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Abstract

Key message QTL-M and QTL-E enhance soybean
resistance to insects. Pyramiding these QTLs with
crylAc increases protection against Bt-tolerant pests,
presenting an opportunity to effectively deploy Bt with
host—plant resistance genes.

Abstract  Plant resistance to leaf-chewing insects minimizes
the need for insecticide applications, reducing crop produc-
tion costs and pesticide concerns. In soybean [Glycine max
(L.) Merr.], resistance to a broad range of leaf-chewing insects
is found in PI 229358 and PI 227687. PI 229358’s resist-
ance is conferred by three quantitative trait loci (QTLs): M,
G, and H. PI 227687’s resistance is conferred by QTL-E. The
letters indicate the soybean Linkage groups (LGs) on which
the QTLs are located. This study aimed to determine if pyra-
miding PI 229358 and PI 227687 QTLs would enhance soy-
bean resistance to leaf-chewing insects, and if pyramiding
these QTLs with Bt (crylAc) enhances resistance against Bt-
tolerant pests. The near-isogenic lines (NILs): Benning™E,
Benning“"E and BenningMET4¢ were developed. Ben-
ningM® and BenningMCHE were evaluated in detached-leaf
and greenhouse assays with soybean looper [SBL, Chryso-
deixis includens (Walker)], corn earworm [CEW, Helicoverpa
zea (Boddie)], fall armyworm [FAW, Spodoptera frugiperda
(J.E. Smith)], and velvetbean caterpillar [VBC, Anticarsia
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gemmatalis (Hiibner)]; and in field-cage assays with SBL.
Benning™Ete4¢ wag tested in detached-leaf assays against
SBL, VBC, and Southern armyworm [SAW, Spodoptera
eridania (Cramer)]. In the detached-leaf assay, Benning™E
showed the strongest antibiosis against CEW, FAW, and VBC.
In field-cage conditions, Benning"® and Benning“HE suf-
fered 61 % less defoliation than Benning. Benning™E+er/A¢
was more resistant than Benning™® and Benning””/A¢ against
SBL and SAW. Agriculturally relevant levels of resistance in
soybean can be achieved with just two loci, QTL-M and QTL-
E. ME+crylAc could present an opportunity to protect the
durability of Bt genes in elite soybean cultivars. These results
should assist the development of effective pest management
strategies, and sustainable deployment of Bt genes in soybean.

Abbreviations

IPM  Integrated pest management
SSR  Simple sequence repeat

SNP  Single nucleotide polymorphism
Chr Chromosome

cM Centimorgans

bp Basepair

PI Plant introduction

QTL  Quantitative trait locus
CEW Corn earworm

SBL  Soybean looper

VBC Velvetbean caterpillar
FAW  Fall armyworm

SAW  Southern armyworm
Bt Bacillus thuringiensis
Introduction

The production of soybean [Glycine max (L.) Merr], one
of the world’s primary sources of vegetable oil and protein
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(Wilcox 2004), is often limited by pests. Worldwide, 11 %
of the crop is lost to animal pests, including insects (Oerke
2005). In the USA, the insect pests causing the most impact
are: corn earworm [Helicoverpa zea (Boddie)], soybean
looper [Chrysodeixis includens (Walker)], velvetbean cat-
erpillar [Anticarsia gemmatalis (Hiibner)], bean leaf beetle,
[Cerotoma trifurcata (Forster)], green stink bug [Chinavia
hilaris (Say)], and southern stink bug [Nezara viridula (L)]
(Boethel 2004). The corn earworm (CEW), soybean looper
(SBL), velvetbean caterpillar (VBC), and bean leaf beetle
are chewing insects capable of defoliating plants entirely.
Although soybean plants can withstand moderate levels of
leaf damage, high levels of defoliation greatly reduce seed
yield and quality (Haile et al. 1998). The efficient use of
insecticide applications depends on economic thresholds
(ETs), which are based on percent of defoliation and are
used to monitor insect populations to prevent them from
reaching levels that may cause economic losses. The sug-
gested ETs for leaf-chewing insects in soybean are 35 %
defoliation during the vegetative stages and 20 % defolia-
tion during the reproductive stages (Heatherly 2014).

