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to biotic and abiotic stress. Recent reports suggest that CNVs 
may form rapidly in response to stress.

Introduction

For a long time, it was assumed that single-nucleotide poly-
morphisms (SNPs) and small insertion-deletion polymor-
phisms (indels) were the main types of DNA alterations 
underlying intra-species genomic variation. Quite recently, 
copy number variation (CNV) has been recognized as 
another common type of polymorphism in the genomes of 
humans, animals and plants. CNV results from unbalanced 
DNA modifications, which trigger changes in the number 
of copies of a particular DNA sequence. Typically, copy 
number variants (CNVs) encompass relatively large DNA 
segments (from 1 kb to several Mb). However, recent tech-
nical developments, especially next-generation sequenc-
ing (NGS), have enabled the identification of much shorter 
polymorphic regions (20–50 bp), which are traditionally 
defined as indels (Alkan et al. 2011).

Several mechanisms have been postulated to explain 
the formation of CNVs. One potential mechanism is non-
allelic homologous recombination (NAHR) between DNA 
segments of high similarity that are not alleles. NAHR usu-
ally involves low-copy repeats (LCRs)—DNA segments 
larger than 1 kb that are generated during ancient duplica-
tion events. Depending on the LCR location, NAHR can 
lead to intrachromatid, interchromatid or interchromo-
somal rearrangements. The type of rearrangement depends 
on LCR orientation: the repeats may be direct, opposite or 
mixed. The orientation determines whether NAHR leads to 
the deletion, reciprocal duplication or inversion of the DNA 
segment flanked by the LCRs (Gu et al. 2008). Another 
potential mechanism is fork stalling and template switching 
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(FoSTeS). FoSTeS is caused by DNA replication errors. It 
occurs when the replication fork stalls at one position; the 
nascent strand disengages from the lagging DNA template 
in that fork and transfers to another replication fork in close 
physical proximity, then re-anneals and primes DNA syn-
thesis from that site. The template switching is driven by 
microhomology between the original and the invaded DNA 
strands. Depending on the number of switching events, the 
location of the invaded fork (upstream or downstream from 
the previously used fork) and whether the leading or lag-
ging strand in the new fork were used as a new template, 
FoSTeS events may generate insertions, deletions or more 
complex rearrangements (Lee et al. 2007a; Zhang et al. 
2009). A more detailed description of CNVs formation 
mechanisms can be found in the reviews of Gu et al. (2008) 
and Stankiewicz and Lupski (2010).

Great interest in CNVs was stimulated by the two semi-
nal papers of Iafrate et al. (2004) and Sebat et al. (2004). 
Both of these papers described large-scale copy num-
ber polymorphism in the human genome. Although a few 
examples of CNV in specific genomic regions had been 
known previously, these papers initiated a research trend 
that led to the identification of thousands of CNVs, not 
only in the human genome but also in the genomes of other 
organisms, including plants. Currently, it is estimated that 
common CNVs occur in approximately 10 % of the human 
reference genome. Although CNVs are more common in 
regions almost devoid of genes (Redon et al. 2006), they 
are often detected in regions that contain protein-coding 
genes or important regulatory elements (Fig. 1). CNVs 
overlapping a gene may alter the expression level of the 
gene by virtue of changing the number of functional cop-
ies (Fig. 1a, b, d). CNVs may also affect gene regulation 
by position effects, as may be the case when they encom-
pass gene regulatory sequences, even those located several 

Mb away (Fig. 1c). CNVs that partially overlap a gene 
sequence may disrupt the structure of the gene and impair 
its function (Fig. 1e, f).

CNVs often have phenotypic effects. In humans, varia-
tions in gene copy number have been shown to modify the 
risk of psoriasis (CNV affecting the β-defensin genes), HIV 
infection (CNV affecting the CCL3L1 gene) and osteopo-
rosis (CNV affecting UGT2B17 gene) (Hollox et al. 2008; 
Yang et al. 2008; Gonzalez et al. 2005). In addition, CNVs 
are the most common somatic mutations observed in can-
cer genomes, primarily affecting the copy number of tumor 
suppressor genes and proto-oncogenes (Lee et al. 2007b; 
Frank et al. 2007; Shlien et al. 2008; Yoshihara et al. 2011; 
Stadler et al. 2012). CNVs in specific genome regions may 
be linked to some instances of autism, schizophrenia, epi-
lepsy, Parkinson’s or Alzheimer’s disease (Rovelet-Lecrux 
et al. 2006; Weiss et al. 2008; Stefansson et al. 2008; Hel-
big et al. 2009; Pankratz et al. 2011; Liao et al. 2012). In 
addition, hundreds of rare, often de novo CNV events have 
been shown to significantly increase autism risk in chil-
dren. A recent study showed that this disorder is associated 
with genome instability; global increases in both common 
and rare large duplications were observed in the genomes 
of children with autism (Girirajan et al. 2013).

