathogen resistance sup-
pression mechanisms can potentially interfere.

R8 and durability of resistance

The role of R8 as a late blight resistance source with high 
potential has been recognised already for a long time, 
since virulence towards R8 is only rarely encountered in P. 
infestans populations around the world (Swiezynski et al. 
2000; Haynes et al. 2002; Zhang and Kim 2007). Also in 
this study, we found that R8 provides particularly strong 
resistance against the current late blight population in The 
Netherlands (Fig. 3). R8’s potential to contribute to durabil-
ity was confirmed, since the major resistance component of 
the durably resistant potato variety Sarpo Mira, Rpi-mira-2, 
was allelic and identical to R8. Also, the R8 was found in 
durably resistant varieties from the USA and China.

It cannot be assessed if Sarpo Mira’s, Jacqueline 
Lee’s or Missaukee’s durability is associated with its 
relatively small acreage, or with the presence of highly 

MNENEIEEMLDHLRRIKIEGNLDFFKIRRIGDLDIVLRVFRTFIKYHVLLPDCFVKLTMNAE
WTVEMLHRVFDGISDECKTNLNLERLESHLLEFFEGNSSLSYNYELNDFDLSKYMDCLEKIL
NDVLMMFLEKGRSCYPIEKLAIQLSIKKLKIVQKKMIFLRYIYTTEINGNVNYEKLECLETR
IQFIANTVGQFCLAVLDYVADIEFSDNNDIFNIPPYLLSLIVFVELEMKKIFHGELKVSKFT
QSKTFKDKKLPKEFSDLLQYLLMYLRNEKLENFPNNISAQNIDVAIEFLLVFLDADVSNHVI
NGNWLNEVLLKVGAIAGDILYVIQKLLPRSINKDDTSKISFCSIQILEKTKDLKAQVETYYK
SLKFTPSQFPTFGGLSFLDSLLRKLNEMSKSKSGLDFLMKPLLGNLEKELSSLTSILEKELS
SIFRDVVHHEHKIPKDLQRRTINLAYEAEVAIDSILAQYNAFLHIFCSLPTILKEIKQINAE
VTEMWSANIPLNPRYVAAPFKHLPARHSNLVTDEEVVG                     534

FENKAEKLIGYLIRGTNELDVIPIVGMGGQGKTTIARKLYNNDIIVSRFNVRAWCIISQTYS
RRELLQEIFSQVTGSKDKEDEVGKLADRLRKSLMGKRYLIVLDDMWDCMVWDDLRLSFPDDG
IRSRIVVTTRLEEVGKQVKNHTDPYSLPFLTTKESCQLLQKKVFQKEDCPPELQYVSQAVAE
KCKGLPLVVVLVAGIIKKRKMEESWWNEVKDALFDYLDSEFEEYSLATMQLSFDNLADCLKP
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QSHLPHIETLIVTSCFYGVRLPVSFWE
MEKLRHVHFAGAGFAMQGLFEGSSKLEN
LRILKKIEEFPIDRLDVLSRRCPNLQQLQITFEDDVEPFCPK
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LQLPSNLNKLVLKGIHMESAISFIAE
LPSLEYLQLLDVCFPQSEEWCLGDIT
FHKLKLLKLVQLNISKWDAS
EESFPLLETLVIKKCDDLEEIPLS
FADIPSLKQIKLIGSWKVSMEASAVRIKEEVEEIEGCDRIDLVRRSRRD 1245

CC 

NB -ARC

LRR 

Fig. 4  Amino acid sequence architecture of the R8 protein. Coiled 
coil (CC) forming amino acid stretches were found in the N-terminal 
domain (red font) as determined using the COILS algorithm (Lupas 
et al. 1991; window = 14 aa, threshold >0.1). In the central region 
Nucleotide binding Apaf-1 R gene and CED4 homology (NB-ARC; 

van der Biezen and Jones 1998) can be distinguished (underlined). 
In the C-terminal region, leucine-rich repeat (LRR) regions matching 
the consensus lxxlxxlxxlxl can be distinguished (underlined red font). 
Figures indicate the position of the preceding amino acid residue in 
the protein
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complementary (R) genes elsewhere in their genome. Some 
indications about the durability potential of R8 came from a 
study where plants that only contained R8, or R8 in combi-
nation with multiple different R genes, were exposed to nat-
ural late blight infection. It was found that plants carrying 
only R8 had a similar delay in the onset of late blight symp-
toms as Sarpo Mira (Kim et al. 2012). This study was, how-
ever, performed using plants derived from sexual crosses 
and inherently had divergent genetic constitutions that 
are renowned to severely affect the outcome of late blight 
resistance assays (Collins et al. 1999; Gebhardt et al. 2004). 
More reliable results can be obtained using plants that carry 
single or multiple R genes in isogenic genetic backgrounds. 
The transgenic R8 Desiree plants presented in this study are 
a valuable addition to the recently presented GM differen-
tial set (Zhu et al. 2014) and can be used to monitor viru-
lence towards R8 in P. infestans populations. Despite the 
potentially good durability perspectives of R8 in late blight 
resistance breeding, we anticipate that, upon large-scale 
cultivation, resistance based only on R8 will sooner or later 
be overcome. It is known that the resistance levels of vari-
eties with large acreage China gradually decline (Li et al. 
2010). So, late blight resistant varieties must be deployed 