A third of the world’s soybean crop was produced in the
USA in 2013 (FAOSTAT 2015). The southern states of Ala-
bama, Arkansas, Louisiana, Mississippi, North Carolina,
Tennessee, and Virginia harvested just 13.6 % of the US
supply; yet farmers in these states spent $262 million on
insect control to produce a $5 billion crop. Despite the con-
trol efforts, yield losses to insects amounted to $234 mil-
lion. Thus, the combined costs of insect control and yield
loss were equivalent to $500 million. CEW, SBL, and stink
bugs were the most important species, both in terms of con-
trol costs and yield losses (Musser et al. 2014). The need
to lower cost of production along with increased concern
over insecticide residues in the food chain and environment
is incentives to develop insect-resistant cultivars to use in
integrated pest management (IPM) strategies. However,
these efforts have been hampered by a lack of understand-
ing of the genetic basis of resistance to most insects, in
addition to the difficulty of developing insect-resistant cul-
tivars that yield equivalently to the existing cultivars (Lam-
bert and Tyler 1999).

The Japanese soybean landraces ‘Kosamame’ (PI
171451), ‘Miyako White’ (PI 227687), and ‘Sodendaizu’
(PI 229358) are the most widely used sources of resist-
ance to defoliating insects (USDA-ARS 2015). They were
initially discovered to be resistant to Mexican bean beetle
[Epilachna varivestis (Mulsant)] by Van Duyn et al. (1971,
1972). They also have been reported to be resistant to mul-
tiple coleopteran, lepidopteran, and hemipteran insects
that are major economic pests of soybean worldwide
(Clark et al. 1972; Gary et al. 1985; Hatchett et al. 1976;
Hoffmann-Campo et al. 2006; Jones and Sullivan 1979;
Komatsu et al. 2004; Lambert and Kilen 1984b; Layton
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et al. 1987; Li et al. 2008; Luedders and Dickerson 1977;
Piubelli et al. 2003; Silva et al. 2013; Talekar and Lee
1988; Talekar and Lin 1994).

Resistance to defoliating insects in PI 171451, PI
227687, and PI 229358 is conferred via both antibiosis and
antixenosis (Rector et al. 2000a, b). Antibiosis is a type of
resistance in which the plant has a detrimental effect on
insect growth, development, and/or reproduction (Painter
1951). Antixenosis or non-preference is a type of resistance
in which the plant affects insect behavior, by discourag-
ing oviposition, colonization, or feeding (Kogan and Ort-
man 1978; Painter 1951). Initial attempts to transfers insect
resistance from these plant introductions (PIs) to elite soy-
bean lines were hindered by poor agronomic qualities of the
PIs, and by quantitative inheritance of resistance (Boethel
1999). The advent of marker-assisted selection (MAS) has
made possible to reduce many of the issues caused by link-
age drag (Warrington et al. 2008).

To understand the genetic basis of resistance in these PIs,
Rector et al. (1998, 2000a, b) identified a major QTL on
Linkage Group (LG) M (now chromosome 7) of PI 171451
and PI 229358. This locus named “QTL-M” accounts for
37 % of antixenosis variance, and up to 28 % of antibiosis
variance. In addition, there are two minor QTLs involved in
resistance. QTL-H on chromosome (formerly LG H) condi-
tions antixenosis in PI 229358 and PI 171451, and QTL-G
on chromosome 18 (formerly LG G) conditions antibiosis
in PI 229358. Zhu et al. (2006) demonstrated that QTL-H,
and QTL-G only have a detectable effect if QTL-M is pre-
sent in the genome. These minor QTLs have usually been
missed by conventional breeding programs (Narvel et al.
2001).