In contrast, CNVs in plants have not been so thor-
oughly studied. It is only in the last 5 years that CNVs have 
attracted the attention of plant biologists and geneticists, 
leading to the first estimates of the extent of CNV in plant 
genomes. In this review, we will present current knowledge 
about the occurrence of CNVs in model and crop plants. 
We will also present examples of the association of CNVs 
with particular plant phenotypes. As the reader will see, the 
definition of CNV used in plant research is broader than in 
human- and animal-oriented studies, in which CNV events 
are attributed to individual genomes. In plant genetics, 

Fig. 1  Potential effects of 
CNV on gene expression. a–c 
Examples of CNVs that result 
in an elevated transcript level; 
d–f Examples of CNVs that 
result in a decreased level of 
the full length transcript. Gene 
CNV (complete duplication or 
deletion) may change an effec-
tive gene dosage (a, b, d). CNV 
affecting an enhancer sequence 
may alter transcription level 
without change in gene copy 
number (c). Partial gene dele-
tion (e) or insertion of a dupli-
cated sequence (f) may disrupt 
gene structure and functionality. 
P promoter, G gene, R enhancer 
sequence
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the individual organisms are mainly treated as representa-
tives of one of the following sub-types: (1) cultivars (also 
named varieties), which are distinct, often intentionally 
bred subsets of a species that will behave uniformly and 
predictably when grown in the environment to which they 
are adapted or (2) accessions, which are collections of plant 
material from a particular location that are given unique 
identifiers (definitions after Aubry et al. 2005). This is justi-
fied by the fact that the cultivars/accessions are frequently 
maintained in laboratory conditions for a long time (often 
as inbred lines), with little influence of selective forces. In 
addition, many plants, including model species, are mainly 
self-pollinating; therefore, their genotypes are considered 
to be highly homozygous. Accordingly, CNVs in plants 
are often recognized and discussed as polymorphisms dis-
tinguishing cultivars/accessions of one species rather than 
affecting individual plants (Cao et al. 2011; Xu et al. 2011; 
Chia et al. 2012). Nevertheless, intracultivar heterogeneity 
is a recognized phenomenon, especially among crop plants, 
and some (relatively few) studies have been devoted to the 
exploration of genetic variation among individuals (DeBolt 
2010; Ossowski et al. 2010; Haun et al. 2011).

There is, however, one more issue that needs to be 
highlighted in the context of CNV analysis: polyploidy. 
Because of whole-genome duplication events in the evo-
lutionary history of most plant species, polyploidy is 
common in plants. Some of the duplicated genes may be 
retained as multiple copies, while other gene pairs may 
have diverged from each other, or some of the copies may 
have been lost from the homologous chromosomes. Thus, 
in polyploid plants, variant copy number is calculated as 
copies per haploid genome (Swanson-Wagner et al. 2010; 
Saintenac et al. 2011; Díaz et al. 2012; Cook et al. 2012), in 
contrast to humans and animals, in which copy number is 
expressed relative to the diploid genome.

Methods of genome‑scale CNVs detection

Several experimental methods are used to detect CNVs: 
quantitative PCR, in situ fluorescent hybridization (Weaver 
et al. 2010), the paralogue ratio test (Armour et al. 2007), 
multiplex amplifiable probe hybridization (Armour et al. 
2000) and multiplex ligation-dependent probe amplifica-
tion (Marcinkowska-Swojak et al. 2013). Although most 
of these methods allow for high-throughput genotyping of 
a particular variant in multiple DNA samples, they are not 
suitable for a genome-scale analysis and have limited use 
in CNVs discovery. Current experimental approaches for 
genome-scale CNVs discovery and genotyping are mainly 
based on microarrays and NGS. These methods have been 
recently extensively reviewed in the literature (Yau and 
Holmes 2008; Medvedev et al. 2009; Alkan et al. 2011). 

Two genome-scale methods have had the greatest impact 
on CNV research in plants: array-based comparative 
genome hybridization (CGH) and reference genome-based 
NGS. In the CGH approach, DNA probes are immobilized 
on an array, which enables simultaneous hybridization and 
detection of target sequences with a resolution that depends 
on the number and type of immobilized probes. Analysis 
of copy number is based on the relative amounts of signal 
from tested and reference genomic DNA samples binding 
to the probes. The reference sample in CGH analysis is 
usually the genomic DNA of the species (or accession) for 
which the microarray probes were designed. The ability of 
the assay to detect a particular region in the tested genome 
depends on its homology to the array probes. For this rea-
son, CGH is always biased toward the detection of dele-
tions (relative to the reference genome sequence), whereas 
DNA segments present in the tested genome but not in the 
reference remain undetected due to a lack of representa-
tive probes. Moreover, lower signal intensity observed for 
the tested genome may result not only from CNVs but also 
from other types of sequence polymorphisms that affect 
probe hybridization and produce a signal imbalance, result-
ing in false positive errors (Springer et al. 2009).