only in combination with a resistance management strat-
egy. To avoid that, virulence builds up in P. infestans popu-
lations. Targeted biocide sprays and deployment of R gene 
stacks can be part of such management strategies (Haver-
kort et al. 2016). So, the efficacy and complementarity of 
R8 with other R genes must be tested and validated. To 
rapidly make plants with such R gene combinations, again, 
transformation is the preferred strategy.

R8 and classical late blight resistance breeding

Sarpo Mira shows good resistance to late blight due to 
R8 (Rietman et al. 2012), but (other) disease resistance is 
also encoded on unlinked genomic loci (Tomczyńska et al. 
2013, 2014). However, Sarpo Mira is not deployed on a 
large agricultural scale, because other characteristics of this 
variety are suboptimal and additional breeding steps are 
required.

The R8 sequence described in this study is a useful tool 
to design broadly applicable molecular markers for classi-
cal breeding. We have shown that R8 is present in at least 
five varieties from three different continents and in the 
MaR8 differential plant (which is identical to Black’s R8 
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Fig. 5  Phylogenetic analysis of R8 and the other R proteins from 
Solanaceae. The column on the right of the protein names contains 
the genetic location of the encoding genes (chromosome, and RGA 
cluster number; Vossen et al. 2013). Clades observed in this tree 
match the CC-NB-LRR (CNL) and TIR-NB-LRR (TNL) groups 
defined previously (extreme right column; Andolfo et al. 2014). R1: 
Q8W1E0; Prf: AAC49408; NRC1: NP_001234202; BS2: AAF09256; 

Rpi-blb2: AAZ95005; Sw5-b: AAG31014; Rpi-vnt1.1: ACJ66594; 
Rpi-mcq1: Jones et al. (2009); Tm2^2: AAQ10736; R9a: de Vetten 
et al. (2011); R2: ACU65456; Rpi-abpt: ACU65455; Rpi-blb1: 
Q7XBQ9; Rpi-chc1, Rpi-ber: Vossen et al. (2010); R3a: AAW48299; 
R3b: AEC47890; BS4: XP_010320695; N: Q40392; Gro1.4: 
AAP44390;)
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differential). So, R8 donors for breeding are broadly avail-
able. Sequence analyses of the R8 alleles revealed no sig-
nificant R8 allelic variation among the six sources. There-
fore, it can be concluded that each of the six R8 sources are 
equally potent for breeding.

It must be noted that the level of resistance provided by 
R8 is highly dependent on the genetic background. In some 
backgrounds, the resistance level is sufficient to be detected 
using detached leaf assays, as is the case in MaR8 plants. 
But in F1 populations derived from MaR8, resistance is 
only detectable in whole plant assays (Jo et al. 2011). Also 
in Sarpo Mira, late blight resistance can only be detected 
in whole plant assays (Orłowska et al. 2012). In F1 popu-
lations derived from Sarpo Mira, the Rpi-smira2/R8-medi-
ated resistance was not apparent as a qualitative resistance, 
but rather was characterised as a quantitative resistance in 
whole plant/field conditions (Rietman et al. 2012). In our 
current study, where we transformed the R8 gene to the 
genetic background of Desiree, the level of resistance in 
whole plant/climate chamber conditions ranged from inter-
mediate resistance, characterised by expanding HR lesions, 
to full resistance (Fig. 2a; Table 1). This suggests that in 
some transgenic events, the R8 gene is better expressed 
than in others. It remains to be established if the difference 
in resistance is correlated with T-DNA copy number and/
or R8 transcript level, as was observed for RB transgenic 
events (Bradeen et al. 2009; Kramer et al. 2009). Both in 
classical and GM breeding strategies, the resistance levels 
of the introduced R genes must be closely controlled. This 
is increasingly difficult with the number of R genes that 
are introduced, as late blight resistance assays can often 
not clearly measure the functional expression of all intro-
duced R genes. We found that the response of Rpi-sto1, 
a close relative of RB, to its cognate Avr (IPI-O; Pieterse 
et al. 1994; Vleeshouwers et al. 2008) is strictly correlated 
with the level of resistance in transgenic plants (Zhu et al. 
2013). Thus, Avr responsiveness is the most preferred tool 
to validate functional expression of R genes in stacks, both 
in classical and GM breeding. It remains, however, to be 
established how Avr8 response correlates with R8 mediated 
late blight resistance levels.
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Tomczyńska I, Jupe F, Hein I et al (2014) Hypersensitive response to 
Potato virus Y in potato cultivar Sárpo Mira is conferred by the 
Ny-Smira gene located on the long arm of chromosome IX. Mol 
Breed 34:471–480. doi:10.1007/s11032-014-0050-2