Hulburt (2002) identified a major insect-resistance QTL
in a mapping population from a PI 227687 x ‘Cobb’ cross.
This QTL (QTL-E) on LG E (now chromosome 12) of PI
227687 conveys both antibiosis and antixenosis. QTL-E co-
maps with the Pb locus that controls sharp (Pb_) vs. blunt
(pbpb) leaf pubescence in soybean (Ting 1946). Although
there are earlier reports on the effect of pubescence traits
on soybean resistance to insect (Hollowell and Johnson
1934; Johnson and Hollowell 1935; Kanno 1996), is the
first report that a sharp-trichome locus co-localizes with an
insect-resistance QTL. Hulburt et al. (2004) confirmed that
sharp-trichome NILs from ‘Clark’ and ‘Harosoy’ are more
resistant to lepidopterans, compared to the blunt-trichome
cultivars. Nevertheless, given that Lambert and Kilen
(1984b) showed that PI 227687’s resistance is graft-trans-
missible, it remains possible that resistance is really due to
an as of yet unidentified gene linked to Pb.

Pyramiding is used to combine multiple desirable genes
for the same trait into a single genetic background (Ye
and Smith 2008). This strategy is advantageous for devel-
opment of insect-resistant cultivars; it permits genes with
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different modes of action to be combined to obtain more
durable resistance. Accordingly, Walker et al. (2002) dem-
onstrated that QTL-M enhances the effectiveness of Bt
in soybean plants expressing the crylAc transgene, while
Santos et al. (1997) found that the use of cowpea trypsin
inhibitor countered the effects of CrylAc in arabidopsis.
In addition, Zhu et al. (2008) analyzed sixteen NILs carry-
ing all possible combinations of the insect-resistance QTLs
from PI 229358 and the cry/Ac transgene in a ‘Benning’
background (Boerma et al. 1997). CEW and SBL bioassays
confirmed that CrylAc is more effective in the presence of
insect-resistance QTLs from PI 229358.

The main goal of this research is to enhance soybean
resistance to leaf-chewing insects by identifying the best
combination of host—plant resistance QTLs. The objec-
tives of this study were to: (1) develop NILs containing
novel combinations of the insect-resistance QTLs from PI
229358 and PI 227687, (2) characterize the NILs for their
resistance to defoliating insects, and (3) evaluate the effect
of the combination of QTL-M, QTL-E, and Bt for control-
ling Bt-tolerant pests.

Materials and methods

Characterization of Benning"'* and Benning™¢H®

Development of near-isogenic lines

The BC(F,-derived NILs, Benning™® and BenningMSHE
[i.e., Benning with QTLs M and E in the first case and M,
G, H, and E in the second case, backcrossed into it] were
developed using a marker-assisted backcross approach
(Fig. 1). Benning, a Maturity Group VII elite cultivar
adapted to Georgia, was used as the recurrent parent. The
NIL development took approximately 10 years, and started
before SNPs were commonplace. Simple sequence repeat
(SSR) markers linked to each QTL were used during back-
cross and selfing generations to select lines carrying a spe-
cific QTL combination. The flanking markers were: Sat_258
(5'-GCGCAATAGATAATCGAAAAACATACAAGA-3'
and 5-GCGGGGAAAGTGAAAACAAGATCAAATA-3')
and Satt702  (5-GCGGGGTTCTGTGGCTTCAAC-3’
and 5’-GCGCATTGGAATAACGTCAAA-3) for
QTL-M (Zhu et al. 2009); Sct_199 (5-GCGACAATG-
GCTATTAGTAACAATCA-3’ and 5-GCGATTTTC-
TATTTTCCTCACAGTG-3') and Satt191
(5’-CGCGATCATGTCTCTG-3' and 5'-GGGAGTTGGT-
GTTTTCTTGTG-3') for QTL-G (Zhu et al. 2008); Sat_334
(5’-GCGTAACGTAGCAAATTGACTATAAGA-3' and
5’-GCGTGTGCAAAGACAATTTCAATGA-3') and

Benning x PI1 229358 Benning x P1 227687

Benning x F,

Benning x F,

Benning x BC,F, Benning x BC,F,
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Fig. 1 Breeding scheme for pyramiding insect-resistance QTLs in
Benning. Benning™®! (Zhu et al. 2007) and Benning®, developed
from a cross between Benning and PI 227687, were crossed; and the
QTL combinations Benning"® and BenningMCHE were selected in the
progeny. SSRs were used for marker-assisted selection (MAS) of QTL
pyramids in each generation, and SNPs (Ortega 2016, personal com-
munications) were used to genotype the plants used in the bioassays