The second approach—NGS—is a high-throughput 
DNA sequencing technology. Modern NGS platforms, such 
as Illumina or ABI/SOLID, generate tens of millions of 
short reads in parallel (usually shorter than 100 nt) from the 
genomic DNA template. Signatures of CNVs in NGS data 
can be obtained by one of the four analytical approaches, 
or by a combination of them. Analysis of relative increases 
and decreases in sequence coverage by short reads (read-
depth method) provides information about duplications 
and deletions. It allows for calculating the absolute copy 
numbers of genomic segments. Although typical analy-
sis pipelines for NGS data involve mapping the reads to a 
reference genome, de novo assembly of the non-mapping 
reads (assembly method) allows for the discovery of new 
sequence variants that are not represented in the reference 
DNA. Additional information comes from the analysis of 
paired-end reads, which provide estimates of the distances 
between two reads and their orientation (read pair method), 
thereby allowing for the detection of insertions, deletions 
and inversions. In the case of longer reads, the exact break-
points of all variant classes may be detected when the reads 
map discontinuously to the reference genome (split read 
method). The NGS approach has been proven effective for 
the discovery and mapping of structural variants at nucleo-
tide-resolution in plants, animals and humans (Daines et al. 
2009; Yoon et al. 2009; Mills et al. 2011; Cao et al. 2011; 
Bickhart et al. 2012). The main drawbacks of NGS are the 
following: difficulty with mapping short reads to DNA 
repeats (Treangen and Salzberg 2011) and platform-spe-
cific biases, which result in lower read coverage of some 
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parts of the genome (for example, GC-rich regions) (Dohm 
et al. 2008). This type of sequencing also remains quite 
expensive.

CNVs are prevalent in plant genomes

There is growing evidence that CNVs are prevalent in plant 
genomes (Table 1). The first plant species that has been 
extensively genotyped for CNVs is maize. Three impor-
tant studies used CGH for CNVs detection with maize 
inbred line B73 as the reference genome for probe design 
and as the CGH reference (Springer et al. 2009; Beló et al. 
2010; Swanson-Wagner et al. 2010). The first study used 
a high-resolution genome tiling array to detect CNVs in 
inbred line Mo17 (Springer et al. 2009). The two follow-
ing studies were focused on gene-coding regions only and 
involved multiple maize lines: 13 lines in a study by Beló 
et al. (2010) and 19 in a study by Swanson-Wagner et al. 
(2010), who also assayed 14 lines of the wild maize rela-
tive, teosinte (Z. mays ssp. parviglumis). Line Mo17 was 
analyzed in all the above studies, making it possible to 
compare results across studies. Springer et al. (2009) iden-
tified approximately 400 putative polymorphic regions 
that were present in both the B73 and Mo17 lines, but dif-
fered in the detected hybridization signal. The CNVs with 
higher copy number in Mo17 were covered by highly con-
served probes significantly more often than the average, 
and they also more often contained genes or were located 
near genes. Variants with higher copy number in B73 were 
evenly distributed across the regions represented on the 
microarray. This difference most likely reflects different 
levels of homology of the coding and intergenic regions 
between the genomes of the tested and reference lines. It 
was also observed that, although CNVs were detected on 
most of the maize chromosomes, they were not uniformly 
distributed. Several highly conserved regions that exhibited 
few CNVs or no CNVs were located mainly near the cen-
tromeres. This distribution pattern was later confirmed by 
two other CGH studies (Beló et al. 2010; Swanson-Wagner 
et al. 2010). All three studies also described the existence 
of presence–absence variants—specific CNVs where DNA 
regions are present in one genome but missing from the 
other line. Due to the CGH array design, the detected vari-
ants more often indicated decrease in copy number or com-
plete deletion in the tested genome, relative to the B73 ref-
erence. Beló et al. (2010) reported that 57 % of all CNVs 
detected in their study occurred in lower copy number in 
the non-B73 lines. Swanson-Wagner et al. (2010) identified 
seven times more copy-loss events than copy gain events in 
the tested genomes, including presence–absence variants. 
One of the biggest presence–absence regions of this type, 
2.6 Mb in size, located on the short arm of chromosome 6 

and spanning 25 maize genes, has been shown to be miss-
ing from multiple maize inbred lines (Springer et al. 2009; 
Swanson-Wagner et al. 2010; Beló et al. 2010). 

Recently, the CGH method has also been applied to 
CNV detection in several model plant species and—sim-
ilarly to the maize studies—has provided mainly exam-
ples of gene copy loss in the tested genomes. Among the 
641 identified CNVs that distinguished two rice cultivars, 
Nipponbare (O. sativa ssp. japonica) and Guang-lu-ai 4  
(O. sativa ssp. indica), the majority of CNVs indicated 
copy loss of genomic segments in Guang-lu-ai 4 (Yu et al. 
2011). The exact rate of deletions in the Nipponbare cul-
tivar could not be estimated, as the oligonucleotide array 
used in this study was designed to represent only the japon-
ica cultivar. The japonica and indica subspecies diverged 
approximately 0.4 million years ago and display a high 
level of DNA sequence variation (Ma and Bennetzen 2004). 
CNVs identified in rice were distributed across all 12 chro-
mosomes and comprised ~1.8 % of the rice genome. The 
majority of CNVs were smaller than 10 kb (67.4 % of vari-
ants) although larger CNVs were detected as well, up to a 
size of 180.7 kb.