van der Biezen EA, Jones JDG (1998) The NB-ARC domain: a novel 
signalling motif shared by plant resistance gene products and 
regulators of cell death in animals. Curr Biol 8:226–228

van der Fits L, Deakin E, Hoge J, Memelink J (2000) The ternary 
transformation system: constitutive virG on a compatible plas-
mid dramatically increases Agrobacterium-mediated plant trans-
formation. Plant Mol Biol 43:495–502

van der Hoorn RAL, Kamoun S (2008) From guard to decoy: a new 
model for perception of plant pathogen effectors. Plant Cell 
20:2009–2017

van der Vossen EAG, van der Voort JNAMR, Kanyuka K et al (2000) 
Homologues of a single resistance-gene cluster in potato confer 
resistance to distinct pathogens: a virus and a nematode. Plant J 
23:567–576. doi:10.1046/j.1365-313x.2000.00814.x

Vleeshouwers VGAA, van Dooijweert W, Keizer LCP et al (1999) A 
laboratory assay for Phytophthora infestans resistance in various 
Solanum species reflects the field situation. Eur J Plant Pathol 
105:241–250

Vleeshouwers VGAA, Rietman H, Krenek P et al (2008) Effec-
tor genomics accelerates discovery and functional profiling of 
potato disease resistance and Phytophthora infestans avirulence 
genes. PLoS One 3:e2875

Vleeshouwers VGAA, Finkers R, Budding D et al (2011) SolR-
gene: an online database to explore disease resistance genes 
in tuber-bearing Solanum species. BMC Plant Biol 11:1–8. 
doi:10.1186/1471-2229-11-116

Vossen JH, Nijenhuis M, Arens MJB, van der Vossen EAG, Jacobsen 
E, Visser RGF (2010) Cloning and exploitation of a functional 
R-gene from Solanum chacoense. Patent application, published 
by: IPO: PCT/NL2010/050612

Vossen JH, Dezhsetan S, Esselink D et al (2013) Novel applications 
of motif-directed profiling to identify disease resistance genes in 
plants. Plant Methods 9:37. doi:10.1186/1746-4811-9-37

Vossen JH, Jo K-R, Vosman B (2014) Mining the genus Solanum for 
increasing disease resistance. In: Tuberosa R (ed) Genomics of 
plant genetic resources. Springer, Dordrecht, pp 27–46

Wu C-H, Belhaj K, Bozkurt TO et al (2016) Benthamiana, Helper 
NLR proteins NRC2a/b and NRC3 but not NRC1 are required 
for Pto-mediated cell death and resistance in Nicotiana. New 
Phytol 209:1344–1352

Zhang X-Z, Kim B-S (2007) Physiological races of Phytophthora 
infestans in Korea. Plant Pathol J 23:219–222. doi:10.5423/
PPJ.2007.23.3.219

Zhu SX, Li Y, Vossen JH et al (2012) Functional stacking of three 
resistance genes against Phytophthora infestans in potato. Trans-
genic Res 21:89–99

Zhu SX, Duwal A, Su Q et al (2013) Vector integration in triple R 
gene transformants and the clustered inheritance of resist-
ance against potato late blight. Transgenic Res 22:315–325. 
doi:10.1007/s11248-012-9644-9

Zhu SX, Vossen JH, Bergervoet M et al (2014) An updated conven-
tional—and a novel GM potato late blight R gene differential set 
for virulence monitoring of Phytophthora infestans. Euphytica 
202:219–234

http://dx.doi.org/10.1007/s11032-014-0050-2
http://dx.doi.org/10.1046/j.1365-313x.2000.00814.x
http://dx.doi.org/10.1186/1471-2229-11-116
http://dx.doi.org/10.1186/1746-4811-9-37
http://dx.doi.org/10.5423/PPJ.2007.23.3.219
http://dx.doi.org/10.5423/PPJ.2007.23.3.219
http://dx.doi.org/10.1007/s11248-012-9644-9

	The Solanum demissum R8 late blight resistance gene is an Sw-5 homologue that has been deployed worldwide in late blight resistant varieties
	Abstract 
	Key message 
	Abstract 

	Introduction
	Materials and methods
	Plant material
	Bacterial artificial chromosome library construction and screening
	DNA sequencing and bioinformatics analysis
	(Sub)cloning of candidate genes
	Late blight resistance tests
	Agrobacterium-mediated transient co-expression in N. benthamiana
	Transformation of potato

	Results
	R8 fine mapping
	BAC landing and BAC walking
	R8 candidate cloning and complementation analysis
	R8 sequence annotation
	R8 in breeding germplasm

	Discussion
	Map-based cloning of R8
	R8 as a member of the CNL10 group
	R8 and durability of resistance
	R8 and classical late blight resistance breeding

	Acknowledgments 
	References