Sat_122 (5’-GTGACAAATGGATGGACAATAG-3’
and 5'-AAGAAAAATAAAATAATGTAGAGTGGT-
GAT-3") for QTL-H (Zhu et al. 2008); and Sat_112
(5’-TGTACAGTATACCGACATAATA-3" and 5'-CTA-
CAAATAACATGAAATATAAGAAATA-3') and Satt411
(5’-TGGCCATGTCAAACCATAACAACA-3’ and
5'-GCGTTGAAGCCGCCTACAAATATAAT-3') for
QTL-E (Hulburt 2002). Primer sequences for the SSR
markers were obtained from SoyBase (http://www.soybase.
org) (Grant et al. 2010). Genomic DNA isolation, PCR,
and electrophoresis protocols for SSRs were performed
as described by Zhu et al. (2008). Single nucleotide poly-
morphism (SNP) markers (Ortega 2016, personal com-
munications) were used to genotype the plants used in the
bioassays.

Defoliation

To estimate defoliation percentage, a soybean leaf defolia-
tion chart (Fig. 2) was built from a collection of chewed
leaves for which the percentage of consumed leaf area was
calculated in Image J (Rasband 1997). A chart including
5 % increments was the most useful to estimate the percent
defoliation in NILs carrying the minor insect-resistance
QTLs (QTL-G and QTL-H) in combination with the major
QTLs (QTL-M and QTL-E).
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Fig. 2 Soybean defoliation chart. Percentage of leaf area consumed by herbivores was calculated using Image J

Bioassays

SBL, CEW, fall armyworm [Spodoptera frugiperda (J.E.
Smith)], and VBC caterpillars were used to evaluate the
insect-resistant NILs performance in antibiosis, antixeno-
sis, and field-cage assays. Eggs were obtained from Benzon
Research Inc. (Carlisle, PA). Eggs were incubated for 72 h
at 25 °C in a 600-ml (20 oz) clear polystyrene cup (Let-
ica Corporation, Rochester Hills, MI, USA) sealed with a
dome lid (Letica Corporation); the cup contained 7 ml of
plaster of Paris saturated with water to maintain 75 % rela-
tive humidity. Neonate caterpillars were used to infest the
bioassays.

Detached-leaf  experiments Antibiosis  (non-choice)
assays were used to determine the effect of the ME and
MGHE QTL combinations on caterpillar weight gain. Ben-
ning (susceptible check), Benning™, Benning®, Benning",
Benning®, and Benning™“" were included in each experi-
ment. The NILs were tested for antibiosis to SBL, CEW,
FAW, and VBC. Each species was evaluated independently
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using a randomized complete block design with 15 replica-
tions. Each replication included one plant from each geno-
type as the experimental unit. The experimental procedures
included: (1) One seed was planted in a 450-ml polystyrene
foam cup filled with Fafard 2 mix (Conrad Fafard, Aga-
wam, MA, USA) with three holes punched in the bottom
to provide drainage. Plants were grown in an insecticide-
free greenhouse under a photoperiod of 16 h. Sunlight was
supplemented with 400 J s~! Phillips ED-18 high-pressure
sodium lamps (Phillips Inc., Andova, MA, USA) to keep
the plants in a vegetative stage. The temperature was regu-
lated to approximately 28 °C during the day, and 20 °C at
night. Newly expanded trifoliolate leaves were collected,
once plants reached the V4 stage (Fehr and Caviness 1977).
One trifoliolate leaf was placed into a 600-ml (20-0z) clear
polystyrene cup (Letica Corporation) sealed with a dome lid
(Letica Corporation). Each cup contained 7 ml of plaster of
Paris saturated with water, to maintain 75 % relative humid-
ity. Five SBL or FAW neonate caterpillars were placed in
each cup, whereas only one CEW and VBC neonate was
used per cup, with two cups per plant, to avoid cannibalism.
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Fig. 3 Insect bioassay settings: a Detached-leaf assay: caterpillars
feeding on soybean leaves were contained in plastic cups. b Green-
house assay: each cage contained caterpillars feeding on a block of

Infested cups were placed in a growth chamber set at 27 °C,
and a 14-h light period was maintained with fluorescent
lights (T8 F032/730/Eco, Sylvania Octron, Danvers, MA,
USA) providing ca. 40 pumol photons m~2 s~! (Zhu et al.
2008) (Fig. 3a). Trifoliolate leaves were replaced with fresh
leaves on the 4th day, and subsequently whenever 60 % of
the leaf area had been consumed. The average percentage
of defoliation was estimated based on the appearance of the
entire leaf. The experiment was terminated after 7 days; cat-
erpillars were immobilized by placing the cups at 4 °C for
24 h. Caterpillars from each cup were weighed and their
mean weights were used for analysis of variance.