In soybean, a CGH study was performed to detect 
CNVs in three cultivars, Archer, Minsor and Noir 1, using 
genomic DNA of the recently sequenced Williams 82 cul-
tivar as a reference and as a basis for array probe design 
(McHale et al. 2012). Several hundred CNVs, including 
presence–absence variants, were detected in each of the 
genomes tested. The median variant size was 18–23 kb, 
depending on the cultivar. The CNVs in the soybean 
genomes had a discontinuous distribution, with very large 
stretches of DNA showing little or no evidence of CNV 
(e.g., regions covering most of chromosomes 5 and 11). As 
in the maize and rice CGH studies (Springer et al. 2009; 
Swanson-Wagner et al. 2010; Beló et al. 2010; Yu et al. 
2011), the CNVs detection was biased toward copy loss in 
the tested cultivars.

Large‑scale population sequencing studies reveal 
adaptive dynamics of plant genomes

Although NGS is still an expensive method, it has proven 
useful for population-scale genotyping studies. In humans, 
a large number of individual genomes have been sequenced 
at low coverage to catalog CNVs and determine their fre-
quency and distribution. This huge project comprises 
more than 2,300 samples, including unrelated individu-
als and trios (parents and a child) (Mills et al. 2011). 
Population-scale sequencing studies are also underway 
in plant genetics. They mainly aim to uncover patterns of 
genetic variation among cultivars/accessions and to pro-
vide a data resource for association studies. In such an 
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approach, individual plants are assumed to be representa-
tive of the homogenous genetic pool of a particular cultivar/
accession.

Arabidopsis 1001 Genomes Project

The 1001 Genomes Project is the largest ongoing plant 
genome sequencing initiative. The aim of this project, 
which started in 2008, is to catalog the genetic variation 
of Arabidopsis thaliana (Arabidopsis) by sequencing the 
genomes of more than 1,000 accessions (Weigel and Mott 
2009). Natural Arabidopsis accessions exhibit great vari-
ation in phenotype, including features of their morphol-
ogy, metabolite profiles, germination behavior, resistance 
to disease, and more. Accordingly, these naturally occur-
ring inbred lines (Arabidopsis is highly self-pollinating) 
are considered excellent resources for studying the puta-
tive connections between genetic variation and phenotype. 
Data generated within the 1001 Genomes Project are made 
freely available to the community, enabling analysis of 
various aspects of the structure of the Arabidopsis genome. 
Currently, data for about five hundred Arabidopsis genomes 
have already been released (http://www.1001genomes.org/
accessions.html), and a comprehensive analysis of 80 of 
them has been published (Cao et al. 2011). The accessions 
selected for this sub-study represented six distinct geo-
graphic habitats of Arabidopsis, spanning Europe, Central 
Asia and North Africa. Read-depth analysis of NGS data 
revealed the presence of 1,059 CNVs in the Arabidopsis 
genome. The detected CNVs ranged from 1 to 13 kb and 
covered 2.2 Mb of the reference genome (approximately 
2 %). For 40 % of those regions, 3–13 distinct copy number 
genotypes have been identified in the analyzed population. 
Over 85 % of those variants were detected in more than one 
accession. Apart from evaluation of read depth, the authors 
used the read pair and assembly methods to find deletions 
and insertions. They detected multiple deletions ranging 
in size from 20 bp to many kb, with approximately 5 bp 
precision. Finally, they managed to recover ~43,000 con-
tigs (0.2–9 kb in size) with little (~50 bp) overlap with the 
reference genome (Col-0 accession). Some of those regions 
map to the genome of a related species, Arabidopsis lyrata, 
which suggests that their origin preceded Arabidopsis line 
divergence and that subsequent deletion events took place 
in the Col-0 accession.

Maize Panzea Project

Another large-scale population sequencing effort, the 
Panzea project (http://www.panzea.org), is devoted to 
exploring genome architecture and variation in maize. The 
project mainly aims to identify the genetic background of 
complex traits in maize such as flowering, plant height and 

kernel quality, the control of which may result in future 
improvements in crop yield and sustainability (Canaran 
et al. 2008). In addition, the effect of domestication on the 
genome is being investigated by comparing maize and teo-
sinte genomic data. Maize is a primarily outcrossing crop 
and displays tremendous phenotypic variation among the 
lines. Nearly 85 % of the B73 genome is annotated as trans-
posable elements (Schnable et al. 2009). Moreover, recent 
SNP analysis and RNA-sequencing approaches provided 
evidence of great nucleotide diversity in maize cultivars 
(Gore et al. 2009; Hansey et al. 2012). It is estimated that 
approximately 30 % of the low-copy genes present in vari-
ous maize inbred lines are not present in the B73 genome, 
which means that a substantial portion of the maize genome 
remains undiscovered. As explained earlier in this review, 
the CGH studies of maize lines, although extensive, were 
not devoted to discovery of this type of CNV (Springer 
et al. 2009; Beló et al. 2010; Swanson-Wagner et al. 2010).

In one of their recent reports, the Panzea consortium 
described the analysis of high-throughput sequencing data 
from 103 inbred maize lines, including both domesticated 
and wild-type lines (Chia et al. 2012). Read-depth analy-
sis of NGS data was performed across the whole-genome 
sequence, using 10-kb non-overlapping windows. As much 
as 90 % of such regions showed at least twofold variation 
in read depth (at a 1 % false discovery rate), and 70 % of 
the windows had such variation in at least ten of the ana-
lyzed lines. Altogether, this study showed that the genetic 
diversity of maize cultivars is even greater than suggested 
by previous estimates based on CGH studies.