Greenhouse experiments Antixenosis (choice) assays
were used to evaluate caterpillars’ feeding preference when
foliage of the null, M, E, H, G, ME, MGH, and MGHE NILs
formed a canopy. The percentage of leaf area consumed by
SBL, CEW, FAVW, and VBC was determined for the each
entire plant. Each insect species was tested independently
using a randomized complete block design with 15 repli-
cations, with one plant from each NIL as the experimental
unit. One seed was planted in a 450-ml polystyrene foam
cup as described previously and grown in an insecticide-free
greenhouse with the conditions as described above. Once
plants reached the V4 stage, each block was transferred to
a 24 x 24 x 36" polyester-mesh cage (BioQuip products,
Rancho Dominguez, CA, USA) (Fig. 3b). Each plant was
infested with 10 neonate caterpillars. Since leaves of neigh-
boring plants were in contact with each other, the caterpil-

test soybeans. ¢ Cage built at the UGA Athens Plant Sciences farm to
perform the field-cage assays

lars were able to move from plant to plant at will. Feeding
was terminated when defoliation of Benning was higher
than 50 %, which took approximately 10 days. Percent defo-
liation of each entire plant was estimated by at least three
researchers, and the mean of the estimates for each plant
was used for an analysis of variance.

Field-cage experiments This assay was designed to evalu-
ate resistance to SBL under field conditions; resistance was
scored as percent defoliation, which includes the effects of
antibiosis and antixenosis. A field-cage containing the null,
M, E, H, G, ME, MGH, and MGHE NILs was installed at
the University of Georgia Plant Sciences Farm (Fig. 3c).
The experiment was planted on 1 July 2013 in a randomized
complete block design with 15 replications. The experimen-
tal unit was a 6-plant hill plot (Bonnett and Bever 1947);
each block contained one plot per NIL. Hills were spaced
76.2 cm apart and were thinned to six plants after germina-
tion. A single border row of Benning hill plots surrounded
the experiment. After the plants reached the V2 stage, a
cage covered with 0.9 x 0.9 mm Saran screen (Asahi Kasei,
Tokyo, Japan) was placed over the experimental area. This
confined the test insects and prevented immigration of
parasitoids, predators, and other insect pests. The hill plots
were infested when plants reached the V3 stage. Each hill
plot was initially infested with 200 caterpillars. After that,
50 neonate caterpillars were added to the each hill plot twice
a week for 2 consecutive weeks. The percent defoliation for
each hill of plants was estimated by four researchers at 5,

@ Springer
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Fig. 4 Breeding scheme for pyramiding insect-resistance QTLs and
crylAc in Benning. SSRs were used for marker-assisted selection (MAS)
of QTLs in each generation. SNPs (Ortega 2016, personal communica-
tions) were used to genotype the plants used in the phenotyping assays

7, 11, and 14 days after the first infestation. A second field
cage containing the null, M, E, ME, MGH, and MGHE
NILs was planted in 26 August 2013. This cage was infested
and evaluated for defoliation as described for the first cage.

Characterization of Benning™®e/4¢

Line development

The BenningME+<"’4¢ Jine was developed from a cross
between BenningM"! and Benning®’4¢ (Zhu et al. 2008);
the breeding scheme is shown in Fig. 4. The presence of
QTL-M and QTL-E was confirmed by genotyping for
Sat_258 and Satt702, and for Sat_112 and Satt411, respec-
tively. The presence of crylAc was confirmed by PCR,
using the primers described by Stewart et al. (1996).

CrylAc toxin in leaf tissue

The crylAc and ME+-crylAc plants were tested for crylAc
expression using the CrylAb/CrylAc ImmunoStrip test
(Agdia Inc., Elkhart, IN, USA). Two leaf punches were
collected per plant. Samples were ground in 300 ul of
SEB4 extraction buffer (Agdia Inc.) using a GenoGrinder
210 (Spex SamplePrep, Metuchen, NJ, USA). Leaf
extracts were processed according to the manufacturer’s
instructions.

Detached-leaf experiments
SBL, VBC, and southern armyworm (SAW) [Spodop-

tera eridania (Cramer)] were used in non-choice assays
to determine the effect of the ME+-cry/Ac pyramid on
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caterpillar weight gain. These species were chosen because
they vary in their sensitivity to CrylAc; SBL and VBC are
susceptible, while SAW is resistant (Bernardi et al. 2014b).
Eggs were obtained from Benzon Research Inc. (Carlisle,
PA, USA). In each assay, Benning, Benning™t, and Ben-
ning®*’4¢ were included as controls. The assays were set up
and evaluated, as described in the previous section. Each
assay consisted of a randomized complete block design
with six replications. For the SAW assay, one cup contain-
ing five caterpillars was used to test each plant.

Data analyses

Data recorded from antibiosis, antixenosis, and field-cage
assays were analyzed using JMP statistical software ver-
sion 10.0 (SAS Institute, Inc., Cary, NC, USA). Each data-
set was tested for normality using the Shapiro—Wilk test
(P > 0.05) (Shaphiro and Wilk 1965). A one-way ANOVA
test (P > 0.01) was used to detect any difference among
genotypes and experimental blocks, and a post hoc Tukey—
Kramer multiple comparison test (P > 0.01) (Kramer 1956,
1957; Tukey 1953) was used to determine significant dif-
ferences between genotypes.

Results

Characterization of Benning"'* and Benning"/¢HF

Detached-leaf experiments

The results for the non-choice assays are shown in Fig. 5.
MGHE had the strongest antibiotic effect against SBL;
SBL feeding on Benning™S"E was 48 % smaller than that
feeding on Benning. However, ME had the strongest antibi-
otic effect against CEW, FAW, and VBC. CEW feeding on
Benning"t weighed 83 % less than CEW feeding on Ben-
ning. FAW feeding on Benning™® weighed 69 % less than
that feeding on Benning. Finally, VBC feeding on Ben-
ning"E weighed 70 % less than VBC feeding on Benning.
Lines carrying QTL-H and QTL-G did not show antibiosis
to any of the insect species.

Greenhouse experiments

Results for the SBL, CEW, FAW, and VBC choice assays
are shown in Fig. 6. The pyramided NILs Benning™F, Ben-
ning™%H, and Benning™HE were the least defoliated across
the four experiments. In the SBL and CEW bioassays, the
combinations ME and MGHE were as resistant as MGH
(P > 0.01). Benning™E tended to have less SBL defoliation
than BenningMGH and BenningMGHE; however, this differ-
ence was not significant. Similarly, Benning™HE tended to
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Fig. 5 Mean weight of SBL, CEW, FAW, and VBC caterpillars after feeding on insect-resistant NILs during detached-leaf (antibiosis) assays.
Significant differences (Tukey—Kramer post hoc test, p < 0.05) between NILs are indicated by letters

have less CEW defoliation than Benning™® and Benning-
MGH (13.3 %). In the FAW and VBC bioassays, Benning™®
was more resistant than Benning™!, but not significantly
different from BenningMGHE (P>0.01).

Benning and Benning® were the most susceptible lines
averaged across experiments. Benning! showed resistance
to CEW and VBC assays; however, QTL-H alone failed to
protect the plants from SBL and FAW caterpillars. Ben-
ning™ and Benning® were the most resistant single-QTL
NILs. QTL-M and QTL-E provided similar levels of resist-
ance against SBL, VBC, and FAW. Nonetheless, Ben-
ning™ was significantly more resistant against VBC than
Benning®.