Rice variation catalog

Rice is a crop of extreme agricultural importance; it is con-
sumed in great amounts around the world. It was domes-
ticated approximately 10,000 years ago in China, and 
cultivated accessions underwent substantial phenotypic 
changes compared to their wild ancestors. The domesti-
cated lines can be further subdivided into several geneti-
cally distinct groups (Garris et al. 2005). As a step toward 
creating a comprehensive catalog of genome variation in 
both cultivated and wild rice, 50 accessions representing 
major groups of cultivated rice (ssp. indica and japonica) 
as well as wild rice accessions (O. rufipogon and O. nivara) 
were sequenced (Xu et al. 2011). Analysis of the sequenc-
ing data revealed more than 1,400 novel genes, nearly 50 % 
of which were found only in one accession, and over 20 % 
were specific to wild rice. A similar amount of possible 
gene loss events (more than 1,300) relative to the refer-
ence genome (“Nipponbare”, ssp. japonica) were detected 
as well, most of which corresponded to unannotated pro-
teins. In addition to presence–absence variants, nearly 
1,700 CNVs were detected, many of them (21 %) shared 

http://www.1001genomes.org/accessions.html
http://www.1001genomes.org/accessions.html
http://www.panzea.org
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by at least five accessions. However, it should be noted that 
despite numerous re-sequencing projects in total involving 
hundreds of rice accessions, both domesticated and wild-
type, little is known about CNVs in the rice genome. It is 
a natural consequence of the fact that most of these pro-
jects were focused mainly on SNP identification (Huang 
et al. 2010, 2012, 2013; Jeong et al. 2013). Accordingly, 
the analysis of the existing NGS data directed towards 
CNVs discovery may help to elucidate their impact on rice 
genome.

CNVs commonly overlap genes

As previously demonstrated for human and animal 
genomes, plant CNV density correlates with repeat density 
and inversely correlates with gene density (Emerson et al. 
2008; Conrad et al. 2010; Chia et al. 2012). Still, numerous 
CNVs overlap protein-coding regions. The exact number of 
genes overlapping CNVs in a given species varies between 
experiments. For example, five different experiments in 
maize put the number of genes in CNV-affected regions 
anywhere from 230 to more than 10,000 (Table 1). The 
factors that account for such differences between experi-
ments include the following: the sensitivity of the method, 
the number of genes surveyed (in CGH, the number of 
genes interrogated depends on the array design, in NGS it 
depends on library preparation, sequencing depth and accu-
racy of the reference genome assembly), the analysis algo-
rithms and statistical cut-off thresholds, and the number of 
samples compared. Nevertheless, many CNVs were identi-
fied in at least two of the five studies. For example, high 
concurrence between presence–absence variations identi-
fied in Mo17 genome was observed for the CGH and NGS 
data (Springer et al. 2009; Lai et al. 2010). In addition, 
genes identified as copy number variable in multiple lines 
in another CGH study also showed high average variation 
in the NGS-based analysis (Swanson-Wagner et al. 2010; 
Chia et al. 2012). The latter study estimated that 32 % 
of the genes annotated in the B73 reference genome are 
affected by CNVs. This is much greater than the propor-
tion of genes affected in Arabidopsis, rice or soybean (see 
Table 1), and it correlates with the overall higher genetic 
diversity and spectacular phenotypic diversity of maize. 
The large number of genes overlapping the discovered 
CNVs may also explain, at least in part, the transcriptome 
variation observed among different maize lines. The semi-
quantitative analysis of NGS-transcriptomic data revealed 
that multiple transcripts differed in abundance among 21 
inbred maize lines (possible classification groups were: 
“no”, “low”, “medium” or “high” expression level) (Hansey 
et al. 2012). In addition, many transcripts annotated in the 
reference genome were absent from specific lines, and in 

other cases, novel transcripts were found in specific lines. 
Swanson-Wagner et al. (2010) observed that 86 % of iden-
tified CNVs are present both in wild-type and domesticated 
lines, suggesting that the majority of the observed gene 
involving CNV events in maize preceded domestication 
and that they are not the product of artificial selection. Rare 
CNVs (i.e., those unique to a single line) were observed fre-
quently in teosinte. Because 10 of the 14 teosinte lines used 
in the cited study were segregating, the authors concluded 
that many naturally occurring CNVs covering gene-coding 
regions may be non-neutral and may, therefore, be tolerated 
only in the heterozygous state, whereas breeding eliminates 
those CNVs from the genomes of highly inbred lines. On 
the other hand, in the study by Beló et al. (2010), the rate 
of occurrence of particular gene CNVs only in a single 
domesticated line was calculated to be much higher—about 
half of all CNVs observed. Although different maize lines 
were genotyped in the two experiments (except for Mo17 
and B73), those discrepancies point to the need for more 
in-depth analysis of genomic data to evaluate the range of 
CNVs occurrence in maize (and other plants) as well as the 
rate of maize evolution.