Field-cage experiments

Defoliation progression in cage I. The mean percentage
of defoliation on each NIL at 5, 7, 11, and 14 days after
infestation is shown in Fig. 7. At 5 days, defoliation ranged
between 12 and 18 %, and no significant differences were
observed between the NILs. At 7 days, Benning showed the
most defoliation (32 %) and Benning™® was the least defo-
liated (14 %). At this time point, caterpillars were actively
moving between hills, and towards the Benning hills used

as borders. At 11 days, susceptible and resistant hills were
easily distinguishable (Fig. 8); Benning still showed the
most defoliation (63 %) and BenningME was the least defoli-
ated (26 %). At day 14, the rate of feeding was significantly
slower; few caterpillars had migrated to the resistant NILs,
but the majority of them were located on the cage’s mesh.

Defoliation in cage 1. The data collected at 11 days after
infestation were analyzed to determine differences in lev-
els of resistance among NILs. This time point was selected,
because the plants were highly defoliated and the caterpil-
lars were still highly active. Benning™F (21 %), Benning-
MGH (25 %), and BenningMCHE (27 %) were the most resist-
ant lines in this cage, followed by BenningE (52 %) and
Benning™ (38 %), which were moderately resistant. Ben-
ning (63 %) Benning® (62 %), and Benning® (61 %) were
the most susceptible (Fig. 9a).

Defoliation in cage 2. Benning® and Benning™ were
excluded, because in the first cage they were not resistant
to SBL. BenningMGHE (27 %) was the most resistant line in
this cage, followed by Benning™E (34 %) and Benning™¢H
(39 %). Benning® (65 %) and Benning™ (45 %) were more
defoliated than Benning™E and Benning™“! in this cage;
however, BenningE and BenningM were less defoliated than
Benning (75 %) (Fig. 9b).
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Fig. 6 Mean defoliation by
SBL, CEW, FAW, and VBC
caterpillars on NILs during

greenhouse (antixenosis) assays.

Significant differences (Tukey—
Kramer post hoc test, p < 0.05)
between NILs are indicated by

letters
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Fig. 7 Feeding progression of 701
SBL in the first field cage. Per-
centage of defoliation per hill Benning
was recorded at 5, 9, 11, and 651 Benning @
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Characterization of Benning"F+ev/4¢

Detached-leaf experiments

The results for the non-choice assays are shown in Fig. 10.
The pyramid of QTL-M, QTL-E, and crylAc showed
enhanced antibiosis against SBL and SAW when com-
pared to Benning™® and Benning®”/¢. SBL fed on Ben-
ning"E and Benning®*’4¢ weighed 61 % and 43 % less
than SBL fed on Benning. However, the strongest antibi-
otic effect against SBL was observed in BenningMET</4¢;
these caterpillars weighed 88 % less than Benning-fed
caterpillars. SAW fed on Benning™E and Benning®”/4
weighed 68 % and 59 % less than SAW fed on Benning.
The strongest antibiotic effect against SAW was observed
on BenningMETV/A¢ these caterpillars weighed 89 %
less than those fed on Benning. VBC fed on Benning™®
weighed 81 % less than VBC fed on Benning. VBC fed on
Benning/A¢ died at the first instar; their weight was 98 %

Days after first infestation

less than Benning-fed VBC. VBC fed on BenningME+e/4¢
also died at the first instar; therefore, the effect of QTL-M
and QTL-E could not be measured for this species.

Discussion

PI 229358 and PI 227687 have been used in soybean
breeding programs worldwide to introgress resistance
to chewing insects. This is the first time that the resist-
ance of NILs carrying pyramids of insect-resistance
QTLs from PI 229358 and PI 227687 has been evalu-
ated. The rationale was based on work by Lambert and
Kilen (1984a), showing that F, progeny from PI 229358
x PI 227687 are more resistant than either parent. In this
study, it was demonstrated that the QTL combinations
ME and MGHE are able to confer high levels of resist-
ance against multiple insect species via antibiosis and
antixenosis, in the cultivar, Benning. The ME and MGHE
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Fig. 8 Leaf damage on NILs exposed to SBL feeding in the field
cage, at 11 days after infestation