NB and RLK multigene families are especially  
prone to CNV

According to population sequencing studies, a major frac-
tion of genes located within CNV regions code for hypo-
thetical or unknown proteins (Xu et al. 2011; Cao et al. 
2011). Among the functionally annotated genes, those 
which are usually overrepresented within CNV regions are 
genes encoding proteins with a nucleotide binding domain 
(NB) and one or more leucine-rich repeat (LRR) domains 
(known as NB-LRR genes), as well as genes encoding 
receptor-like kinases (RLK). Both NB-LRR and RLK 
genes constitute large gene families, and many of them are 
functionally classified as defense-related. Not surprisingly, 
GO term enrichment analysis of the 672 genes located 
within CNV regions in soybean revealed that genes related 
to disease resistance and biotic stress response were signifi-
cantly overrepresented (McHale et al. 2012). Similar obser-
vations have been made for Arabidopsis and rice, where 
disease resistance genes represent a significant fraction of 
genes in CNV regions (Xu et al. 2011; Cao et al. 2011; Lu 
et al. 2012). High levels of duplication ensure the variabil-
ity of defense genes, and such variation is advantageous 
in the face of changing environmental conditions. Indeed, 
those genes seem to be under weaker purifying selection or 
under stronger diversifying selection than other duplicated 
genes, such as genes involved in protein translation (Korbel 
et al. 2008; Warren et al. 2010; Lu et al. 2012). The genes 
of the NB-LRR family represent the largest class of resist-
ance (R) genes that are involved in race-specific recognition 
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of pathogen avirulence determinants. R genes are subject 
to strong selective pressure promoting coevolution with 
pathogen effector proteins. Depending on the presence or 
absence of particular pathogens, the pressure for the selec-
tion of corresponding R genes dramatically changes, lead-
ing to rapid evolution (Guo et al. 2011; McHale et al. 2012; 
Ashfield et al. 2012; Luo et al. 2012).

CNVs were reported to overlap multigene families more 
often than unique genes in many plant species (Swanson-
Wagner et al. 2010; Cao et al. 2011; Xu et al. 2011; Zheng 
et al. 2011; Chia et al. 2012; McHale et al. 2012). Recent 
GO term enrichment analysis of CNVs identified by CGH 
in soybean suggested, however, that higher CNV frequency 
correlates specifically with the NB and RLK gene fami-
lies, not with large gene families in general. When those 
genes were removed from the GO term enrichment anal-
ysis of CNVs, the frequency of large gene families over-
lapping CNV regions did not differ much from the over-
all frequency of genes within those regions (McHale et al. 
2012). This suggests that the large size of a gene family is 
not sufficient to promote CNVs formation and that some 
families are more affected by copy number polymorphism 
than others. In addition, gene members of a given family 
are not equally predisposed to CNV. Genes localized in 
clusters, especially in tandem arrays, seem to undergo copy 
number changes more often than isolated family members 
(McHale et al. 2012), which is consistent with recombina-
tion-based mechanisms of CNV formation, although it does 
not exclude alternative mechanisms.

Associations of CNVs with plant phenotypes

Despite the prevalence of CNVs in plant genomes and 
their frequent overlap with protein-coding regions, only 
a few have been associated with particular phenotypes on 
the morphological, physiological or developmental level. 
Paralogous plant genes are often functionally redundant. 
Therefore, variations in copy number of one member of a 
gene family may trigger quantitative rather than qualita-
tive changes, making the CNV-trait association difficult to 
detect. Still, a growing number of reports provide evidence 
that copy number polymorphisms contribute to natural 
genetic variation and control important adaptive traits in 
plants (Table 2).

A good example of a CNV affecting phenotype is found 
in the diversity of flowering times and plant heights in 
wheat (Fig. 2). CNVs for the genes Vrn-A1 and Ppd-B1 
were shown to contribute to differences in flowering time 
between the wheat varieties (Díaz et al. 2012). Plants with 
an increased copy number of Vrn-A1, which encodes a 
MADS-box transcription factor, require prolonged ver-
nalization and exhibit intermediate or late flowering 

phenotypes (depending on the exact number of gene cop-
ies, see Fig. 2a). The other gene, Ppd-B1, belongs to a fam-
ily of pseudo response regulators (PRR) and it has been 
shown to control photoperiod sensitivity in wheat. Wheat 
cultivars with only one copy of Ppd-B1 per haploid genome 
are photoperiod sensitive, whereas those with increased 
copy number (2–4 copies), exhibit an early flowering, 
day-neutral phenotype (Fig. 2b). Also in wheat, a CNV 
has been found to determine the extreme dwarf pheno-
type observed in the Aibian 1 line (Li et al. 2012). In this 
line, tandem segmental duplication of a greater than 1 Mb 
region resulted in two copies of the Rht-D1b gene in the 
haploid genome. Rht-D1b codes for a truncated DELLA 
protein, lacking the gibberellic acid response region. The 
Rht-D1b allele itself triggers plants’ insensitivity to gibber-
ellic acid and causes a 20 % height reduction (~90 cm in 
Youbao line, compared to ~113 cm in the Chinese Spring 
line, which is a tall wheat carrying a wild-type allele Rht-
D1a). In Aibian 1 line, however, the presence of two copies 
of Rht-D1b results in a greater than 70 % reduction in plant 
height (~30 cm) (Fig. 2c).

Several confirmed examples of a CNV link to pheno-
type concern plant stress tolerance (Table 2). CNV of Bot1, 
a boron efflux carrier gene, has been shown to play a sig-
nificant role in conferring boron tolerance in barley (Sut-
ton et al. 2007). Another report links CNV of three soybean 
genes with the development of nematode resistance. In this 
plant, the poorly characterized Rhg1 locus on chromosome 
18 has long been known to contribute to soybean resistance 
to Heterodera glycines (soybean cyst nematode, SCN). 
Recent work by Cook et al. (2012) brought evidence that 
SCN resistance triggered by the rhg1-b allele results from 
simultaneous overexpression of three clustered but non-
homologous genes: an amino acid transporter, an α-SNAP 
protein and a wound-inducible domain containing protein. 
It seems that products of those genes act in concert to con-
vey the resistance phenotype, although the biochemical 
mechanism of their cooperation remains unknown. Though 
SCN-susceptible soybean varieties contain only one copy 
of each gene, resistant lines carrying the rhg1-b allele pos-
sess up to 10 tandem copies of the gene cluster. This dis-
covery may have direct economic impact on soybean pro-
duction by enabling the selection of SCN-resistant varieties 
based on copy number evaluation of the Rhg1 region.

The pace of CNVs evolution

Recently, Lu et al. (2012) provided direct insight into the 
rate of structural alterations introduced during a single 
round of meiosis in the Arabidopsis genome. Using the 
Arabidopsis qrt1 mutant (a Col/Ler F1 hybrid), the authors 
produced four attached pollen grains from all four meiotic 
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tetrads. Their progeny was obtained by pollinating a single 
pistil of an emasculated Col flower, and the genomes of the 
resulting plants were sequenced and analyzed. There were 
21 and 32 CNVs generated by meiotic events in the two 
“tetrad progeny” sets. The main cause of the CNV seemed 
to be NAHR-mediated reshuffling of existing highly simi-
lar sequences that map to different locations in the genome. 
Given that meiosis can rapidly generate CNVs among sib-
lings (as the study of Lu et al. shows), it can be concluded 
that de novo CNVs are frequent in plant genomes, although 
the majority of them most likely do not become fixed 
because of strong purifying selection.

Changes in gene copy number may provide a way to 
rapidly alter the effective dosage of a gene, which directly 
affects phenotype to a variable extent. As long as the new 
variant is beneficial and has high selective pressure over 
many generations, the copy number alterations in a particu-
lar region may accumulate, and the phenotypic effects may 
intensify. A remarkable example of extremely fast evolu-
tion in a plant genome has been presented recently, and the 
case involves resistance to glyphosate in Palmer amaranth 
(Amaranthus palmeri)—a major weed pest in the southern 
part of the United States. Glyphosate is a non-selective her-
bicide that inhibits the activity of 5-enolpyruvylshikimate-
3-phosphate synthase (EPSPS), an important enzyme of the 
shikimate pathway in plants (Fig. 3). The shikimate path-
way leads to the conversion of phosphoenol pyruvate (PEP) 
to chorismate—a common precursor in the biosynthesis of 
aromatic amino acids (Fig. 3a). The EPSPS enzyme cata-
lyzes the biosynthesis of 5-enolpyruvylshikimate-3-phos-
phate (EPSP) from shikimate-3-phosphate (S3P) and PEP 
(Herrmann 1995) (Fig. 3b). In susceptible plants, glypho-
sate occupies the PEP-binding site in the EPSPS protein, 
acting as a competitive inhibitor of its enzymatic activ-
ity (Schönbrunn et al. 2001) (Fig. 3c). For years, glypho-
sate has been successfully used to control the expansion 
and growth of weeds, including Palmer amaranth. About 
8 years ago, glyphosate-resistant populations of Palmer 
amaranth were detected in Georgia, and the infested area 
in that state and other US states has dramatically increased 
since then (Culpepper et al. 2006; Gaines et al. 2010). It 
has been shown that Palmer amaranth resistance to glypho-
sate is driven by an increase in EPSPS gene copy number, 
which is associated with increased EPSPS transcript and 
protein levels as well as increased glyphosate dose survival 
rate (Gaines et al. 2010, 2011). Resistant plants carry an 
increased number of EPSPS gene copies (typically between 
40–100 times more than susceptible plants). The higher 
production of EPSPS enzyme due to the increased gene 
copy number enables those plants to overcome the inhibi-
tory effect of glyphosate, most likely by providing enough 
enzyme molecules to bind the physiological substrate PEP, 
even in presence of glyphosate (Fig. 3d, e).C
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The EPSPS gene CNV is not unique to Palmer amaranth. 
Recent and rapid increases in glyphosate resistance in com-
mon waterhemp (Amaranthus tuberculatus) and Arkansas 

populations of Italian ryegrass (Lolium perenne ssp. mul-
tiflorum) have been attributed to increased copy number 
of EPSPS in those plants as well (Tranel et al. 2011; Salas 