NILs exhibit similar levels of resistance in all but one of
the bioassays. Therefore, there is no indication that the
addition of QTL-G and/or QTL-H to the ME combination
is required to reach agriculturally relevant levels of resist-
ance. Although the results of are encouraging, a limitation
of this study might be that ME and MGHE were charac-
terized in a single genetic background (Benning), due to
the time and resources needed to develop the NILs. Nev-
ertheless, QTLs M (Narvel et al. 2001; Walker et al. 2002;
Walker et al. 2004) and E (Hulburt 2002; Hulburt et al.
2004) have been verified to work in different backgrounds
when independently tested. From a breeding perspec-
tive, introgressing just QTL-M and QTL-E into an elite
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Fig. 9 Mean defoliation by SBL at 11 days after infestation, in the
first and second field cage. Significant differences (Tukey—Kramer
post hoc test, p < 0.05) between NILs are indicated by letters

cultivar is simpler than introgressing all four QTLs. As
the number of QTLs increases, pyramiding in an elite line
becomes increasingly difficult; especially when selection
involves several traits at a time (Bernardo 2008). Further-
more, QTL-G is associated with a yield penalty (War-
rington 2006). Altogether, pyramiding the major insect-
resistance QTLs from PI 229358 and PI 227687 presents
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Fig. 10 Mean weight of SBL, SAW, and VBC caterpillars after feeding on insect-resistant BenningME+C'y IAc during detached-leaf (antibiosis)
assays. Significant differences (Tukey—Kramer post hoc test, p < 0.05) between NILs are indicated by letters

an effective genetic combination to deploy host—plant
resistance to insects in soybean.

In Brazil, the genetically modified MON 87701 x MON
89788 soybean, which expresses the Bt toxin CrylAc,
is used for the integrated pest management of lepidop-
teran pests (Berman et al. 2011). This soybean is resistant
to SBL, VBC (Bernardi et al. 2012), tobacco budworm
[Heliothis virescens (Fabricius)] (Bernardi et al. 2014a),
and the recently imported old world cotton bollworm
[Helicoverpa armigera (Hiibner)] (Azambuja et al. 2015).
However, CrylAc is not sufficient to protect soybeans
from FAW, SAW, and the velvet armyworm [Spodoptera
latifascia (Walker)] (Bernardi et al. 2014b). Frequent SAW
outbreaks have been already reported in Brazil (Bueno
et al. 2007; Santos 2005); SAW’s high defoliation capac-
ity (Bueno et al. 2011) and its large populations make this
species an important pest that can cause severe economic
losses to Brazilian soybean production. A synergistic rela-
tionship between cryl/Ac and the insect-resistance QTLs
from PI 229358 was previously reported (Walker et al.
2002; Zhu et al. 2008). PI 227687 has shown resistance to
SAW via antibiosis (Souza et al. 2014). There was inter-
est in determining if the combination of QTL-M, QTL-E
and crylAc would also provide enhanced resistance to
lines with only the crylAc transgene or the QTLs by them-
selves. Benning™E+<4¢ wag developed and characterized
in antibiosis assays. This line is more resistant than Ben-
ning™® and Benning™/4¢ against SBL and SAW. Although
this combination would need to be thoroughly studied in
antixenosis field-cage assays and, if possible, in field tests
with natural pest infestations, the results from the antibiosis

assays indicate the potential of combining QTL-M, QTL-E
and crylAc to improve soybean resistance to insects that
are naturally tolerant to crylAc. The use of this pyramid
as part of a resistance management strategy (Bates et al.
2005) could help preserve the effectiveness of Bt, which
could lead to durable resistance to leaf-chewing insects in
soybean.

Breeding high-yielding soybean cultivars with agri-
culturally relevant levels of insect-resistance has been a
long-term goal. In the past, lines carrying only PI 229358
QTLs were either lower yielding (e.g., Benning™!; War-
rington et al. 2008), or not highly resistant in the field
(e.g., Benning™; Zhu et al. 2008). With only two insect-
resistance QTLs, BenningME is at least as resistant to sev-
eral important lepidopteran pests as Benning™H, without
carrying QTL-G. Lines carrying QTLs from PI 229358
QTLs enhance the resistance provided by cryl/Ac in lines
like BenningM"+<4¢ (Zhy et al. 2008). The combination
of ME+-crylAc described here could present an opportu-
nity to effectively deploy Bt, in a pyramid with host—plant
resistance genes.
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