Fig. 2  Gene CNV contributes to wheat phenotypic diversity. a CNV 
of Vrn-A1 gene controls flowering time by affecting vernalization 
requirement; b CNV of Ppd-B1 controls flowering time by affecting 
photoperiod sensitivity; c CNV of Rht-D1b gene (a truncated version 

of Rht-D1a) determines severity of plant dwarfism phenotype. In all 
three cases, the impact of gene copy number on observed phenotype 
has been verified experimentally. Source data: a, b Díaz et al. (2012); 
c Li et al. (2012)

Fig. 3  Glyphosate resistance in Palmer amaranth mediated by CNV 
of EPSPS gene. a Graphical representation of the shikimate pathway. 
Step 7 is catalyzed by EPSPS enzyme; b–d mechanism of EPSPS 
inhibition by glyphosate and its overcoming by increased number 
of EPSPS gene copies. In absence of glyphosate, PEP and S3P bind 
to EPSPS (b). When glyphosate is present, it competitively binds to 
EPSPS, mimicking an intermediate state of the ternary enzyme–sub-
strates complex and inhibiting EPSPS (c). Amplification of EPSPS 

gene leads to production of additional protein molecules and PEP 
binding, even in presence of glyphosate (d). e Differences in EPSPS 
gene copy number between glyphosate susceptible and glyphosate-
resistant Palmer amaranth individuals. EPSPS 5-enolpyruvylshiki-
mate-3-phosphate synthase, PEP phosphoenol pyruvate, S3P shiki-
mate-3-phosphate, EPSP 5-enolpyruvylshikimate 3-phosphate, G 
glyphosate
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et al. 2012). The EPSPS example shows that the accumula-
tion of copy number changes may serve as a mechanism 
of extremely rapid evolution under high selection pressure. 
In the case of Palmer amaranth, the random distribution of 
EPSPS gene copies in the genome (as observed by FISH 
experiments) suggests the involvement of transposable ele-
ments in the creation of new EPSPS gene copies (Gaines 
et al. 2010). Mobile genetic elements might have been 
induced and/or supported by the very strong selective pres-
sure resulting from extensive glyphosate treatment, leading 
to duplication and transfer of a nearby EPSPS gene.

Outlook

Recent genome-scale studies indicate that CNV signifi-
cantly contributes to natural variation of plants. Accord-
ingly, one can expect that CNVs play significant roles in 
plant evolution and adaptation. There is no doubt that the 
research on CNV phenomenon in plant is still at its begin-
ning but we envision its dynamic development in the near-
est future. Highly inbred and genetically homogenous 
plant cultivars seem to be perfect models for studying gen-
eral and plant-specific aspects of CNV. This is especially 
true for Arabidopsis, a self-compatible plant with a small 
genome and a plenty of genetic tools, such as RILs (recom-
binant inbred lines) and MAGIC (multiple advanced gen-
eration intercross) already available (Weigel 2012).

We expect a growing approbation of CNV’s impact on 
plant phenotype, both in the aspect of long-term evolution 
as well as a mechanism of rapid adaptation to environmen-
tal challenges. Crops, which underwent fast phenotypic 
transformation under strong selective pressure related to 
domestication, may be excellent models for studying the 
general role of CNV in adaptation. This problem seems 
to be especially interesting in the context of recent reports 
suggesting that rapid copy number expansion of genes 
involved in resistance to herbicides or drugs, may take 
place (reviewed in Kondrashov 2012). In many such cases, 
CNV affected the same key genes independently in vari-
ous populations or even independently in different species 
(Triglia et al. 1991; Widholm et al. 2001; Labbé et al. 2007; 
Gaines et al. 2010; Tranel et al. 2011; Salas et al. 2012). 
In addition, recurrent gene deletions have been observed 
in plants and animals, highlighting the role of presence–
absence variation in rapid adaptive evolution (McGrath 
et al. 2011; Olsen and Wendel 2013). Those examples 
allow to hypothesize that CNV phenomenon may be suc-
cessfully employed for directional plant improvement.

Links between CNVs and phenotypic variation also 
suggest that CNVs can be utilized in genome-wide asso-
ciation studies (GWAS), which are now based mostly on 
SNPs (Atwell et al. 2010). Indeed, association analysis of 

5 traits involved in leaf development and disease resistance 
in 103 maize lines using both SNPs and CNVs revealed 
that CNVs contribute greatly to the variation of analyzed 
phenotypes and provide complementary information to 
SNPs (Chia et al. 2012). However, to enable the use of 
SNP and CNV markers by the community, integrated plant 
genomic variant catalogs, similar to the human Database 
of Genomic Variants, are needed. Increasing accessibility 
of NGS techniques makes such databases likely to be cre-
ated in the nearest future. Still, the main limitation of NGS-
based CNV discovery is lack of well-established pipelines 
for data analysis and imperfection of the current software 
to correct for technical bias in the sequence data. There are 
observations (including our own unpublished results) that 
utilizing different software for read mapping and/or CNV 
calling from the same sequence data, results in lists of 
variants which have little overlap with each other (Alkan 
et al. 2011). Thus, to confirm the accuracy of genome-scale 
CNV discovery from NGS data, variant calling should be 
routinely followed by experimental verification of a large 
fraction of inferred CNVs using one or more molecular 
genotyping assays (Cantsilieris et al. 2012). Currently, this 
process is usually limited to relatively easy verification of 
presence–absence variants.
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